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Abstract: In this study, we developed a system to collect and analyze log data related to truck travel
times in underground mines using Bluetooth beacons and tablet computers. When a signal from
beacons installed at a major underground mine is received by a truck-mounted tablet computer,
the beacon information is collected and uploaded to a cloud server. A data processing program
integrates the uploaded log data files into a single file, calculating the statistical values for each
section of the transport route. The developed system was applied to a limestone underground mine
located in Jeongseon, Korea, to diagnose and analyze the transport routes in the study area. As a
result of this analysis, it was possible to select sections in which the truck transport time was stable
and sections in which it was unstable. Consequently, the transport route could be classified into four
types based on the distribution and fluctuations in the truck transport time data. Moreover, it was
possible to analyze the causes of the stable and unstable sections through production logs and field
staff interviews. The developed system could be used as a tool to improve transport operations by
diagnosing and analyzing the truck transport routes of a mine.

Keywords: underground mine; transport time; Bluetooth beacon; tablet computer; smart mining

1. Introduction

Innovative technologies at the forefront of the fourth industrial revolution include
artificial intelligence (AI), drones, the Internet of Things (IoT), 3D printing, robotics, au-
tonomous driving, and big data. These technologies are spreading throughout the industry
to improve its productivity and efficiency and are causing major social and economic
changes [1,2]. As the fourth industrial revolution has begun in the mining industry, sig-
nificant changes are taking place in the traditional mining value chain—from mineral
exploration to exploitation, processing, and sales [3]. Smart mining is at the center of
this change. Smart mining refers to the introduction of cutting-edge information and
communication technology (ICT) such as the IoT, big data, mobile, AI, and augmented
reality (AR), preparing the way for the fourth industrial revolution and new climate change
regimes, and to realize eco-friendly, high-efficiency, low-cost, and disaster-free mining sites.
Smart mining technology consists of hardware (H/W) technology, such as data acquisition
sensors, wired and wireless communications devices, power supplies, control devices,
data processing servers, and software (S/W) technology that can analyze and effectively
visualize collected field data [4,5]. Moreover, an ideal smart mine can be built by gradually
utilizing IoT technology [6].

The IoT refers to a virtual world in which all types of objects existing in the world can
be connected to each other in various ways to provide new services. In the mining industry,
the IoT can be particularly useful for workers’ safety management, field environment mon-
itoring, work efficiency improvement, and transport system improvement; consequently,
related technologies have been developed by various researchers [7]. Regarding the safety
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management of mining workers, technologies have been developed that detect changes in
the environment around workers by attaching various sensors, which can detect a worker’s
location, movement, heart rate, temperature, humidity, and the gas concentration, to hel-
mets [8–11]. Solutions have also been developed that allow workers to directly identify
environmental changes using wearable devices such as smart glasses or smartwatches [12].
Moreover, a number of sensors with wireless communication functionality have been used
to evaluate a mine’s overall performance and secure stability, as well as acquire data that
are difficult to obtain directly from people [13–16].

Recently, attempts have been made to improve the transportation system by managing
the safety of mines and improving work efficiency using beacons based on Bluetooth
low-energy technology. Kiziroglou et al. [17] used Bluetooth beacons for monitoring
the transport of ore or waste. Radinovic and Kim [18] studied the possibility of using
Bluetooth wireless technology for tracking and mapping of personnel and equipment
in underground mines. Additionally, they analyzed the costs associated with installing
these systems in underground mines and evaluated the performance of the system [18].
Wu et al. [19] designed a Bluetooth-based underground mine-monitoring system to detect
changes in the gas concentration in real time and transmit measurement data through
a wireless communication network. Beak and Choi [20] proposed a Bluetooth beacon-
based proximity warning system that could prevent collisions in underground mines. A
smartphone installed in a vehicle received signals from Bluetooth beacons attached to the
operator or equipment, providing a step-by-step response depending on the received signal
strength. Jung and Choi [21] measured and analyzed the transport time of trucks dispatched
to the transport system of an underground mine. Field experiments demonstrated that
Bluetooth beacon systems could conveniently and accurately measure truck transport
times. Beak et al. [22] developed a Bluetooth beacon-based underground navigation system
that could display optimum transport routes and truck locations in underground mines
on a mobile device. Whenever the system recognized a signal from a Bluetooth beacon, it
provided the truck driver with information about the current location and route via the
mobile device. Park and Choi [23] developed a mine production management application
that could support efficient underground mine loading–haulage system operations using
Bluetooth beacons and tablet computers. The application included a navigation function
that output truck location information, a proximity warning function that helped prevent
collisions between vehicles, and a function that automatically created a production log.
Although some studies have been conducted to use Bluetooth technology in the mining
industry, little attention has been paid to diagnose the operational status of truck transport
systems in mines by analyzing data acquired from Bluetooth beacons.

