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Abstract: The aim of this paper is to numerically predict the temperature effect on the tensile strength
of granitic rock. To this end, a numerical approach based on the embedded discontinuity finite
elements is developed. The underlying thermo-mechanical problem is solved with a staggered
method marching explicitly in time while using extreme mass scaling, allowed by the quasi-static
nature of the slow heating of a rock sample to a uniform target temperature, to increase the critical
time step. Linear triangle elements are used to implement the embedded discontinuity kinematics
with two intersecting cracks in a single element. It is assumed that the quartz mineral, with its
strong and anomalous temperature dependence upon approaching the α-β transition at the Curie
point (~573 ◦C), in granitic rock is the major factor resulting in thermal cracking and the consequent
degradation of tensile strength. Accordingly, only the thermal expansion coefficient of quartz depends
on temperature in the present approach. Moreover, numerically, the rock is taken as isotropic except
for the tensile strength, which is unique for each mineral in a rock. In the numerical simulations
mimicking the experimental setup on granitic numerical rock samples consisting of quartz, feldspar
and biotite minerals, the sample is first heated slowly to a target temperature below the Curie point.
Then, a uniaxial tension test is numerically performed on the cooled down sample. The simulations
demonstrate the validity of the proposed approach as the experimental deterioration of the tensile
strength of the rock is predicted with agreeable accuracy.

Keywords: thermally induced cracking; embedded discontinuity FEM; rock fracture; rock tensile
strength; thermo-mechanical problem

1. Introduction

Rocks often face high temperature conditions and thermal shocks in geotechnical
engineering applications, such as harvesting deep geothermal energy [1], nuclear waste
disposal [2], and thermal drilling [3]. Quartz-bearing rocks are particularly susceptible
to temperature effects in their material properties and, consequently, in their response
under thermal loading due to the α-β transition of quartz at its Curie point (~573 ◦C) [4].
Naturally, the temperature effects on rock mechanical properties have been extensively
studied, experimentally [1,5–14] and numerically [11–17].

The temperature effects in rocks manifest as a degradation of mechanical properties
(Young’s modulus and strength), while thermal properties show mixed behavior, i.e., some
increase (thermal expansion coefficient, specific heat) while others decrease (thermal con-
ductance) [7,11]. The degradation of mechanical properties, especially that of the tensile
strength, is the most important aspect from a geotechnical engineering point of view. The
main mechanism behind the deterioration of mechanical properties, i.e., damage, is thermal
cracking due the pronounced heterogeneity of a rock material [13]. More precisely, a mis-
match in the elastic properties leads to thermal stresses at mineral grain boundaries, which
causes intra- and intergranular cracking, even under a uniform temperature field. With
quartz-bearing rocks, such as granite, this heterogeneity becomes even more pronounced
as the thermal expansion coefficient of quartz increases nonlinearly upon approaching the
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α-β transition of Quartz at its Curie point while the other granite forming minerals, i.e.,
felspars and micas, behave linearly as a function of temperature [7].

Numerical modeling of temperature effects in rocks in an important task in geotech-
nical engineering. It enables to gain insights into the phenomena in a manner impossible
to achieve using laboratory experiments or in situ testing due to physical or economic
reasons. Predicting temperature effects in rock through numerical modeling is challenging
due to thermal cracking. Modeling cracks involves numerical description of displacement
discontinuities. There are basically two approaches in computational mechanics to model
cracks: the continuum approach (mostly the finite element method, or FEM) and the dis-
continuum approach, based on particle or discrete element methods (DEM). For general
reviews on numerical methods in rock mechanics, the reader is referred to [18,19]. Here,
it suffices to say generally that the discontinuum approach is naturally superior to the
continuum approach in fracture modeling (see [20] for an example). However, the critical
shortcoming of particle methods is the computational labor required to keep track and
update the particle contact configurations and neighbors. As to the continuum approach,
the classical FEM can only model fracture in the smeared sense, i.e., as localized deforma-
tion, by damage, and/or plasticity models. Notwithstanding, continuum models have the
advantage of computational efficiency and relative simplicity in terms of calibration of
material and model parameters. For this reason, FEM has been enhanced to better describe
discontinuities. The enriched FEM methods include embedded discontinuity FEM [21]
and extended FEM [22]. Embedded discontinuity FEM is adopted in the present study as
it allows to recast the problem of solving the crack-opening vector into a format similar
to plasticity models [23], which is a considerable implementational advantage over the
extended FEM.

