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Featured Application: This work is potentially useful for updating residential energy usage mod-
els, considering presented energy impacts of the COVID-19 pandemic.

Abstract: The 2020 COVID-19 pandemic provided an opportunity to assess energy use during
times of emergency that disrupt daily and seasonal patterns. The authors present findings from a
regional evaluation in the city of Los Angeles (California, USA) with broad application to other areas
and demonstrate an approach for isolating and analyzing residential loads from community-level
electric utility feeder data. The study addresses effects on residential energy use and the implications
for future energy use models, energy planning, and device energy standards and utility program
development. In this study we review changes in residential energy use during the progression of the
COVID-19 pandemic from four residential communities across Los Angeles covering approximately
6603 households within two microclimate sub regional areas (Los Angeles Basin and San Fernando
Valley). Analyses address both absolute and seasonal temperature-corrected energy use changes
while assessing estimated changes on energy usage from both temperature-sensitive loads (e.g., air
conditioning and electric heating) and non-temperature-sensitive loads (e.g., consumer electronics
and major appliance use). An average 5.1% increase in total residential energy use was observed
for non-temperature sensitive loads during the pandemic period compared to a 2018–2019 baseline.
During mid-spring when shelter in place activity was highest a peak monthly energy use of 20.9%
increase was seen compared to a 2018–2019 composite baseline. Considering an average of the top
five warmest summer days, a 9.5% increase in energy use was observed for events during summer
2020 compared to summer 2018 (a year with similar magnitude summer high heat events). Based
on these results, a potential trend is identified for increased residential load during pandemics and
other shelter-in-place disruptions, net of any temperature-sensitive load shifts with greater impacts
expected for lower-income communities.

Keywords: residential energy modeling; COVID-19; coronavirus pandemic; temperature sensitivity;
energy security

1. Introduction

In 2020, changes in energy use and emissions were seen worldwide as a direct effect of
the COVID-19 pandemic [1–6]. Mandatory stay-at-home periods globally reduced jet and
aviation fuel by 50%, gasoline by 30%, and electricity (on average) about 10 percent during
the early pandemic where shelter-in-place (SIP) orders were widespread across many
regions. This reduction was followed by partial rebounds for all mentioned energy types
later in 2020 [2,7–11]. While commercial transport and mobility to support commercial
activities (e.g., commuting for work) were greatly reduced by a curtailment in overall
business activities, the impact on residential energy use is harder to directly assess from
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publicly available electrical grid regional operator data. Preliminary results from studies
early in the pandemic suggest increased residential energy use, but results vary [12–14].
Further, little attention has been paid to understanding the mechanisms leading to this
change in energy use during both the early pandemic SIP periods and periods following, in
addition to regressive periods due to regional re-closures due to increased COVID-19 cases.

Analysis of total energy use for a given region provides conclusions for macro trends.
However, analyzing data comprised of heavily mixed sectors (residential and commercial
loads) and as a combined set across all day types (weekends and weekdays) provides
limited utility for sector-based analysis, and complicates actionable model adjustments for
energy planning and conservation efforts. Approximately 21% of energy use nationwide is
from residential customers [15]. Residential energy efficiency is a substantial focus for utility
programs, but sector changes can be obscured within direct regional load figures. While
a general decrease in energy use was broadly observed across most regions worldwide
during the 2020 COVID-19 pandemic, modeling and planning difficulties when predicting
future demand led to service disruptions. Most notably, poor forecasting models for
pandemic-related changes in energy use directly led to widespread rolling blackouts in
California in mid-August of 2020 during a substantial heatwave [16,17]. The 2020 pandemic
period exhibited increased reliance on non-dispatchable, low carbon energy sources, with
increases of 22.3% solar production and 13.5% wind production in the US compared to
2019 [18]. Understanding sector-focused changes in energy use helps improve demand
predictions for future widespread lockdown events in an era of increasing effects of climate
change and increased reliance on non-dispatchable and distributed generation.

Residential electric load is primarily comprised of the following major load categories:
electricity-driven space conditioning (air conditioning, ventilation/forced air circulation,
and electric heaters), lighting, major appliances, miscellaneous (plug) loads, constant
building loads, and electric transportation. Of these categories, only space conditioning
is directly temperature sensitive. Demand from three other categories—lighting, major
appliances, and plug loads—is largely driven by occupancy without substantial regard
to ambient temperature. With 42% of US residential use due to space conditioning, am-
bient temperature is a primary driver of residential electricity use, especially with high
air conditioning penetration [15,18,19]. Despite the mild climate in Southern California,
Chen et al. assessed a substantial (69% estimated) regional household penetration for air
conditioning [19,20]. This includes residential air conditioning systems in different form
factors and cooling capacities. For temperature-sensitive loads, both increased occupancy
and the reaction of occupants to change in the ambient temperature affect energy use. For
the remaining categories, changes in daily occupancy rates (occupied by none versus one
or more individuals) and resulting changes in device use behavior (i.e., which loads or
devices are used and how they are used) are the main considerations.