The purpose of this study was to develop a system that can collect and analyze log
data related to truck transport times in underground mines using Bluetooth beacons and
tablet computers. First, a limestone underground mine in Korea was selected as the study
area, and log data related to truck transport times were collected by applying the developed
system. Next, using the log data uploaded to the cloud server over a certain period, the
truck transport routes in the study area were diagnosed and analyzed; the results are
presented herein.

2. Study Area

In this study, a Choongmoo Chemical Co., Ltd. underground limestone mine (37◦31′92.31′′N,
128◦72′52.44′′ E) located in Jeongseon-gun, Gangwon-do, Korea was selected as the research
area (Figure 1) for the development of a system that could collect and analyze log data
related to truck transport times and diagnose and analyze the truck transport routes
through a field application experiment.
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Figure 1. Map of the study area (Choongmoo Chemical Co., Ltd. underground limestone mine,
Jeongsun-gun, Gangwon-do, Korea) showing the loading areas and dumping areas.

The limestone was mined using the room and pillar method, the main adit (entrance)
was in the direction of the N20E strike, and the crosscut was horizontal. The ore bodies
located at the bottom were connected using lamps, leading to each level. The ratio of
the room and the pillar was maintained at approximately 1:1, and the size of the room
was 12 m wide and 8 m high. The mining process proceeded in the following order:
drilling, blasting, loading, haulage, and roof control (rock bolt and wire mesh). Blasting
was performed an average of eight times a day using ammonium nitrate fuel oil and
electric detonators, producing approximately 5000 tons of limestone per day. Moreover,
the limestone produced was loaded on a dump truck (24 tons) and transported to a crusher
located outside the mine at a distance of approximately 1–1.5 km.

To analyze the loading–haulage system in the study area and introduce a system
that could collect data related to truck transport times, environmental surveys inside and
outside the mine and 3D drawing analyses were conducted. High humidity was observed
in all routes in the mine constituting the loading–haulage system, and groundwater leakage
was observed at some points. The concentration of fine dust in the mine was also high
because of the scattering dust during the loading and transportation of the limestone.
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Moreover, irregularities were observed on the walls of the mine, although the bottom
surface of the transport route remained relatively flat.

An analysis of the mined limestone transportation route was conducted through direct
investigation—performed by boarding trucks dispatched to the production operation—and
the analysis of images using drones and 3D drawings. As a result of the analysis, eight
loading areas and four dumping areas in the study area were operational, and three
loaders and 10 trucks were dispatched to the loading–haulage operations to produce
limestone. Limestone transported out of the mine was sorted visually by utilizing rock
color differences, and the final dumping point was determined.

3. Methods
3.1. Development of Log Data Collection System Related to Truck Transport Time

Bluetooth beacons and tablet computers were used to collect log data related to truck
transport times, and the collected log data were uploaded to the cloud server and managed
(Figure 2). A tablet computer mounted on the truck received signals from Bluetooth beacons
installed on major routes inside and outside the mine where the haulage was performed.
The tablet computer stored the information (beacon ID, location, and time) received from
the Bluetooth beacon in its built-in memory. Log data stored during haulage operations
were uploaded to a cloud server in a wireless communication area located outside the mine,
which then stored and managed the data transmitted to it from tablet computers installed
on multiple trucks.

The Bluetooth beacons and tablet computers used to collect log data related to truck
transport times should operate reliably even in harsh environments with high humidity and
dusty underground mines. Bluetooth beacons and tablet computers are easy to maintain
and manage, have good durability and after-service (A/S), and can be purchased easily in
the market. Moreover, it is important that Bluetooth beacons have a minimum specified
signal strength because tunnel conditions are not constant at all points in the mine. In this
study, Beacon i3 (Hyunseung; Seoul, Korea) was selected, being convenient for controlling
the signal strength and transmission period of beacons, having a long battery life, and
including dustproof and waterproof design features. Beacon i3 proved its reliability in
a study conducted by Park and Choi [20]. For detailed specifications, please refer to the
study mentioned above. Tablet computers that can receive signals from Bluetooth beacons
and store log data are available in various price ranges; they should have sufficient storage
capacity, the latest Wi-Fi and Bluetooth specifications, be based on the Android operating
system version, and be easy to use. In this study, Galaxy Tab A 8.0 (Samsung; Seoul,
Korea) was selected, and the detailed specifications are shown in Table 1. Moreover, the
EAP110-Outdoor, which can cover a wide range and provide sufficient communication
speed, was selected for the Wi-Fi access point (AP) to establish a wireless communication
area in the study area. The product is equipped with waterproofing and dustproofing
features; thus, it can be installed outdoors, providing a stable wireless communication
range of approximately 200 m (Table 2).
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Figure 2. Conceptual diagram showing the operating principle of the log data collection system related to truck transport
times using Bluetooth beacons and tablet computers.