In the present work, the detrimental effect of thermally induced cracking on the
tensile strength of granitic rock is numerically studied. A staggered explicit solution
method is developed to solve the underlying thermo-mechanical problem. As mentioned
above, rock fracture is modeled with embedded discontinuity finite elements. Unlike in
previous studies, the granite rock material properties are taken as homogeneous at room
temperature. However, the tensile strength is different for each rock-forming mineral,
i.e., quartz, feldspar and biotite. Moreover, only the thermal expansion coefficient of the
quartz mineral is assumed to depend on temperature. This simplifying choice reflects the
above-mentioned fact that the thermal heterogeneity of granite increases with increasing
temperature. The numerical simulations of a uniaxial tension test on the numerical granite
demonstrate the validity of this simplified approach of reducing all heterogeneity of granite
into the deviant behavior of quartz.

2. Numerical Methods

This section describes the numerical method for modeling the thermal cracking of rock.
The method includes the constitutive model for fracturing rock based on embedded dis-
continuity finite elements and the global solution methods to solve the thermo-mechanical
equations governing the thermal cracking of rock and the uniaxial tension test. The theory
of the embedded discontinuity kinematics is presented only to the extent needed in the finite
element implementation. For further details, the reader is referred to References [21,23,24].

2.1. Rock Fracture Model

Considering a 2D body discretized with constant strain triangular (CST) finite elements
having (possibly) intersecting cracks, i.e., displacement discontinuities, the discontinuities
split some of the finite elements into two or more parts, as illustrated in Figure 1a. Two
intersecting discontinuities are needed in the present application of modeling the effect of
thermally induced cracks on the tensile strength of a rock specimen. More precisely, heat
treatment of the numerical rock induces a substantial number of cracks with somewhat
random orientations. As the fixed crack concept is adopted here (cracks do not rotate), an
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element with a crack unfavorably (close to parallel) oriented to the consequent uniaxial
tension direction would generate spurious stresses without introducing the second crack.
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Figure 1. (a) CST element with two intersecting discontinuities (n1, m1 : normal and tangent for crack 1, Γd1; n2, m2 : normal
and tangent for crack 2, Γd2; Ni: interpolation function at node i); (b) illustration of the displacement decomposition to
regular and enhanced part and the corresponding functions in a 1D case (ureg : regular displacement; u: total displacement;
αd; displacement jump; MΓd : special function restricting the effect of αd inside the element).

Under the small strain assumption, the displacement and strain fields for such an
element can be written as:

u(x) = Ni(x)ue
i + ∑2

i=1 MΓdi (x)αdi with MΓdi (x) = HΓdi (x)− ϕΓdi (x), (i = 1, 2) (1)

ε(x) = (∇Ni ⊗ ue
i )

sym −∑2
i=1

((
∇ϕΓdi (x)⊗αdi

)sym
+ δΓdi (ni ⊗αdi)

sym
)

, (2)

where αdi is the displacement jump (crack opening) for crack i, and Ni and ue
i are the

standard interpolation functions for the CST element and nodal displacements (i = 1, . . . ,
3 with summation on repeated indices), respectively. Moreover, HΓdi and δΓdi denote,
respectively, the Heaviside function and its gradient, the Dirac delta function. Consistent
with the constant strain of the linear triangle element, the displacement jump is likewise
an assumed elementwise constant, which means that ∇αdi ≡ 0, and thus (2) follows in a
straightforward manner by taking the gradient of (1). Moreover, the terms containing the
Dirac’s delta function, δΓdi (ni ⊗αdi)

sym, in (2), are non-zero only when x ∈ Γdi. Outside
the discontinuity, this term is zero and can thus be neglected at the global level when
solving the discretized equations of motion.

Function MΓdi in (1) restricts the effect of αdi inside the corresponding finite element.
This substantially facilitates the finite element implementation of the kinematics as there
is no need for special treatment of the essential boundary conditions. The ramp function
ϕΓdi appearing in MΓdi is chosen, from among the combinations of the nodal interpolation
functions so that its gradient is as parallel as possible to the crack normal ni:

∇ϕΓdi = arg

max
k=1,2

∣∣∣∑k
n=1∇Nn·ni

∣∣∣
‖∑k

i=1∇Nn‖

, (i = 1, 2) (3)

The displacement decomposition (1) and the related functions in the 1D case are
illustrated in Figure 1b with a single two-node bar element under tension. On the left, the
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functions involved in the decomposition are plotted. The decomposition consists of the
regular nodal displacement, ureg = N1u1 + N2u2, and the enhanced, discontinuous part,
αd, the effect of which is restricted inside the element by function MΓd . In the 1D case, the
selection of function ϕ is readily identifiable as the interpolation function of node 2, i.e., N2.