Residential occupancy shifted substantially for much of the population during the
pandemic, particularly early in the pandemic timeline. While exact assessments of stay-
at-home rates are difficult, general trends show higher rates of SIP compliance early-on
following the first COVID-19 case wave with proportional compliance (SIP compliance
compared to present active COVID-19 cases) generally dropping during the following
COVID-19 case waves throughout 2020. In Los Angeles County, mobility data indicates
estimated stay-at-home rates of 50.6% of individuals on April 11 and dropping to 35.5% of
individuals by September 1 (compared to approximately 25% during mid-February) [21].
Similarly, in a national Gallup study, 49% of respondents reported being likely to shelter
in place if asked to during a third surge in late 2020, compared to 67% in early April
2020 during the first surge [22]. SIP restrictions reduced leisure activities in evenings
and especially on weekends, but primarily impacted weekday occupancy through three
mechanisms: a shift toward working from home, reduced access to educational facilities
for students and educators, and increased unemployment [23]. During 2020, Los Angeles
experienced a maximum unemployment rate of 18.8% in May 2020 with a recovery to
12.3% by December 2020 compared to a pre-pandemic level of 4.9% in February 2020 (non-
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seasonally adjusted) [24]. The majority of jobs lost across the USA (as in other countries)
were in leisure, hospitality, entertainment, manufacturing, and food services sectors, with
pandemic-related job loss disproportionally impacting women, younger workers, and
workers with less education [25]. Minor shifts in population impacting household size
also occurred during the early pandemic: in a June 2020 Pew Research Center study 6% of
respondents reported gaining a household member and 3% reported moving because of
the pandemic. Of those who moved, 61% of respondents reporting moving into a family
member’s home. The shutdown of college campuses (25%), the desire to be with family
(20%), and financial related reasons (18%) were major relocation catalysts, and relocations
were highest among young adults (ages 18–29) [26].

The current study analyzed energy use data from distribution station feeder loads,
specific to defined geographic areas in the city of Los Angeles, accessed using generalized
utility supervisor control data acquisition (SCADA). Such grouped load data is often the
only measure available. Prior investigations have identified limitations in using it in
standard linear regression-based energy prediction models due to autocorrelation and
homoscedasticity. There are also limits when relying on temperature data at high time scale
resolutions (e.g., per day), given the shifts in energy use corresponding to behavior variation
over the course of the day. However, for certain use cases comparing daily average energy
use to daily temperature data has been demonstrated to provide satisfactory estimation
figures [27,28]. Here, the authors demonstrate an approach for analyzing grouped load
data and daily temperature values to provide insight into how energy use changes due to
widespread emergency conditions such as the COVID-19 pandemic.

With a diverse population and a warm, dry climate and typically temperate spring,
Los Angeles provides a near-ideal environment to assess the impact of the pandemic on res-
idential utility customers, especially assessing non-temperature sensitive load contribution
to total residential energy use. In addition, the city of Los Angeles provides a useful case
study because it was substantially impacted by the COVID-19 pandemic in both number of
COVID-19 cases in addition to state and local restrictions on business, services, and travel.
California’s aggressive stay-at-home order was initiated on 19 March and was followed
by a relaxation in June, a partial reinstatement in July (following the start of a second
wave of COVID-19 cases), a relaxation in September and an amended limited stay at home
order issued in late November following through the end of the year (in response to a
third wave of COVID-19 cases). Los Angeles County (the major regional health reporting
resource covering the city of Los Angeles) suffered three successively increasing waves
of COVID-19 case peaks in 2020, occurring on 8 April, 22 July, and 27 December with
this one county representing 32% of all cases statewide (note that approximately 25.5%
of California’s population lives in Los Angeles County) [29,30]. As of 31 December, 7.7%
of the LA county population had been infected with COVID-19. The city of Los Angeles
regularly maintained stricter controls on business activities to reduce population move-
ment compared to both state and county COVID-19 guidelines [30,31]. A follow-up SIP
order to the one issued in spring focused on Los Angeles, beginning 30 November and
continuing through 31 December, this was the strictest order in the state of California,
effectively banning most outdoor gatherings, restricting employment travel, and reducing
retail capacity. Accordingly, the city of Los Angeles provides a rich opportunity to draw
transferrable lessons on energy responses to major behavioral shifts.

2. Materials and Methods
2.1. Feeder and Data Selection

This study used Los Angeles Department of Water and Power (LADWP) municipal
electrical substation 4.7 kV customer distribution feeder net loads (reported in hourly
average kW load values) servicing a designated geographic territory within the city of Los
Angeles to provide serviced population load data. Comparison baselines were created from
composites of 2018 and 2019 load data from individual feeders, while the evaluation period
was initiated with the California SIP order on 19 March 2020 and continued through the end
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of reporting on 31 December 2020 [31,32]. For comparison as needed an evaluation period
beginning on 1 January 2020 is used to report energy use change with respect to calendar
year. To compare heatwave-related events, period to period comparisons between single
years were used. From a pool of all available feeders the authors performed a two-tier
screening process. The first tier selected for feeders that serviced primarily residential
customers (greater than 90% residential customers with largely negligible pre-pandemic
observable commercial loading patterns). The second tier selected for diversity across the
city considering community location, community income, and community building types.
Feeders were then excluded for substantial service interruptions or for major changes from
2018 through 2020 rendering those periods non-comparable, including substantial changes
in customer base, major new construction, building demolition, or zoning changes. Feeders
were also excluded for exhibiting great heterogeneity of income across neighborhoods
served by the same feeder, with the exception of Feeder A providing service to Section 8
subsidized low-income housing in Watts. Four feeders were ultimately selected for the
current analysis, serving distinct communities across Los Angeles with a total residential
customer base of approximately 6603 combined residential customers covering areas with
a range of median incomes (see Table 1).

Table 1. Summary of sampled feeders including feeder service area and service demographic information.