Table 1. Specifications of the Galaxy Tab A 8.0 (Samsung; Seoul, Korea) used to receive Bluetooth
beacon signals and store log data.

Specifications

General
Model Galaxy Tab A 8.0 (2019) Wi-Fi

Battery capacity (mAh) 5100

Hardware

Processor 2 GHz octa-core

RAM 2 GB

Internal storage 32 GB

Expandable storage Yes (microSD, up to 512 GB)

Software Operating system Android 9 Pie

Connectivity
Wi-Fi standards supported 802.11 a/b/g/n

Bluetooth version 4.20
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Table 2. Specifications of the EAP110-Outdoor (TP-Link; Shenzhen, China) used to establish a
wireless communication area in the study area.

Specifications

Wireless

Wireless frequency bands 2.4 GHz Single-Band

Number of antennas 2

WLAN mode Wi-Fi 4 (8,0211 n)

Transmit power 27 dBm

Antenna placement External (unspecified connection type)

Security
Guest network support Yes

Wireless security WEP, WEP 128, WEP 64, WPA, WPA2

Electrical
Power consumption 3.12 W

Operating temperature 22 to 149 ◦F/−30 to 65 ◦C

Environmental

Storage temperature −40 to 158 ◦F/−40 to 70 ◦C

Operating humidity 10 to 90%

Storage humidity 5 to 90%

The installation points of the Bluetooth beacons were selected based on the results of an
analysis of the loading–haulage system, aerial photography, 3D drawings, and production
logs. As a result, it was found that installing beacons in 8 loading areas, 4 dumping areas,
and 10 major transport routes would be a suitable choice (Figure 3a). Figure 3b shows a
schematic of the truck transport route. The locations and altitudes of Bluetooth beacons
installed in the study area are also illustrated. Using the difference in altitude between the
origin and destination, it is possible to determine whether the truck has traveled uphill or
downhill transport routes.

Considering the high humidity and dusty underground mines, the Bluetooth beacons
installed inside and outside the mine were installed after minimizing the risk of corro-
sion and erosion (Figure 4a,b)—that is, when assembling the Bluetooth beacons, rubber
packing was used to prevent moisture and dust from penetrating the device. Moreover,
when installing the beacons, the risk of corrosion and erosion was further minimized by
using plastic bags. At points where the beacon signal was bad due to irregular tunnel
specifications and tunnel wall irregularities, the beacon installation angle was adjusted
using a bracket. The signal strength of all installed Bluetooth beacons was set to 4 dBM
(maximum strength), and the signal transmission period was set to 200 ms (a polling
average of 5 times per second). To build wireless communication zones, Wi-Fi APs were
installed in the truck parking area before or after production, allowing log data to be sent
to the cloud server at least once a day (Figure 4c). Tablet computers were installed on
the windshields or dashboards of 10 trucks used in production (to increase the signal
reception rate of beacons). To prevent the tablet computers from shutting down due to
battery shortages during production, they were connected to charging cables at all times to
ensure continuous charging (Figure 4d). Note that the transport time of a truck is measured
under the same conditions, regardless of whether the truck is loaded.
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Figure 4. Examples of Bluetooth beacon (Beacon i3), Wi-Fi AP (EAP110-Outdoor) and tablet computer
(Galaxy A 8.0) installed for log data collection: (a) tunnel wall on the transport route; (b) near the
crusher at the crusher 2; (c) office wall near truck parking area; (d) windshield in the driver’s seat of
the truck.

3.2. Development of Log Data Processing Program

Log files stored on tablet computers during production are text data in a comma
separated value format that stores items separately (with data fields being separated by
commas), which can then be viewed using text editing programs (such as Notepad) or
spreadsheet applications. In the log file, the time at which the tablet computer received a
Bluetooth beacon signal (beacon ID, truck ID, date of production, and beacon installation
point) was recorded, with one file per day being created for each production date and each
truck. Data recorded in the log file were recorded in the order in which signals from the
Bluetooth beacons were received. Consequently, the truck transport time between two
consecutive points on its transport route could be calculated based on the time intervals of
the Bluetooth beacon signals received from the two points.