The finite element formulation of the embedded discontinuity kinematics is based
on the enhanced assumed strain concept (EAS). The details of the implementation are
presented in [23,24]. Here, the resulting equations for the thermo-mechanical problem are
presented as: ∫

Ωe
ρNi Nj

..
ujdΩ +

∫
Ωe
σ · ∇NidΩ = 0, i, j = 1, . . . , Nnodes (4)

∫
Ωe

cρNi Nj
.
θ jdΩ +

∫
Ωe
∇Nik∇NjθjdΩ−

∫
Ωe

QintNjdΩ = 0, i, j = 1, . . . , Nnodes (5)

φdi
(
tΓdi

)
= 0,tΓdi = σ·ni, i = 1, 2 (for elements with crack(s)) (6)

σ = E :
(
ε̂−∑2

i=1

(
∇ϕΓdi ⊗αdi

)sym − εθ

)
, (7)

where ε̂ =
(
∇Ni ⊗ ue

i
)sym and εθ = α∆θI are the thermal strain, with α being the thermal

expansion coefficient, ∆θ the temperature change, and I the unit tensor. Moreover,
..
uj is the

acceleration vector, Nnodes is the number of nodes in the mesh, and Ni is the interpolation
function of node i. In addition, σ is the stress tensor,

.
θj is the rate of change of the

temperature vector, θj, at node j, ρ and c are the density and the specific heat capacity of
the material, k is the conductivity, and Qint is the internal heat production. Equation (4)
is the discretized form of the balance of the linear momentum in the absence of external
forces, while Equation (5) is the discretized equation of heat balance. The first equation
in Equation (6), with φdi being the loading function to be defined in the next section,
defines the elastic zone of stresses. Moreover, the second equation in (6) is the traction
balance over the cracks with tΓdi being the traction for crack i. Finally, Equation (7) defines
the constitutive relation for the material, with E being the elasticity tensor. It is noted
that Equations (4)–(7) have contributions from only the external heat influx, Qint, which
simulates heating in an oven. All other heat generation types, such as thermo-elastic (in the
bulk material) and thermo-plastic heat generation (at the crack due to opening dissipation),
are neglected as insignificant in comparison to the external heat influx [15]. It should be
emphasized that this EAS-based formulation results in a simple implementation without
the need to explicitly know the exact position of the discontinuity within the element or its
length.

The present model describes the rock behavior as linear elastic upon reaching the
tensile strength. When the first principal stress exceeds the tensile strength, a crack (dis-
placement discontinuity) is introduced with a normal parallel to the first principal direction.
As Equations (4), (6), and (7) are formally similar to the corresponding equations in plas-
ticity theory, the problem of solving the irreversible crack opening increment and the
evolution equations can be recast in the computational plasticity format [23]. The relevant
model components, i.e., the loading function, softening rules, and evolution laws are
defined as

φdi
(
tΓdi , κdi,

.
κdi
)
= ni·tΓdi + β

∣∣mi·tΓdi

∣∣− (σti + qdi
(
κdi,

.
κdi
))

, (8)

qdi = hdiκdi + sd
.
κdi, hdi = −gdσt exp(−gdκdi), gd =

σt

GIc
, (9)

.
tΓdi = −E :

(
∇ϕΓdi ⊗

.
αdi
)
·ni, (10)

.
αdi =

.
λdi

∂φdi
∂tΓdi

,
.
κdi = −

.
λdi

∂φdi
∂qdi

, (11)

.
λdi ≥ 0, φdi ≤ 0,

.
λdiφdi = 0, (i = 1, 2) (12)



Appl. Sci. 2021, 11, 4407 5 of 14

where κdi,
.
κdi are the internal variable and its rate related to softening law qdi for dis-

continuity i, and σti is the tensile strength while sd is the viscosity modulus. Parameter
hdi is the softening modulus of the exponential softening law, and parameter gd controls
the initial slope of the softening curve and it is calibrated by the mode I fracture energy,
GIc. Moreover,

.
λdi is the crack opening increment. The loading function (8) has a shear

term multiplied with shear parameter β. Finally, Equation (12) gives the Kuhn–Tucker
conditions imposing the consistency. Therefore, these equations can be integrated using
the standard algorithms of computational plasticity [15,23,24].