Feeder Location (ZIP Code) 1 Residential Customers Region, WS ICAO Code 2 Median Income
(Specific Feeder) 3

A (primary) Watts (90059) 2563 (91.1%) 4,5 LA Basin, KCQT $51,635
($15,584)

B (primary) Southeast LA (90037) 1086 (90.1%) 4 LA Basin, KCQT $44,965
($37,004)

C (primary) Toluca Lake (91602) 1214 (96.5%) 4 SF Valley, KVNY $109,254
($49,039)

D (primary) Burbank (91601) 6 1740 (90.0%) 4,7 SF Valley, KBUR $72,868
($51,003)

E (example) Central Wilshire (90036) 1320 (94.6%) 8 LA Basin, KCQT $117,596
($103,242)

F (example) Downtown (90014) 0 (0.0%) 9 LA Basin, KCQT N/A

NPL All Los Angeles City 1.24 M (90.7%) Entire city (KCQT, reference) $62,142

Refer to Supplementary Table S1 for additional details. 1 Presented with community name, reference zip/postal code tabulation area (ZCTA)
inclusive of served feeder area; note that Los Angeles-Long Beach Census tract codes inclusive of feeder service area are presented in the
supplementary extension of this table. 2 Los Angeles (LA) Basin or San Fernando (SF) Valley; NWS weather station (WS), ICAO airport
code used for identification; temperature reference and corresponding microclimate region. 3 Median income of service area inclusive
ZCTA, and specific feeder service area median income. 4 Feeder service area includes single and multi-family homes, small apartment
complexes. 5 Feeder service area includes public housing. 6 This feeder corresponds to a service area bordering North Hollywood (Los
Angeles) and Burbank and is served by LADWP. 7 Single and multi-family homes, small apartment complexes near commercial district.
8 Feeder service area includes a large apartment community, low rise with numerous common facilities. 9 Pair of mid-rise buildings mixed
retail, mercantile, offices, buildings in LA Jewelry District.

Feeders were evaluated across the period of investigation from 2018 through 2020.
Customer construction permit records indicate <6% mid-day solar load contribution total,
with slow growth, and 2017 motor vehicle records showed <5% average customer EV
penetration average across all primary evaluated feeder service areas (see Table S1). Both
factors suggest a low overall impact such that the change between the pandemic and
pre-pandemic periods for the evaluated feeders and accordingly the differential impact
from solar and EV loads are treated as negligible. The majority of the building types
represented were a mixture of single-family homes and small multi-family properties
hosting several units, with a smaller proportion of low-rise apartment complexes. The
communities assessed represented two microclimates: the Los Angeles Basin and San
Gabriel Valley. The California Energy Commission designates two of these feeders (A and
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B) in climate zone (CZ) #8 and two (C and D) in CZ #9 [33]. Typically, temperature data
would be collected from a weather station in the same CZ. However, the neighborhoods
served by Feeders A and B are on the border of CZ #9 and exhibit more similarity with the
weather station in CZ #8 than with the closest weather station in CZ #9, which is farther
away and on the coast. For this reason, the closest weather station is used for all analyses,
regardless of designated CZ.

Along with the residential distribution feeder data (listed as primary feeders) used in
these analyses, two example feeders are provided for additional context in the discussion
section, representing a large apartment complex and a commercial zone.

System-wide net power load (NPL) was sourced directly from LADWP. Reported NPL
summarizes full system net load (not including customer onsite co-generation) on an hourly
basis for 2018 through 2020. All power data was analyzed with ambient temperature data,
which was sourced from local National Weather Service (NWS) weather stations via a third
party sourcing utility, MesoWest/SynopticLabs [34]. Load data was temporally correlated
with weather data interpolated to the nearest hour using Universal Translator 3 (UT Online,
Pacific Energy Center, Pacific Gas and Electric Corp., San Francisco, CA, USA) [35] and
Easy Data Transform (Oryx Digital Ltd., Swindon, Wiltshire, England, UK) [36] software
packages. When city data is not available with respect to COVID-19 caseloads and stay-
at-home rates, data scoped at the inclusive Los Angeles County or California state level
is used.

2.2. Load Evaluation

First, individual feeders’ average loads were compared on a monthly or weekly basis
(using an ISO 8601 defined week—see Table S4) across the period of study without tem-
perature normalization or restriction. Major holidays were excluded from categorization.
Analysis of input data and calculations were performed in kW and kWh.

For temperature analyses, hourly average temperature values were used along with
monthly degree day values, which were assessed from local NWS observation weather
station monthly reports (see Table 1 for data source information). Interpolative re-sampling
was used to correlate temperature data to load data. Temperature data and derivative units
were converted from ◦F to ◦C for final reporting and rounded to the nearest 0.1 ◦C for
reported values.

Two effects of temperature on load must be distinguished in these analyses. First, the
expected effect of temperature on electricity use (particularly cooling on hot days) must be
considered when comparing across periods with different temperature patterns. Second,
higher residential occupancy rates can increase households’ response to temperature,
making the effect of hot days stronger during the stay-at-home periods than otherwise.

Temperature models to assess sensitivity to load change due to temperature change
were created using 2018 and 2019 daily average load data (for counterfactual models)
discretely processed with ambient temperatures corresponding to feeder weather station
source. As individual household loads are not available, reporting is performed in percent
change compared to the counterfactual model used as a baseline for 2020 observed data.
Depending on the specific application, temperature data was used as average period
temperature or relative to heating or cooling degree days with a customary balance point
of 18.3 ◦C (65 ◦F). In average-temperature regression models, the mean static temperature
(MST) temperature was used rather than the customary degree day balance point value
in calculation. Processing was performed as an average daily load considering daily
average temperature (computed average of all periods as opposed to average of minimum
and maximum daily observed temperature approach, which is used with degree-day
calculation). Hourly models were used for direct comparison of specific, short-term periods.
Being more stable, daily models were used in the linear modeling methods used in this
report, consistent with similar observations in previous method comparisons [19,27].

For the relationship of energy usage to ambient temperature, piecewise regression
corresponding to ASHRAE RP-1050 type linear change-point regression [37,38] was used
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to determine the 5-parameter models used (corresponding to three segments marked by
two change points (CPs)–representing three regressed periods of load versus temperature),
see Equation (1):

y = m1x1 + b1 (inf. to low CP bound, t1),
y = b2 (low CP bound, t1 to high CP bound, t2),

y = m2x2 + b3 (high CP bound, t2 to inf),
(1)

where y is an average feeder load (kW), m1 is a regressed constant (kW/temp), x1 is a
period average temperature value (below the low CP bound), m2 is a regressed constant
(kW/temp), x2 is a period average temperature value (above the high CP bound), b1 and b3
are a set of regressed intercept values corresponding to load at the CP bounds (kW) and b2
is average constant load (kW) across temperature range between CP bounds.