The log data processing program developed in this study retrieves log files uploaded
to the cloud server immediately, organizes the log data, calculates the truck transport time
for each section, and outputs the statistics of the truck transport time for each section.
Because the user can select the log files to be analyzed, log files can be analyzed for a
specific period or truck. The program runs in Microsoft Excel and was developed using
Visual Basic for Application (VBA), a macro language for Microsoft’s Office applications.

When the program is executed to retrieve log files corresponding to a specific period
or truck that a user wants to analyze, the program performs three-step data processing
to output statistics of the truck transport time for each section (Figure 5). First, the log
data of each log file recorded whenever the tablet computer detected a beacon signal is
collected into a single datasheet. Next, the log data are separated by vehicle ID and the
date to generate a combination of routes based on the order in which a beacon’s signal is
received, and the truck transport time is calculated. Finally, the statistical values of the
truck transport time for the same route combination are output. Statistics output through
the program include the data per route ID (comprising the beacon ID of the route origin
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and destination), the average truck transport time, standard deviation, minimum and
maximum time, and percentiles (P90, P75, P25, P10) for the truck transport time.
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3.3. Truck Transport Time Data Analysis and Transport Route Diagnostic Method

In this work, we propose a method to analyze and diagnose transport routes by
examining the truck transport time for each section through a log data processing program.
The analysis proceeds in three main stages: First, a log data processing program is used to
calculate the statistics of the truck transport time for each section. Next, spatial analysis
is conducted using the average truck transport time and standard deviation by section,
and a section is selected for analysis. As for the average transport time for each section,
the shorter the distance between the Bluetooth beacon installation points, the shorter
the average transport time. Conversely, the longer the distance, the longer the average
transport time. Therefore, a section in which the standard deviation is large means that
there is a large variation in the truck transport time. Conversely, in a section where the
standard deviation is small, the variation in the truck transport time is small, appearing
close to the average. For this reason, when comparing the truck transport time and standard
deviation for each section, there is a limitation in that the application cannot consider the
differing distances for each section. Therefore, in this study, the percentage of the standard
deviation for the average transport time of the truck for each section was calculated as
shown in Equation (1), and the section to be analyzed was selected using this value.

Standard deviation (SD) o f truck transport time
Average o f truck transport time

× 100 (1)

A section in which the calculated value is large means that the standard deviation is
larger than the average transport time—that is, the variation in the truck transport time is
large—and the section in which the value appears small means that the variation in the
truck transport time is relatively small. In this study, two sections in which the transport
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time of the truck appeared to be stable (the section with a small value) and two sections in
which it appeared to be unstable (the section with a large value) were selected.

For the four selected sections, a time-series analysis was performed by dividing the
log file by week; thus, the types of transport routes were classified. The type of transport
route could be determined using a time-series analysis graph, in which the types of
transport routes were classified into four types based on the degree of data distribution
and fluctuation (Figure 6). Types 1 and 2 were sections in which the distribution of truck
transport time data was large, and they were generally seen in sections where the distance
between beacon installation points was long or there were loading areas or dumping areas
around the transport route. In Type 1 sections, the truck transport time was expected to
appear stable without a specific event during the transport operation, whereas in Type 2,
the truck transport time was expected to appear unstable owing to a large distribution of
time data and various events (vehicle breakdown, tunnel closure, congestion, etc.) that
may have occurred during the haulage operation. Types 3 and 4 included sections in which
the distribution of truck transport time data was small, generally seen where there were no
loading and dumping areas on the transport route, and only ore transport operations were
performed. In Type 3, the section was expected to appear stable with little fluctuation in the
truck transport time. As for Type 4, the truck transport time was generally stable, but events
that caused the truck transport time to rapidly increase occurred intermittently. Finally,
we compared and reviewed the production logs at the site and interviewed field staff to
determine why truck travel times on transport routes appeared to be stable or unstable.
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Figure 6. Classification of truck transport route types according to distribution and fluctuation of
truck transport time data.