2.2. Solution of the Thermo-Mechanical Problem Governing the Thermal Treatment of Rock

Equations (4) and (5) are solved with a staggered algorithm [25], first solving the
temperature field while keeping the mechanical fields fixed, and then solving the mechani-
cal fields while fixing the temperature field. Equations (6) and (7) are solved locally, in a
manner similar to plasticity. The solution process with explicit time marching is illustrated
in Figure 2.
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Figure 2. The flowchart of the global solution of the thermo-mechanical problem.

The equation in Figure 2 for solving the temperature and the mechanical response
are Equations (4) and (5) written in a matrix form. Moreover, the asterisk means that the
trial prediction does not violate the loading function or that it does not exceed the tensile
strength. As the critical time step of the explicit time marching of the mechanical problem
is extremely small, many orders of magnitude smaller than that of the thermal problem,
mass scaling is used here when solving the mechanical problem.

2.3. Solution of the Mechanical Problem Governing the Uniaxial Tension Test on Heated Rock

The mechanical uniaxial tension test on heated numerical rock is carried out by
explicit time marching simulation using the same scheme as in Figure 2 for solving the
mechanical problem. Moreover, a criterion for introducing a new crack in an element with
an unfavorably oriented thermally induced crack is needed here. The criterion in [26] is
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used here with a modified tensile strength for the new crack. Accordingly, a new crack is
introduced in an element already having a crack when the following criterion is fulfilled:

If σ1 > σ∗t & |n1·n∗| < Cα with (13)

σ∗t = (1− |n1·n∗|)σic
t + |n1·n∗|σt0 (14)

where n1 is the normal of the initial crack, n∗ is the principal direction corresponding
to the present major principal stress, σ1. The modified tensile strength, σ∗t , is a convex
combination of the strength of the initial crack, σic

t , and the intact tensile strength, σt0.
The meaning of the second inequality in (13) is that the new crack is introduced (only
once) when the angle between the old crack normal and the new principal direction is
greater than α = acos(Cα), with Cα being an adjustable parameter. A value of 1/

√
2

corresponding to α = 45◦ is used in this study.

3. Numerical Simulations

The numerical simulations related to the thermal treatment of rock and its effect on
the uniaxial tensile strength of rock are carried out here. First, however, the material
properties and the model parameters are given. Moreover, the temperature dependency of
the material properties is specified. All the simulations are carried out with a self-written
MATLAB code.

3.1. Material Properties and Model Parameters

The homogenized mechanical and thermal properties for granite taken from [11] are:
Young’s modulus E = 37.35 GPa; Poisson’s ratio ν = 0.127; density ρ = 2650 kg/m3; thermal
expansion coeff. α0 = 8E−6 K−1; specific heat c = 820 J/kgK; and thermal conductivity
k = 2.6 W/mK.

To properly predict the failure mode in tension, the tensile strength is assumed to be
heterogeneous, i.e., mineral specific. In this respect, the numerical rock consists of quartz
(33%), feldspar (59%) and biotite (8%) minerals, with their respective tensile strengths [27]
of 14 MPa, 11 MPa and 7 MPa. Moreover, the mode I specific fracture energies, GIc, are [28]
40 J/m2 for quartz and felspar, and 28 J/m2 for biotite. The rock strength heterogeneity is
described by random clusters of finite elements assigned with these strength properties.
The numerical rock mesostructures (consisting of 4276 elements) thus generated to be used
in the simulations are shown in Figure 3. Finally, the shear effect parameter is β = 1, and
the viscosity is set to sd = 0.001 MPa·s/m.
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As mentioned in the Introduction, the temperature dependence of the material param-
eters is reduced to that of the thermal expansion. The tensile strength of granite at elevated
temperatures is measured for a specimen and is first heated slowly to the target tempera-
ture and then cooled down to room temperature. This heat treatment induces cracks in the
sample, leading to degradation of its tensile strength. For heterogeneous brittle materials
with inherent flaws (e.g., microcracks), the tensile strength is an emerging property, rep-
resenting the sample integrity under extensional loading, not a material property per se
at the material point level. Therefore, it would beg the question to feed the experimental
tensile strength at certain temperature into the material point level constitutive law and
then predict that same strength.