This model accounts for temperature effects on energy use for heating and cooling
as well as temperature ranges where load is not substantially affected by temperature.
Regression analyses were performed using the open-source Energy Charting and Metrics
(ECAM) (ECAM v.6.6, Bonneville Power Administration, Portland Oregon, OR, USA)
calculation engine for Microsoft Excel (Excel v.14.0 (32-bit), Microsoft Corp., Redmond, WA,
USA) [39] with an 80% confidence interval (CI) used for both temperature change point
determination and data boundary determination. Testing showed that an 80% CI provided
a balance between valid model calculation convergence and data inclusivity for all feeders
analyzed. The calculated midpoint temperature between the determined change points
corresponds to the MST. As data is analyzed, CI boundaries are similarly passed through
calculations to provide error estimation for multi-step calculations. Temperature-based
correction was used to normalize the influence of temperature such that all data sets are
corrected to a value representing MST on a daily or hourly basis (as previously discussed)
and compared. This approach estimates non-temperature-sensitive load. In addition, a
reporting-period basis calculation provides estimates of post-period energy difference
considering pre-period basis. This calculation used ECAM’s internal engine implementing
modified ASHRAE Guideline 14, model guidelines [28,40]. Analyses compared 2020 energy
use to baseline data in 2018–2019 (for either the 2020 calendar year period or 2020 COVID-
19 pandemic subset period) to normalize the impact of temperature between the evaluation
and baseline periods in comparison. By removing this substantial factor, this provides a
means to assess differences in load due to the changed factors (namely occupancy) during
the COVID-19 pandemic period compared to the baseline period.

A separate two-term linear regression (see Equation (2)) was performed to model
the impact of temperature on load as a function of heating degree day (HDD) or cooling
degree day (CDD) values on a daily basis. Raw calculated values were limited such that
values with CDD or HDD values less than 1.1 ◦C (2 ◦F) were removed from the model
to reduce the bias from non-temperature related load variance. A CDD or HDD value
would be mutually exclusive for a given day. Analyses were performed using a multiple
linear regression in Origin Pro 9.0 (Origin Lab Corp., Northampton, MA, USA). Regression
results were modeled for impact across an inclusive range of HDD and CDD values for
both the baseline and evaluation period and presented as a simple percent difference for
change comparing the differences between evaluation and comparison period with the
same change in simulated CDD and HDD values:

y = m1x1 + m2x2 + b, (2)

where y is the total feeder daily energy use (kWh), m1 is a regressed constant (in kWh
per HDD), x1 is the HDD (single day) value, m2 is a regressed constant (kWh per CDD),
x2 is the CDD (single day) value and b is regressed energy independent of HDD or CDD
change (kWh).
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2.3. Temperature Restricted Load Calculation

Temperature restriction is an approach used to filter values outside a pre-defined
temperature range where limited correlation exists between temperature and elevated
energy usage for each hourly temperature value. This method is appropriate when ambient
temperatures largely remain near 18.3 ◦C (65 ◦F), which is the conventional degree-day
calculation reference value customarily used by the US NWS. In the current analyses, a 4 ◦C
range above and below the balance-point temperature was used for the restriction cut-off.
Temperature-restricted 2020 evaluation period load data was compared to the combined
2018 and 2019 composite counterfactual model on a monthly or weekly basis considering
day-type scope (all days, weekdays, or weekends/weekend days) or illustratively to a 2018
or 2019 single year baseline. Calculations of energy usage change were performed in the
same manner as that used in the previously discussed temperature normalization process.

3. Results

Stay-at-home behavior generally tracks early public directives and provides the frame-
work for interpreting shelter in place (SIP) response and the impact on energy usage. An
LA County state of emergency was declared on 3 March while a California-wide state
of emergency was declared on 4 March in response to rising regional case numbers. An
SIP executive order was initiated in California on 19 March, and modified for provisions
for essential workers on 4 May [32]. A follow-up tightening of restrictions followed on
2 July. Estimates of SIP response rates based on smartphone data (reported from early
February through early September) show approximate alignment with LA County first
wave COVID-19 reported case values (see Figure 1).

Figure 1. Comparison of LA County and all of California for shelter-in-place response and COVID-19
diagnosed cases over time. Data sources: California Department of Public Health [41], SafeGraph,
Inc. [21]. The SIP Index represents the change (as a difference) in the % of people staying home
compared to pre-pandemic baseline. The index ranges from −100% to 100%, where 0 (zero) is no
change from a pre-pandemic baseline.

SIP response for the observed period peaked on 12 April [21,41], and decreased
through late June. SIP response, measured as stay-at-home rate, is designated as no
commuting or transit observed via mobile phone tracking. A pre-pandemic baseline rate of
approximately 25% stay-at-home corresponds to a SIP index of 0. On 13 July commerce was
restricted during the second case wave. Compared to the initial SIP response and despite
the severity of the second wave (July through August), at nearly an order of magnitude
higher than the first wave (mid-March through April), the population reaction was weaker,
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with less than a 5% increase in SIP response as compared to California and LA County
at the pandemic onset, with a nearly a 15% decrease comparing the peak of COVID-19
case count during the second wave to that of the first wave. The magnitude increase of
successive COVID-19 case peaks for each wave is so substantial that Figure 1 uses a y-axis
logarithmic plot scaling to present this. Comparatively, SIP data is presented with a y-axis
linear plot scaling. This smartphone based measure of SIP response over time closely
resembles other indicators of stay-at-home behavior, such as keyword search histories
for topics related to baking and home improvement, providing anecdotal evidence on
activities performed by individuals with more available time and resources during the
peak SIP period [42,43].