4. Results

Since the application of the log data collection system in the field in October 2020, log
data files have been continuously collected and uploaded to the cloud server. In this study,
truck transport time analysis was performed using 500 log data files uploaded to the cloud
server between 9 November 2020 and 21 February 2021 (15 weeks). As a result of analyzing
log files uploaded from tablet computers installed on 10 trucks dispatched to haulage
operations, a total of 49,876 log data were recorded; that is, the tablet computers installed
on the trucks received signals from the Bluetooth beacons approximately 50,000 times. A
total of 459 route combinations were automatically created using a log data processing
program. However, these referred to all possible route combinations. Therefore, in this
study, 46 route combinations that could be generated were analyzed by referring to the
truck transport routes and the Bluetooth beacon installation schematic shown in Figure 3b.
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Figure 7 shows the average transport time of trucks for each section when operating
with empty or loaded trucks. When an empty truck ran, it was found that the truck
transport time for each section tended to increase in proportion to the distance (Figure 7a).
The average transport time of trucks was relatively small in sections with short distances
(beacon IDs 3–5, 12–13, and 14–15). In sections with few slopes and straight lines (beacon
IDs 1–2, 2–3, 8–8, and 10–11), the average transport time of trucks was also small despite
the relatively long distances. In the section from the dumping area to the entrance of the
mine, the transport time was relatively large because it included the ore dumping time.
Moreover, because the two sections from beacon ID 19 (crusher 1) to the entrance (beacon
IDs 1 and 10) were steeply inclined sections, the truck transport time was relatively large.
The truck transport time tended to be proportional to the distance, even when the truck
was operating with loaded ore. However, it was confirmed that in the section where the
slope of the section was high or in the section that required careful driving, the transport
time was large (beacon IDs 10–19, 17–18) even if the transport distance was relatively short.
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(a) when operating with empty truck; (b) when operating with loaded truck.

Table 3 shows the total average truck transport time from eight loading areas to four
dumping areas. The average transport time of trucks from the loading area to the dumping
area (loaded truck) or from the dumping area to the loading area (empty truck) was shown
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to vary. The reason for this variation was determined to be the difference in the slope of
the transport route and the weight of the truck when loading the ores. Furthermore, the
closer the distance between the loading and the dumping area, the shorter the total truck
transport time corresponding to one cycle (empty truck’s travel-loading–loaded truck’s
travel-dumping). In the study area, Areas D1 and D2 showed a short total truck transport
time, and Areas B, E, and F showed a long time. In general, in the case of a loaded truck,
it is expected that the driving speed will be slower and the driving time will be longer
because of the increase in the weight of the loaded ore. However, in most cases, the truck
transport time was longer when running with an empty truck. This is because the truck
transport time was excessively measured by the time that the truck waits for loading in the
section close to the loading area and the time generated by congestion in the tunnel.

Table 3. Truck transport time of empty and loaded trucks from loading area to dumping area.