Thereby, the mechanical and thermal properties, except for the thermal expansion
coefficient, are assumed temperature independent during heat treatment simulations. The
thermal expansion coefficient of quartz depends on temperature, as follows:

αq(θ) = αq0

(
1 +

0.75
823− 293

)
(θ − 293), [1/K] (15)

where αq0 is the thermal coefficient at room temperature. According to (15), the thermal
expansion of quartz depends linearly on a temperature in the range of 20–550 ◦C. This is
of course not fully realistic (see [7]) but a consequence of the present simplified modeling
approach of using homogenous material properties (except the tensile strength) and reduc-
ing all the temperature dependent heterogeneity to that of quartz, as mentioned above.
However, it will be shown that this approach predicts the thermal weakening effect with a
reasonable accuracy.

3.2. Simulations of Rock Heat Treatment

The numerical rock samples are heated uniformly to target temperatures of 300 ◦C and
500 ◦C. As the slow heating of rock does not induce inertia forces, extreme mass scaling can
be used for the mechanical problem. Specifically, a million-fold density is used to increase
the critical time step of the explicit time marching 1000-fold. In order to secure a uniform
target temperature in the numerical sample, volume heating is applied here by specifying
Qint = 1E9 W/m3 at each node of the finite element mesh. This value is chosen such that
the target temperature of 500 ◦C is reached at every node of the mesh in 14,000 time steps.
The duration of the simulation is, thus, 1 s. Simulation results for the numerical rock,
NumRock1 in Figure 3, with the target temperature of 300 ◦C are shown in Figure 4.

The results in Figure 4c show that the final temperature distribution (≈301.5 ◦C) is
uniform. The resulting number of cracks is 2186, i.e., about 50% of the elements have a
crack at the end of heating. The orientation of the cracks (Figure 4c) is quite uniformly
distributed between −40◦ and 140◦. At this temperature, a crack opening (Figure 4a) is
quite modest so the minimum value of the stress-like softening variable qd is ~ −3.5 MPa,
which means that the corresponding crack still has most of its load bearing capacity retained
(see Equation (8)). The results were similar with those of numerical rocks 2 and 3 (Figure 3)
so there is no need the plot the results. The simulation was then carried out further in time
so that the target temperature 500 ◦C was reached. Some relevant results are shown in
Figure 5 for numerical rock 1.
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When heating is continued to 502.5 ◦C, the number of cracks increased from 2186 (in
Figure 4) to 3098. As the difference between the thermal expansion coefficients of quartz
and the other minerals increase with temperature, the crack opening magnitudes are much
higher here (note the 10-fold range in Figure 5a compared to Figure 4a). This, in turn, leads
to substantial softening, as can be observed in Figure 5b, where the minimum value of
the stress-like softening variable reaches almost −14 MPa in some elements representing
quartz.

3.3. Simulations of Uniaaxial Tension Test of Intact and Heat Treated Rock

First, a uniaxial tension test is carried out on intact rock. The loading is applied as a
constant velocity boundary condition at the upper edge of the specimen. The velocity is set
to 5 mm/s, which means a strain rate of 0.1 s−1 with the present sample size. The results
for the numerical rocks in Figure 3 are shown in Figure 6.



Appl. Sci. 2021, 11, 4407 9 of 14
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

  
Figure 6. Simulation results for uniaxial tension test (intact rock): (a) crack opening magnitude 
with NumRock1; (b) cracks with NumRock1; (c) crack opening magnitude with NumRock2; (d) 
crack opening magnitude with NumRock3; (e) average stress–strain curves; (f) polar histogram 
showing crack orientation angles (565 cracks) with NumRock1. 

All the numerical rock samples show the experimental transversal splitting failure 
mode with differing details. Cracks, 565 in total, appear all over the sample (Figure 6b). 
Only some of them open to form the final failure plane. Moreover, the crack orientation is 
mostly horizontal (Figure 6f). The predicted tensile strengths vary from 9.1 to 9.8 MPa. A 
slight pre-peak bent can be observed in the average stress–strain curves when the stress 
is 7 MPa. This corresponds to the failures (microcrack events) of biotite grains. After the 
peak stress, very brittle failure of the sample is attested in each case. 