3.1. Unnormalized Load Comparison

The first set of load analyses use gross energy use data, not normalized for temperature.
Energy use for Feeders A, B, C, and D for the pandemic period compared to the comparison
period was higher by 10.0% for all days of the week considered together and by 10.4%
during weekdays alone (see Table 2).

Table 2. Change in energy use for 2020 compared to a comparison baseline for Feeders A-D showing
monthly energy use. Values are not normalized for temperature. Positive values indicate higher 2020
energy use compared to the counterfactual model constructed using the 2018–2019 baseline during
the comparable monthly period. See Figure S2 for the yearly summary of individual feeders and
Figure S3 for a weekly summary chart for individual feeders.

Month All Days Weekdays Weekend Days

January 0.7% 1.2% −0.4%
February −10.3% −10.1% −10.6%

March (14–31 March) 2.6% (8.6%) 3.2% (9.5%) 1.1% (6.2%)
April 13.4% 13.1% 15.6%
May 20.9% 22.4% 17.3%
June 6.2% 9.1% −0.4%
July −10.5% −12.7% −5.3%

August 12.1% 8.0% 22.5%
September 25.4% 27.6% 20.6%

October 18.0% 20.9% 10.8%
November 5.0% 5.6% 3.6%
December 1.4% 1.0% 2.2%

Yearly Average 6.9% 7.2% 6.3%
COVID-19 Period

Average 10.0% 10.4% 9.3%

Evaluating temperature differences while considering occupancy differences for the
same period helps differentiate the causes of energy use change (see Figure S1 for monthly
summarized temperature information for the LA Basin feeders). As shown earlier, stay-
at-home rates for LA County rose swiftly in late March, peaked in April, reduced but
remained high in May and June, and fell to a lower plateau for the rest of the summer. As
shown in Figure 2, average temperatures were fairly similar in the 2020 period as in the
2018–2019 comparison period. Energy use was 2.6% higher for the whole month of March,
but 8.6% higher for the second half of the month, after the initial SIP order (see Figure 2).
Average temperatures were somewhat higher in April (1.8 ◦C, not significant) than in the
composite 2018–2019 comparison period.
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Figure 2. (a) Energy usage across all evaluated communities (simple composite average, not temper-
ature normalized) with 2020 observation compared to a 2018–2019 comparison baseline, showing
higher energy use. (b) Average monthly temperature as measured at weather data source KCQT in
downtown Los Angeles observed for 2020 and comparison periods. Energy use strongly follows
temperature change in relation to the mean static temperature (MST).

However, during most parts of the day and night temperatures were near the 18.3 ◦C
(65 ◦F) nominal balance point, where the load is least impacted by temperature. Temper-
atures were much higher in May: a weighted average of 20.9% warmer (4.2 ◦C) with an
average 2020 temperature above the balance point of 18.3 ◦C, indicating cooling-related
energy use as a driver for the increase of 13.4% in average load that month. June 2020 had
an average temperature within 1 ◦C of the counterfactual (weighted), but an average of
6.2% increase for 2020 against the counterfactual, suggesting increases in non-temperature-
sensitive loads. Summer 2020 had generally reduced stay-at-home rates compared to spring
with a substantially cooler July compared to the same period in the counterfactual. During
August 2020, an extended warm period mid-month increased the average monthly tem-
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perature, which would have otherwise been a month cooler than the comparison monthly
period. During this month, yearly record-high energy use in California was recorded.
Increased occupancy compared to the comparison period with extended periods of high
temperature led to increased energy use during these extreme heat events.

In fall and early winter, October and November both had monthly averages for 2020
within 1 ◦C of the monthly comparison periods but have 18% and 5% respective increases
in energy use over the comparison periods for each month. December, with <1 ◦C of
the monthly comparison period, despite the high COVID-19 cases had an energy usage
increase within 2% as compared to the comparison period.

In general, monthly average load correlates with temperature change, consistent
with expected temperature-driven load increases in hotter periods, particularly if higher
occupancy rates lead to stronger response to ambient temperature. However, higher
energy use in March provides a tell-tale indicator of increased load in these residential
neighborhoods due to SIP activity during a period of relatively consistent temperature. By
comparison, the overall LADWP NPL decreased during March and April in large part due
to a reduction in commercial activities, which use a higher proportion of total energy load
than residential customers (see Figure 3, top portion).

3.2. Temperature Normalization

Temperature normalization compensates for the impact of temperature on energy use,
to better estimate the impact of non-temperature sensitive loads. However, as temperatures
can vary across larger measured areas that combine residential and commercial loads, use
of this technique on highly distributed loads such as NPL can lead to poor correlation
(see Figure 3, bottom portion). Correlations between temperature and commercial loads
are generally weaker than for residential because commercial buildings tend to have a
higher proportion of temperature-insensitive process loads and large scheduled or sensed
ventilation loads regardless of ambient temperature.