Loading
Area

Dumping
Area

Placement Order of
Bluetooth Beacons

Average Transport Time (s) Total Average
Transport Time (s)Empty Truck

D *→ L *
Loaded Truck

L *→ D *

Area A

Crusher 1 19-1-2-3-5-6-7 483.5 370.2 853.7

Crusher 2 20-1-2-3-5-6-7 415.4 337.7 753.1

Storage yard 1 21-1-2-3-5-6-7 369.1 337.7 706.8

Storage yard 2 22-21-1-2-3-5-6-7 374.0 367.5 741.5

Area B

Crusher 1 19-1-2-3-5-6-8-9 553.8 460.3 1014.1

Crusher 2 20-1-2-3-5-6-8-9 485.7 427.8 913.5

Storage yard 1 21-1-2-3-5-6-8-9 439.4 427.8 867.2

Storage yard 2 22-21-1-2-3-5-6-8-9 529.1 457.6 986.7

Area C1

Crusher 1 19-10-11-14-15 365.7 280.7 646.4

Crusher 2 20-10-11-14-15 327.0 220.1 547.1

Storage yard 1 21-10-11-14-15 243.3 246.2 489.5

Storage yard 2 22-21-10-11-14-15 333.0 276.0 609.0

Area C2

Crusher 1 19-10-11-14-15-16 420.9 363.9 784.8

Crusher 2 20-10-11-14-15-16 382.2 303.3 685.5

Storage yard 1 21-10-11-14-15-16 298.5 329.4 627.9

Storage yard 2 22-21-10-11-14-15-16 388.2 359.2 747.4

Area D1

Crusher 1 19-10-11-12 305.8 244.0 549.8

Crusher 2 20-10-11-12 267.1 183.4 450.5

Storage yard 1 21-10-11-12 183.4 209.5 392.9

Storage yard 2 22-21-10-11-12 273.1 239.3 512.4

Area D2

Crusher 1 19-10-11-12-13 343.7 277.9 621.6

Crusher 2 20-10-11-12-13 305.0 217.3 522.3

Storage yard 1 21-10-11-12-13 221.3 243.4 464.7

Storage yard 2 22-21-10-11-12-13 311.0 273.2 584.2

Area E

Crusher 1 19-1-2-3-4 521.7 379.6 901.3

Crusher 2 20-1-2-3-4 453.6 347.1 800.7

Storage yard 1 21-1-2-3-4 407.3 347.1 754.4

Storage yard 2 22-21-1-2-3-4 497.0 376.9 873.9

Area F

Crusher 1 19-10-11-14-17-18 414.6 423.4 838.0

Crusher 2 20-10-11-14-17-18 375.9 362.8 738.7

Storage yard 1 21-10-11-14-17-18 292.2 388.9 681.1

Storage yard 2 22-21-10-11-14-17-18 381.9 418.7 800.6

* D: Dumping area; * L: Loading area.
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Figure 8 shows the results of analyzing the average speed of trucks by section. It was
found that the average truck speed was greatly influenced by the location and characteris-
tics of the section during both empty and loaded operation. The truck speed tended to be
higher if the section approximated a straight line, with good driver visibility. In the case
of empty operation, the average speed of the truck was found to be high in beacon IDs
1–2, 2–3, 5–6, 10–11, and 11–14. In the case of loaded operation, the truck speed was high
in the beacon IDs 10–12 and 1–20, which is believed to be because it was easy to secure
visibility as the truck came out from the tunnel. Moreover, it was confirmed that the speeds
were higher in the section (beacon IDs 13–12, 16–15) without a loading or dumping area
around the route. Conversely, in the section near a loading area where frequent congestion
occurred or the section with a steep slope, the truck speed was relatively low.
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Figure 8. Average speed of trucks by section for log data files collected over 15 weeks: (a) when
operating with empty truck; (b) when operating with loaded truck.

Of the 46 paths that could be combined, spatial analysis was performed using the
average transport time and standard deviation of trucks for each section to select two
sections in which the truck transport time appeared to be stable and a section in which
the truck transport time appeared to be unstable (Figure 9). The results show that the
truck transport time was stable (blue line) in 17 sections (empty truck: 9, loaded truck: 8),
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and unstable (red line) in four sections (empty truck: 2, loaded truck: 2). In the sections
where there is little change in the inclination of the transport route and there are no factors
that hinder the operation of the truck, the truck travel time is stable. However, when the
inclination of the transport route is large or there are loading or dumping areas around
the route, the truck travel time tends to be unstable. In this study, a time-series analysis
was then performed on four sections (two stable sections and two unstable sections) in
which the truck transport time was expected to appear stable or unstable to analyze the
types and characteristics of the transport routes. The sections where the truck transport
time was expected to be stable were selected from beacon IDs 19 to 1 (empty trucks) and 11
to 10 (loaded trucks), and the sections expected to be unstable were from beacon IDs 3 to 5
(empty truck) and 13 to 12 (loaded truck).
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standard deviation of truck transport time: (a) when operating with empty truck; (b) when operating
with loaded truck.

For the four sections selected in this study, a time-series analysis was performed by
dividing the log files into weekly units, the types of transport routes then being classified
(Figure 10). Figure 10a shows a large distribution of the data with little fluctuation in the
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average transport time and percentile (P90, P10) values of the trucks during the 15 weeks
in which the time-series analysis was performed; that is, these transport routes could be
classified as Type 1. Figure 10b is similar to Figure 10a in that there is little fluctuation in the
data, but it has the characteristics of Type 3 with a small data distribution. Figure 10c shows
stable truck transport time data from week 1 to week 6, but its distribution increased from
week 7, eventually becoming unstable with severe fluctuations. Therefore, the transport
route of this section could be classified as Type 2. Figure 10d shows that the truck transport
time was usually a stable section, but it could be classified as Type 4 because the data
fluctuated in a certain period.
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(stable section); (c) beacon ID 3 to 5 (unstable section); (d) beacon ID 13 to 12 (unstable section).
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As shown in Figure 10a,b, stable transport time was realized for a main transport
route where only haulage operations were performed. In these sections, the trucks were not
often stopped or delayed on route. Moreover, it was found that the width of the tunnel was
sufficient to allow two trucks to travel without deceleration. In particular, in the case of a
section moving from beacon ID 30 to 1, the truck’s transport time was found to be relatively
stable because it was located outside the mine, making it easier to secure driver visibility.