Next, a uniaxial tension test is carried out on the heat-treated samples. In order to 
mimic the experiments, these simulations are performed on the cooled down specimens. 
Thus, no thermal stresses exist in the sample. Moreover, it is assumed that the cracks are 
closed, meaning that their opening vectors are nullified but their orientations and residual 
strengths are included in the initial state here. Thereby, the residual tensile strength for an 
element with a crack is calculated by 𝜎୲ + 𝑞ୢ where 𝜎୲ is the intact tensile strength of the 
mineral and 𝑞ୢ is the stress-like softening variable at the end of the heat treatment simula-
tions. The simulation results for the target temperature of 300 °C is shown in Figure 7. 
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All the numerical rock samples show the experimental transversal splitting failure
mode with differing details. Cracks, 565 in total, appear all over the sample (Figure 6b).
Only some of them open to form the final failure plane. Moreover, the crack orientation is
mostly horizontal (Figure 6f). The predicted tensile strengths vary from 9.1 to 9.8 MPa. A
slight pre-peak bent can be observed in the average stress–strain curves when the stress
is 7 MPa. This corresponds to the failures (microcrack events) of biotite grains. After the
peak stress, very brittle failure of the sample is attested in each case.

Next, a uniaxial tension test is carried out on the heat-treated samples. In order to
mimic the experiments, these simulations are performed on the cooled down specimens.
Thus, no thermal stresses exist in the sample. Moreover, it is assumed that the cracks are
closed, meaning that their opening vectors are nullified but their orientations and residual
strengths are included in the initial state here. Thereby, the residual tensile strength for
an element with a crack is calculated by σt0 + qd where σt0 is the intact tensile strength
of the mineral and qd is the stress-like softening variable at the end of the heat treatment
simulations. The simulation results for the target temperature of 300 ◦C is shown in
Figure 7.



Appl. Sci. 2021, 11, 4407 10 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 7. Simulation results for uniaxial tension test (heat treated rock, 300 °C): (a) cracks with NumRock1; (b) close up 
detail (blue = thermal cracks, red = tensile cracks, green = new cracks in elements with a thermal crack); (c) average stress–
strain curves; (d) failure models represented by crack opening magnitudes. 

The weakening effect of the thermal cracks induced by heating to 300 °C is not very 
strong. Indeed, the tensile strength of the heated samples is about 90% that of the intact 
one (Figure 7c). Moreover, the failure modes differ only in details from the intact ones 
(compare Figure 7d to Figure6. As to the cracks plotted for the numerical rock 1 in Figure 
7a,b, many new cracks (green color) have initiated in elements already having an unfa-
vorably oriented thermally induced crack (blue color). Between the thermal cracks, a con-
siderable number of new horizontal cracks, due to the tensile loading, have initiated. Next, 
the simulations were re-performed continuing the heating up to 500 °C. The results are 
plotted in Figure 8. 
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The weakening effect of the thermal cracks induced by heating to 300 ◦C is not very
strong. Indeed, the tensile strength of the heated samples is about 90% that of the intact one
(Figure 7c). Moreover, the failure modes differ only in details from the intact ones (compare
Figure 7d to Figure 6. As to the cracks plotted for the numerical rock 1 in Figure 7a,b, many
new cracks (green color) have initiated in elements already having an unfavorably oriented
thermally induced crack (blue color). Between the thermal cracks, a considerable number
of new horizontal cracks, due to the tensile loading, have initiated. Next, the simulations
were re-performed continuing the heating up to 500 ◦C. The results are plotted in Figure 8.

When the heating is continued to 500 ◦C, the weakening effect is substantial, as seen
in the average stress–strain curves in Figure 8c. Moreover, the pre-peak nonlinear part of
the curves is much more pronounced than those at 300 ◦C. This is due to the opening of the
thermally induced cracks, which have reduced tensile strengths, during uniaxial tension
loading. Furthermore, the post-peak softening part of the average responses is much more
ductile due to dissipation occurring through the opening of a considerable number of
cracks. The corresponding failure modes attest to the overlapping double-crack mode,
where the major cracks initiate at the vertical edges of the sample and propagate inwards
at different height levels, thus never coalescing, except for NumRock2 in the present case.
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4. Discussion

The aspects of the modeling approach and the results are discussed here. The simu-
lation results are first compared to experimental observations. To this end, the predicted
normalized tensile strengths are plotted as a function of temperature in Figure 9, along
with the experimental data collected in [11].

The weakening effect predicted with the present approach is within the experimental
deviation for several granites, except the a slight overprediction at 500 ◦C, which could be
easily mended by fine tuning the thermal expansion coefficient (15). It should be noted that
the curve, fσt/σt0 = 0.9912(1− 4.10θ/2483.30)1/4.10, in Figure 9 representing the average
of the experimental results for several granites [11] is averaged over a wide range of test
temperatures—hence it does not cross the deviation bars at the middle. Moreover, only
relevant deviation bars, i.e., those at 300 ◦C and 500 ◦C, are shown in Figure 9.