Residential energy use presented as a total for the evaluated feeders is shown in
Figure 4 and Table 3. Total load yearly average difference against the baseline is 3.6% for
2020 for a scope of all days and 5.1% for the pandemic period against the comparison
baseline. During the pandemic period, the average increase due to non-temperature
sensitive loads is estimated at 5.6% for weekdays and 4.8% for weekend days. During
the spring months of March through June, when SIP response was the highest, average
total loads for these residential feeders were higher by 5.2% for all days, with a much
higher increase for weekdays (6.2%) than for weekends (3.6%). When the 80% CI regression
coefficients are evaluated for temperature and normalized for each MST value, a general
pattern develops in the 2020 pandemic period of a smaller static temperature range with a
higher comparable static load (greater temperature insensitive load proportion) compared
to the baseline. Energy use is higher at low temperatures for all 4 feeders for temperatures
adjacent to the upper temperature boundary for 2020 weekdays compared to counterfactual
model values for weekdays. The nature of the data shows a distribution for 2020 with
a large spread and bias to high load shifts in early spring compared to the comparison
data considering the same sub-periods of evaluation. With lower temperatures in July
2020 compared to the counterfactual baseline, temperature range under-sampling occurred,
resulting in low temperature data biasing the 2020 data. The limited number of days with
high average temperatures in July 2020 compared to the baseline period results in variability
as low temperature data is substantially influencing average daily the temperature-to-
load relationship.
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Figure 3. Monthly net load (NPL) including residential and commercial customers for Los Angeles
Department of Water and Power for the pandemic compared to a counterfactual model using a
2018–2019 baseline. (a) Presented without temperature correction, and (b) presented with normaliza-
tion to MST against a corresponding monthly counterfactual value, showing 80% CI boundaries in
error bars as a result of temperature normalization.
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Figure 4. Total residential estimated non-temperature sensitive energy change for 2020 compared
to a counterfactual using a 2018–2019 baseline, presented on a monthly basis as a simple composite
average of feeders.

Table 3. Change in energy use for 2020 compared to a 2018–2019 baseline for Feeders A–D showing
monthly energy use after temperature normalization. Positive values indicate higher 2020 energy use
compared to the counterfactual model values.

Month All Days Weekdays Weekend Days

January −1.1% −1.0% −1.6%
February −4.4% −5.1% −6.9%

March (14–31 March) 1.0% (3.5%) 1.3% (3.9%) 0.1% (2.3%)
April 6.9% 7.5% 7.5%
May 9.4% 10.5% 7.4%
June 3.4% 5.4% −0.4%
July −4.2% −6.2% −3.6%

August 5.0% 3.3% 11.2%
September 13.2% 15.1% 12.5%

October 10.0% 12.4% 6.3%
November 2.9% 3.4% 2.2%
December 0.7% 0.7% 1.9%

Yearly Average 3.6% 3.9% 3.0%
COVID-19 Period

Average 5.1% 5.6% 4.8%

ECAM’s native engine was used to generate a predictive model of total load change
for the entire pandemic period against a counterfactual model of the comparison period
(Figure 5). Energy use change reported is consistent with the temperature normalization
method and within 2% for all individual feeders across the evaluation period. Results
show relatively constant non-temperature load for the COVID-19 pandemic period in 2020
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compared to the counterfactual in the 1–5% range considering all days (weekends and
weekdays) (see Figure 5).

Figure 5. Total estimated non-temperature sensitive energy change during the COVID-19 pandemic
period compared to a 2018–2019 comparison baseline for each analyzed feeder in addition to system
wide LADWP NPL load. Error bars represent 80% CI bounds propagated.

Comparing change in energy use to median household income for each feeder
(Figure 6), a weak trend develops suggesting higher impacts for temperature-insensitive
loads for feeders in communities with lower median income. This may be due to dispro-
portionate impact within this population of unemployment or population shift due to the
pandemic. The Burbank feeder (Feeder D), while servicing primarily residential buildings,
has a business artifact from an auto dealership on the periphery of the feeder territory
which caused a small reduction in load early during the early COVID-19 pandemic period
in 2020 compared to the counterfactual baseline.

Figure 6. Energy change compared to feeder service community median income with a consistent 5% shown in the vertical
error bars and the 80% CI shown in the horizontal error bars. The analysis scope was the COVID-19 pandemic period of
Mid-March through December.
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Estimation of energy use as a function of heating and cooling use change showed
modest changes in the impact of load as a function of average HDD and CDD compared to
the counterfactual period considering only the COVID-19 pandemic period as well as all of
2020 considering weekends and weekdays separately or combined (Figure 7).

Figure 7. Cont.
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Figure 7. (a–d) Modeled normalized load change for 2020 compared to the baseline period for both
calendar year periods (2020 to a 2018–2019 baseline) and subsets of mid-March through December for
all periods comparing change in load relative to the baseline for a range of CDD and HDD values for
each of the four feeders (a) Feeder A, (b) Feeder B, (c) Feeder C, (d) Feeder D. See Figure S2/Table S3
for a similar presentation of this data using normalized MST values and average daily temperatures
as opposed to HDD and CDD values.

The HDD impact from heating loads decreased in all cases as presented. As noted
earlier, 2020 was warmer in early spring leading to potential model bias during the period
where SIP would have had the greatest impact on energy use. Electric heating (primarily
portable space heaters) is a minor heat source in the region, with natural gas heating being
predominant. Another region with higher heating requirements may provide better data
for impact analysis. As expected, cooling loads for most scopes increase as temperatures
rise from moderate to high, but plateau at very high temperatures, after air conditioning
use is saturated. With this said, high heat events did distinctly show an increase in load
for a given CDD value; this is especially apparent in the feeders in the LA Basin. For
the Burbank feeder, a leveling off of increasing load is observed as the result of limited
reserve cooling capacity–all available cooling having already been activated and in use (see
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Figure 8). Per Chen et al., warmer areas in Southern California, such as the San Fernando
Valley, are less temperature sensitive compared to cooler areas. The current results suggest
this phenomenon similarly carries over to a more limited change in energy use during
extreme heat events during the COVID-19 pandemic period as compared to other more
temperature sensitive areas.