In the case of Figure 10c,d, where the truck’s transport time was unstable, it was found
that loading or dumping areas existed near the transport route. As a result of reviewing
the production logs from the site, it was confirmed that the opening of a new workplace
began from the 7th week in the section, moving from beacon ID 3 to 5, and the truck
transport time increased because of vehicle congestion. In the case of beacon IDs 13 to 12,
the truck transport time temporarily increased during the 13th week. During this period,
it was confirmed that loading operations were performed at two or more workplaces in
the section.

5. Discussion
5.1. Practical Use at the Underground Mine Site

The truck transport time data, which could be collected through the log data collection
system developed in this study, could be used to analyze, diagnose, and predict the truck
transport routes of the mine. It was possible to determine whether the newly collected
truck transport time data for a specific transport route was measured within the error
range (P10 to P90) of the previously accumulated data and to diagnose whether the truck
travel in the section was operating normally. Moreover, it would be possible to predict
the likelihood of problems occurring in truck haulage operations. Problems that could be
predicted through this include poor maintenance of mines, congestion in tunnels, poor
maintenance of vehicles, and the proficiency of truck drivers.

In this study, the transport routes were diagnosed and predicted using newly acquired
log data for the section of beacon IDs 13 to 12, with one showing stable truck transport times
as a result of log data analysis for 15 weeks. The average transport time and percentiles
(P90, P10) of the truck were recalculated using the most recently collected 5 weeks of data
(19 January 2021 to 21 February 2021) for the remaining 15 weeks of data. The newly
collected log data were divided by date and truck, as shown in Figure 11. As a result, it
was found that in the 16th week of haulage operations, two trucks operated the section and
transported the limestone 42 times (truck A: 32 times, truck B: 10 times). When looking at
the targeted error range of the truck transport time (P10–P90) in the corresponding section,
the number of trips within the error range was found to be 27 (truck A: 20 times, truck B:
7 times). The remaining 15 times (truck A: 12 times, truck B: 3 times) were found to be out
of the error range. In particular, in the case of truck A, there were two cases in which the
transport time was measured to be abnormally large, as compared to the existing data.

To determine the cause of this abnormally large truck transport time, the production
logs were checked, and interviews with field staff were performed. As a result, it was
confirmed that vehicle congestion occurred due to the failure and maintenance of trucks in
the tunnel. Problems such as the disruption or delay of trucks due to poor maintenance
of the tunnel or the closing of the tunnel due to equipment failure may have increased
the transport time of the truck or caused an abnormal travel pattern. Consequently, it is
necessary to diagnose the condition of the transport route using the past collected data and
the new collected data to predict anticipated problems. It is believed that the efficiency
and productivity of truck transport operations in mines could be improved if tunnels are
repaired, expanded, or opened in advance by finding sections where problems are expected
to occur and if vehicles used are repaired in advance.



Appl. Sci. 2021, 11, 4525 17 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 20 
 

repaired, expanded, or opened in advance by finding sections where problems are ex-

pected to occur and if vehicles used are repaired in advance. 

 

Figure 11. Comparison result of existing log data (11 to 15 weeks, `21.01.19~`21.02.21) for truck transport times and newly 

acquired log data (transport time per truck) at week 16 (`21.02.22~`21.02.27). 

5.2. Implications for Simulating Truck Haulage Systems in Underground Mines 

Mine development aims to maximize production profits while investing minimal 

capital and operating costs over the lifetime of a mine [24]. Therefore, optimal operating 

methods and equipment usage strategies are required to increase the productivity of 

mines and minimize operating costs. In particular, efforts are being made to efficiently 

operate ore loading and implement material-handling operations that account for more 

than 50% of the total mine-operation cost [25]. Because the efficiency of the truck haulage 

system varies depending on the combination of the equipment used, operation patterns, 

and operation methods, it is necessary to operate an optimal truck haulage system that 

can maximize ore production and minimize the cost and time required for transport op-

erations [26,27]. 

Recently, several discrete event simulation techniques [28–36] have been proposed to 

design an effective truck transport system and realize efficient system operation. For these 

simulations, a simulation algorithm is designed based on unit operations constituting the 

truck transport system, such as traveling, spotting, loading, dumping, and queuing [37], 

and the time required for unit operations is inputted as an input factor in the simulation. 

Existing studies have assumed that the traveling, spotting, loading, dumping, and queu-

ing times of trucks are constant, and simulations have been performed by entering values 

for a specific time point or period. However, as examined in this study, it was confirmed 

that the characteristics and types of truck travel time differ in each transport section or 

period, and the distribution and fluctuation of truck transport time data by section also 

vary. 