Then some aspects of the numerical approach are discussed. The present approach
falls within the class of continuum models, thus having all the advantages, over the
discontinuum approach, of this class, such as the maturity of the method (FEM), the ease
of calibration and the physical meaning of the model parameters, and, most importantly,
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the computational effectiveness. Moreover, the poor crack description of the continuum
approach (FEM) is improved by the embedded discontinuity technology which is capable
of representing cracking in rocks.
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A staggered explicit approach was employed in simulating the slow heating of rock
samples up to a uniform target temperature. As this process, which takes several hours
in a lab, is quasi-static in nature, extreme mass scaling using a million-fold density for
the mechanical part of the problem, resulting in a 1000-fold critical time step, could be
used. This aspect combined with volume heating of the sample resulted in a simulation
method capable of performing this kind of simulation in practical CPU times, even with
fully explicit time marching. Moreover, the fully explicit method evades the convergence
problems related to the Newton–Raphson iteration involved in the implicit methods, which,
however, are unconditionally stable in time.

The thermal weakening effect of elevated uniform temperatures in rock samples is
caused by heterogeneity, which becomes more pronounced in granites due to the deviant
behavior of quartz. In the present approach, only the tensile strength heterogeneity of
rock-forming minerals was included, while homogenized values for the elastic and thermal
properties were used. All heterogeneity effects were reduced to accounting only for the
temperature dependence of the quartz thermal expansion using a linear fit representing
the net effect between quartz and the rest of the granite-forming minerals (feldspars and
micas). This simplified approach has the advantage that it uses the easily measurable
mechanical and thermal properties of a rock sample, instead of the far more effort needing
properties of constituent minerals. Anyways, this approach appeared to work very well, as
the weakening effect of thermal cracking on the tensile strength of granite was predicted
with a surprisingly good accuracy. It should be emphasized that the weakening effect
was predicted in a non-circular way, i.e., without using the experimental data on the
temperature dependence of the tensile strength of granite as a model input.

However, the present approach ignores most of the textural aspects of rock as a
polycrystalline material. In particular, the grain boundaries were not accounted for. Where
their inclusion is deemed crucial, more detailed models, such as the DEM mentioned in the
Introduction, should be applied. Another possibility within the continuum approach is to
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use the cohesive elements between the groups of finite elements representing the grains.
However, this would require substantially more detailed data on the rock mineral texture
and the mechanical properties thereof.

5. Conclusions

A numerical method to predict thermal cracking induced weakening effects in the
tensile strength of granitic rock was developed and validated in this paper. The following
conclusions can be drawn:

• The nonlinear coupled problem of thermal cracking in rock due to a uniform elevated
temperature field can be effectively solved with an explicitly staggered approach. The
present method, based on embedded discontinuity finite elements, is computationally
fast and has physically meaningful model parameters.

• Extreme mass scaling for the mechanical problem can be used in this approach due to
the quasi-static nature of the slow heating of a rock sample to a uniform temperature.
Particularly, a million-fold density, to increase the critical time step 1000-fold, can be
used with virtually no effect on accuracy.

• In modeling, thermal cracking induced reduction of tensile strength of granitic rocks
due to a uniform temperature field can be reduced to the deviant behavior of the
quartz mineral. This means that it is enough to account for only the temperature de-
pendence of the quartz thermal expansion. Moreover, homogenous and temperature-
independent mechanical properties, measured for a rock sample, can thus be used.
However, the initial (room temperature) tensile strength parameters should be het-
erogenous to correctly predict the failure mode in uniaxial tension.

• With this method, the thermal weakening effect can be replicated in a non-circular
way, i.e., without using the experimental data on the temperature dependence of the
tensile strength of granite as a model input.

• The purpose of the present modelling approach is a fast prediction of the tensile
strength degradation of a granite rock under elevated uniform temperature with a
small set of easily measurable parameters of the target rock.