Figure 8. Cont.
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Figure 8. Comparison of feeder daily energy use for 2018, 2019, and 2020 for observed CDDs for
(a) the month of July for Feeder A; and (b–e) presenting the month of August for Feeders A–D.
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3.3. Temperature Restriction

Estimation of non-temperature sensitive loads on an hourly basis provides indication
for granular energy use change based on changes in behavioral patterns that can only
be observed at an hourly (versus a daily) level. Removing heating and cooling loads by
restricting points when these loads are likely active reduces the temperature variability
and helps present impact due to behavior change during SIP and the impact on non-
temperature sensitive loads. Mid-day energy use is increased on weekdays (Figure 9) for
most feeders. Weekend data is typically noisier than weekday data given relative under
sampling compared to weekdays. Early evening peaks are moderately higher and weekday
morning peaks are reduced. The values found via this direct analysis (Table 4) are largely
similar to the estimated change due to non-temperature sensitive loads (Table 3).

Figure 9. Baseline peak normalized (separately for weekdays and weekends) energy use change
comparing 2020 to 2019 baseline for mid-March through April using a temperature restriction.
Examples presented for (a) Feeder A and (b) Feeder B within the LA Basin microclimatic region.



Appl. Sci. 2021, 11, 4476 19 of 24

Table 4. Energy use difference for mid-March through April comparing 2020 against a counterfactual
baseline of 2018–2019. The all-day average for Feeders A–D was 5.3%.

Source Weekday Change Weekend Day Change

Feeder A 5.0% 3.1%
Feeder B 2.8% 2.0%
Feeder C 9.9% 13.9%
Feeder D 2.8% 2.0%

Average (A–D) 5.1% 6.1%
Feeder E 7.2% 4.8%
Feeder F −28.0% −24.8%

NPL −6.2% −4.2%

4. Discussion

While major fuel and energy sources were observed to show a net decrease in use
early in the pandemic, the opposite was largely observed for residential energy use. These
findings were consistent with that of earlier studies such as those performed by Pecan
Street [14] in Austin, TX, with 113 panel-instrumented homes: study results showed an
approximate 42% (~300 W) mid-day increase in April 2020 for non-temperature sensitive
loads such as consumer electronics, appliances, miscellaneous electric loads (plug loads),
and lighting, compared to a baseline of the previous year, reflecting increased occupancy
with increased load during both weekdays and weekends. Full-day energy use increase is
likely closer to ~14%, estimating from Pecan Street provided figures. Similarly, this Pecan
Street study identified an increase in temperature sensitivity across March and April identi-
fied by average home kWh/cooling degree day (CDD) of the evaluated period with a value
of 0.7 in April 2020 compared to a value of 0.56 for the average of April 2017, April 2018,
and April 2019, a comparative 25% increase in load for each CDD change [14]. These results
match the general trends observed in our study, albeit with higher magnitude changes
between 2020 observations and past baselines. Much of this difference is likely related to
Pecan Street’s use of instrumented single-family, higher-income housing combined with
regional climatic variance (e.g., impact of humidity and higher regional temperatures on
cooling behaviors). Also, days with potential heating and cooling activity in shoulder
periods (often with low CDD or HDD values) can incur bias from the dominant space
conditioning energy load used during the period, as previously mentioned. Energy use
for this scenario can increase for low HDD or CDD values; our tests showed that using
a threshold value of 2 CDD or HDD substantially reduced this impact. The temperature
in Los Angeles in April rarely requires air conditioning usage, whereas Austin, Texas
experienced a warm and humid spring during the highest SIP period.

Load impact from non-temperature-sensitive loads during the early pandemic were
estimated from sampled feeders through both temperature restriction (Table 4) and tem-
perature normalization (Figure 4) resulting in estimated increases of 5.3% and 5.7%, respec-
tively (mid-Mar through April, all days), less than that reported by Pecan Street. With the
exception of Feeder C, change in weekday load was more impacted than weekend load
compared to the 2018–2019 baseline during the early pandemic (Table 4). Non-temperature
loads were a substantial component of energy used which is evidenced by the similarity in
total load change (Table 3) to temperature restricted load change (Table 4). Heavy mixtures
of both HDD and CDD during this period complicate regression analyses (of the type used
in Figure 7). This is because the nature of the degree day metric is not exclusive to heating
or cooling, but is the balance point difference computed between the range from daily
highs and lows. When temperature fluctuates enough over a 24-h period to require both
heating and cooling, that day may be labeled with a low value for HDD, CDD, or both.
This effectively skews energy use per HDD or CDD when using multiple regression mod-
els. Temperature normalization based on average daily temperature regression performs
marginally better with respect to these temperature variations.
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When temperatures increase, increased occupancy (even at lower levels compared to
the mid-April peak) drives loads higher. This is clearly illustrated in Figure 8b representing
Feeder A. The load events with CDD values between 9 ◦C and 11 ◦C required 9.2% more
load compared to similar events in this same temperature range in 2018, consistent with
the idea of higher home occupancy rates driving higher demand for cooling on hot days.
The effect of SIP response can differ for weekend and weekday loads. This is illustrated
with the highest heat day in this figure, which has substantially less load than the second
highest load event: note that this day falls on a weekend (for which occupancy shifts due to
SIP should be reduced) versus higher impacts on adjacent weekdays during this extended
extreme heat event. Mixing weekdays and weekends for analysis results in model variance
challenges due to substantially different activities for these two day types. This is especially
true during typical, non-SIP periods such as the baseline. Clearly, increased occupancy
drives up cooling requirements during extreme heat events. Capturing a representative
spectrum of temperatures and loads for each month while occupancy was varying due
to SIP response to allow direct calculation is challenging. For example, as illustrated in
Figure 8a, the high heat events observed in July 2018 and 2019 were not replicated in July
2020, which weakens any comparison across these months to assess 2020 SIP response
effects on energy use.

Daily energy use patterns were strongly impacted early in the pandemic. Compared
to the counterfactual model, energy use was slower to rise in the early morning and
was higher during mid-day hours, with a moderate increase in daily peak energy use
across all feeders (see Figure 9). Assessed with restricted temperature analysis, the impact
of these features decreased with a slow resumption toward baseline energy use as SIP
response reduced.