Therefore, to improve the prediction accuracy and confidence level of the transport 

system simulation, it is necessary to perform a simulation considering the uncertainty 

caused by the variability of the truck transport time data. The traveling time inputted for 

Figure 11. Comparison result of existing log data (11 to 15 weeks, ‘21.01.19~‘21.02.21) for truck transport times and newly
acquired log data (transport time per truck) at week 16 (‘21.02.22~‘21.02.27).

5.2. Implications for Simulating Truck Haulage Systems in Underground Mines

Mine development aims to maximize production profits while investing minimal
capital and operating costs over the lifetime of a mine [24]. Therefore, optimal operating
methods and equipment usage strategies are required to increase the productivity of mines
and minimize operating costs. In particular, efforts are being made to efficiently operate ore
loading and implement material-handling operations that account for more than 50% of
the total mine-operation cost [25]. Because the efficiency of the truck haulage system varies
depending on the combination of the equipment used, operation patterns, and operation
methods, it is necessary to operate an optimal truck haulage system that can maximize ore
production and minimize the cost and time required for transport operations [26,27].

Recently, several discrete event simulation techniques [28–36] have been proposed to
design an effective truck transport system and realize efficient system operation. For these
simulations, a simulation algorithm is designed based on unit operations constituting the
truck transport system, such as traveling, spotting, loading, dumping, and queuing [37],
and the time required for unit operations is inputted as an input factor in the simulation.
Existing studies have assumed that the traveling, spotting, loading, dumping, and queuing
times of trucks are constant, and simulations have been performed by entering values for a
specific time point or period. However, as examined in this study, it was confirmed that
the characteristics and types of truck travel time differ in each transport section or period,
and the distribution and fluctuation of truck transport time data by section also vary.

Therefore, to improve the prediction accuracy and confidence level of the transport
system simulation, it is necessary to perform a simulation considering the uncertainty
caused by the variability of the truck transport time data. The traveling time inputted
for the simulation must be divided into several sections, instead of inputting one value
of a single section. That is, in the case of a stable section with little variability in the
transport time of the truck, the transport time can be calculated using a deterministic
method and used as the simulation input data. However, in the case of an unstable section
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with large fluctuations, it would be more appropriate to determine the input value using a
stochastic method.

6. Conclusions

In this study, we developed a system that could collect and analyze log data related to
truck transport times in underground mines using Bluetooth beacons and tablet computers.
We presented the results of analyzing truck transport routes by applying the system to
domestic limestone underground mines. Log data related to the transport times of trucks
were continuously collected through tablet computers and uploaded to a cloud server. The
log data processing application developed was able to compile log data files uploaded
to the cloud server into a single data file to calculate the statistics for each section of a
transport route, making it easy to determine the characteristics of the truck transport time.

Through spatial analysis using the average truck transport time and standard devia-
tion, it was possible to select the sections in which a truck’s transport times were expected
to be stable and sections in which they were expected to be unstable. For the selected
sections, time-series analysis was performed by dividing the log data into weekly units.
The transport routes were then appropriately classified. Moreover, through analysis of the
production logs at a site and interviews with employees, it was possible to determine the
reasons for these sections appearing stable or unstable.

The log data collection system related to truck transport times using Bluetooth beacons
and tablet computers developed in this study can be used to analyze and diagnose truck
transport routes in mines and improve haulage operations. The transport times of trucks
may increase abnormally because of factors such as congestion in mines due to the opening
of new workplaces, the centralization of workplaces based on daily production plans,
inefficient equipment dispatch plans, or detours because of vehicle failures. However, by
comparing and analyzing log data files continuously accumulated in the cloud and newly
collected log data files, it is possible to prevent an increase in the truck transport time in
advance. This will help improve the productivity and profitability of a mine, as it improves
the efficiency and effectiveness of its haulage system.

The log data collection and analysis system developed in this study can only analyze
log data uploaded to the cloud after production work has been completed. Consequently, it
is not possible to compare and review log data collected during production using existing
log data in real time. However, if a real-time comparison and review system can be estab-
lished to compare existing log data with log data collected in real time during production,
significant improvements in the efficiency and productivity of haulage operations can be
realized. Additionally, it is believed that if the system is improved to accurately measure
the time required for loading and dumping of ores, analysis and diagnosis of the entire
process of truck haulage operations will be possible. Therefore, in a future study, we intend
to develop a system that can compare and review the truck transport time and accurately
measure the time required for loading and dumping of ores as collected through a tablet
computer installed on a truck with existing data in real time.
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