In closing, some further research topics concerning the present approach are suggested.
First, this study addressed only the thermal weakening of tensile strength. However,
natural rocks are most often under compression. Therefore, the thermal weakening of
compressive strength should also be addressed in further studies. However, this requires
a compressive failure criterion and is thus not a trivial task. Second, the heterogeneity
of rock mineral elasticity, which was neglected, has effects that cannot be ignored at the
mesoscale of interest. For this reason, this aspect should be included into the model in
further considerations. Third, an explicit staggered method was employed in solving the
governing thermo-mechanical equations. Notwithstanding, an implicit method would
have the advantages of being unconditionally stable in time and would provide more
reliable results. Therefore, an implicit version should be developed in future. Finally,
the present study was carried out under simplified 2D assumptions. A 3D version of the
present study should thus be performed to confirm the results.
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19. Nikolić, M.; Roje-Bonacci, T.; Ibrahimbegović, A. Overview of the numerical methods for the modelling of rock mechanics

problems. Teh. Vjesn. 2016, 23, 627–637.
20. Hamdi, P.; Stead, D.; Elmo, D. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture

development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-µDFN approach. J.
Rock. Mech. Geotech. 2015, 7, 609–625. [CrossRef]

21. Simo, J.C.; Oliver, J.; Armero, F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic
solids. Comput. Mech. 1993, 12, 277–296. [CrossRef]

22. Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 1999, 45,
601–620. [CrossRef]

23. Mosler, J. On advanced solution strategies to overcome locking effects in strong discontinuity approaches. Int. J. Numer. Meth.
Eng. 2005, 63, 1313–1341. [CrossRef]

24. Saksala, T.; Brancherie, D.; Harari, I.; Ibrahimbegovic, A. Combined continuum damage-embedded discontinuity model for
explicit dynamic fracture analyses of quasi-brittle materials. Int. J. Numer. Meth. Eng. 2015, 101, 230–250. [CrossRef]

25. Ottosen, N.S.; Ristinmaa, M. The Mechanics of Constitutive Modeling; Elsevier: Amsterdam, The Netherlands, 2005.
26. Saksala, T.; Ibrahimbegovic, A. Thermal shock weakening of granite rock under dynamic loading: 3D numerical modelling based

on embedded discontinuity finite elements. Int. J. Numer. Anal. Met. Geomech. 2020, 44, 1788–1811. [CrossRef]
27. Zhao, D.; Zhang, S.; Wang, M. Microcrack Growth Properties of Granite under Ultrasonic High-Frequency Excitation. Adv. Civil

Eng. 2019, 2019, 3069029. [CrossRef]
28. Mahabadi, O.K. Investigating the Influence of Micro-Scale Heterogeneity and Microstructure on the Failure and Mechanical

Behaviour of Geomaterials. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, August 2012.

http://doi.org/10.1016/j.geothermics.2016.07.002
http://doi.org/10.1002/2016JB013800
http://doi.org/10.2138/am-1998-1-201
http://doi.org/10.1016/j.jappgeo.2018.07.018
http://doi.org/10.1016/0148-9062(83)91609-1
http://doi.org/10.1016/j.mineng.2016.09.011
http://doi.org/10.1016/j.geothermics.2016.09.008
http://doi.org/10.1016/S1003-6326(16)64311-X
http://doi.org/10.1016/j.enggeo.2015.01.026
http://doi.org/10.1007/s00603-019-01837-1
http://doi.org/10.1007/s00603-019-02022-0
http://doi.org/10.1016/j.ijrmms.2017.10.013
http://doi.org/10.1016/j.engfracmech.2020.107017
http://doi.org/10.1002/nag.3004
http://doi.org/10.1007/s11440-015-0396-6
http://doi.org/10.1002/nag.2935
http://doi.org/10.1016/S1365-1609(02)00065-5
http://doi.org/10.1016/j.jrmge.2015.07.005
http://doi.org/10.1007/BF00372173
http://doi.org/10.1002/(SICI)1097-0207(19990620)45:5&lt;601::AID-NME598&gt;3.0.CO;2-S
http://doi.org/10.1002/nme.1329
http://doi.org/10.1002/nme.4814
http://doi.org/10.1002/nag.3107
http://doi.org/10.1155/2019/3069029

	Introduction 
	Numerical Methods 
	Rock Fracture Model 
	Solution of the Thermo-Mechanical Problem Governing the Thermal Treatment of Rock 
	Solution of the Mechanical Problem Governing the Uniaxial Tension Test on Heated Rock 

	Numerical Simulations 
	Material Properties and Model Parameters 
	Simulations of Rock Heat Treatment 
	Simulations of Uniaaxial Tension Test of Intact and Heat Treated Rock 

	Discussion 
	Conclusions 
	References