Energy usage impacts for large multi-family apartment complexes is likely different
from that for the single family and small multi-family residences studied above. Figure 10
shows results for an additional example, Feeder E, representing a large apartment complex.
During the early pandemic period, energy use for this case largely tracked other residential
loads. By summer, the shutdown of many shared-use areas within these buildings to
reduce potential community spread of COVID-19 reduced the cooling burden to these
buildings, resulting in a net drop compared to the baseline during the period when the
cooling burden is the highest (mid-summer). This effect, plus the centralization of cooling
and heating, are likely substantial divergence points comparing large apartment complexes
and high-rises to low- and medium-density homes and low-rise apartments, which have
limited shared facilities and individual heating and cooling supplies.

Commercial energy use, a major component represented in the NPL figure, is illus-
trated by a single mid-rise building source (see Feeder F in Figure 10). This example
is included as a contrast to the residential feeders analyzed above, as an approximate
indicator for impacts of SIP on non-essential business activity (jewelry manufacture and
distribution). For this commercial feeder, a major drop in energy use occurred during week
12 of 2020 (16–22 March), corresponding to the initiation of SIP restrictions, which is when
residential energy use increased. By mid-June (Week 21) energy use in the commercial
feeder had greatly increased. This follows a weakening of SIP response, previously dis-
cussed. The second-wave restrictions did not substantially reverse the increase in energy
use, which showed continued growth until early fall. The lower energy use in Novem-
ber and December of 2020 compared to the 2018–2019 counterfactual composite baseline
may reflect the reduction of typical high-intensity holiday shopping during those months,
including extended hours.
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Figure 10. Direct change in energy use (non-normalized for temperature) for Feeder E (large apart-
ment complex) and Feeder F (commercial building).

The current findings show limited evidence of a higher increase in non-temperature
sensitive load over the COVID-19 period for lower income areas than higher income areas.
The expected effect of SIP response on energy by income is not clear, as various factors
predict mixed results. For instance, more highly educated, higher-income professionals
were more likely to be able to shift to working from home, while less-educated workers
were more likely to either continue working outside the home (e.g., in essential service or
manufacturing) or lose their jobs. Lower-income households tend to have more members to
use devices if everyone is at home, but higher-income households have more square footage
and more devices to be used per person; furthermore, lower-income households spend
less money (and time) on entertainment and dining outside the home than higher-income
households normally, and would thus experience less change. Residential use of portable
space heaters and window AC units, more common among older housing stock in lower-
income areas, also adds to electricity use. Given the limited number of neighborhoods
sampled here and the small observed effect, this result is considered questionable, but
suggestive of further consideration; additional research would be required to clearly
ascertain the income differences in effect of SIP response on energy use. However, it is
worth noting that even the same or lower increase in energy use is a greater hardship
for lower-income households, as they already experience a significantly higher energy
burden (that is, the proportion of their income spent on energy bills) and have little or no
discretionary income to cover unexpected expenses.

Overall, SIP compliance was initially strong, but this effect was temporary. Approxi-
mately one month elapsed between the rapid ramp-up of SIP response and a long-term
decrease and eventually leveling out of SIP compliance. This occurred even with daily
briefings from health experts and government officials reporting increasing caseloads in
the LA area. Energy models considering change in occupancy must expect a ramp-up,
peak, and an extended dynamic equilibrium for general change in occupancy. Considering
the near future of the COVID-19 timeline, stay-at-home rates will continue to subside into
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an extended equilibrium that is likely higher than pre-pandemic levels. This suggests
that increased telecommuting from home will continue to raise the energy burden during
high heat events. Mid-day energy use, compared to a pre-COVID-19 baseline has had a
modest increase–this can help offset the increasing glut in solar energy mid-day during
normal conditions. However peak conditions, especially in late afternoon when solar is
switching to spinning reserves can still impact energy supplies during this critical ramp-up
and source switching period.

5. Conclusions

This research adds to the growing body of knowledge on how the COVID-19 pan-
demic has affected human behavior and the resulting impact on energy usage. Increased
residential occupancy has impact on energy use. Over the course of the 2020 pandemic
period, fatigue with SIP compliance led to a rebound toward earlier pre-pandemic occu-
pancy rates (reduced SIP response) and a substantial rise in regional COVID-19 active
cases. It is reasonable to assume that in future pandemic events, similar behaviors are
to be expected. The potential for extended SIP activity for extended periods has limits.
The timing of an SIP period can strongly affect energy use change. During temperate
periods, limited heating or cooling impact will likely be observed with a constant increased
non-temperature sensitive load increase. Even with occupancy patterns trending more
toward normal, impacts on energy used for cooling during heat events was observed. As
the current analysis examined only electricity, and space heating in this region is largely
fueled by natural gas, observed stay-at-home impacts on heating were minimal. However,
as electrification development continues, increased reliance on electric heating should be
reflected in larger impacts of residential occupancy on electrical energy use. As long-term
work at home activity continues, increased residential energy use during weekdays will
continue for applicable households. Modeling this change is outside the scope of this
study but relevant to future expected household energy change and population impacts.
The results suggest the possibility of a higher impact of stay-at-home behavior on energy
change for communities with lower median income level, however, evidence is weak and
further research would be necessary to confirm such a relationship.

Continued efficiency measures for miscellaneous electric loads can help reduce non-
temperature sensitive loads. Focus on reducing wasteful energy use (i.e., devices not
properly entering low-power mode when not in use) is a major potential area of research.
The analysis this study has provided on residences is also applicable to businesses, to
highlight opportunities for better managing plug and process loads, especially while not
in use, and may be a fruitful area for follow-up study. Follow-up studies using similar
approach methodology with data for areas with substantial heating and cooling loads
would help draw the maximum impact of stay-at-home behaviors when considering
temperature sensitive loads as a major energy load contributor.
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