Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Dataset
3.2. Signal Preprocessing
3.2.1. Noise Reduction and Normalization
3.2.2. Data Generalization
- Heart sounds can be judged to be about 5 s.
- Abnormal heart sounds are observed within 5 s.
3.3. Data Augmentation
3.4. Feature Extraction
4. Experiments
4.1. Datasets
4.2. Implementation Details
5. Results and Discussion
5.1. Ablation Study
5.2. Comparison with CNN Models
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death/ (accessed on 22 March 2021).
- Castells, F.; Laguna, P.; Sornmo, L.; Bollmann, A.; Roig, J.M. Principal Component Analysis in ECG Signal Processing. EURASIP J. Adv. Signal Process. 2007, 2007, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda-Cano, L.M.; Gil, E.; Laguna, P.; Castellanos-Dominguez, G. Selection of nonstationary dynamic features for obstructive sleep apnoea detection in children. EURASIP J. Adv. Signal Process. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roguin, A. Rene Theophile Hyacinthe Laënnec (1781–1826): The man behind the stethoscope. Clin. Med. Res. 2006, 4, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, H.K.; Hall, W.D.; Hurst, J.W. Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Roy, D.; Sargeant, J.; Gray, J.; Hoyt, B.; Allen, M.; Fleming, M. Helping family physicians improve their cardiac auscultation skills with an interactive CD-ROM. J. Contin. Educ. Health Prof. 2002, 22, 152–159. [Google Scholar] [CrossRef]
- Etchells, E.; Bell, C.; Robb, K. Does this patient have an abnormal systolic murmur? JAMA 1997, 277, 564–571. [Google Scholar] [CrossRef]
- Yaseen; Son, G.Y.; Kwon, S. Classification of Heart Sound Signal Using Multiple Features. Appl. Sci. 2018, 12, 2344. [Google Scholar] [CrossRef] [Green Version]
- Maglogiannis, L.; Loukis, E.; Zafiropoulos, E.; Stasis, A. Support Vectors Machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 2009, 95, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Mehmood, A.; Ullah, S.; Ahmad, M.; Choi, G.S.; On, B.W. Heartbeat Sound Signal Classification Using Deep Learning. Sensors 2019, 19, 4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messner, E.; Zohrer, M.; Pernkopf, F. Heart Sound Segmentation—An Event Detection Approach Using Deep Recurrent Neural Networks. IEEE Trans. Biomed. Eng. 2018, 65, 1964–1974. [Google Scholar] [CrossRef]
- Li, F.; Tang, H.; Shang, S.; Mathiak, K.; Cong, F. Classification of Heart Sounds Using Convolutional Neural Network. Appl. Sci. 2020, 10, 3956. [Google Scholar] [CrossRef]
- Jonathan, R.; Rui, A.; Anurag, G.; Saigopal, N.; Ion, M.; Kumar, S. Recognizing Abnormal Heart Sounds Using Deep Learning. arXiv 2017, arXiv:1707.04642. [Google Scholar]
- Poole, B.; Sohl-Dickstein, J.; Ganguli, S. Analyzing noise in autoencoders and deep networks. arXiv 2014, arXiv:1406.1831. [Google Scholar]
- Varghees, V.N.; Ramachandran, K.I. A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 2014, 13, 174–188. [Google Scholar] [CrossRef]
- Stasis, A.C.; Loukis, E.N.; Pavlopoulos, S.A.; Koutsouris, D. Using decision tree algorithms as a basis for a heart sound diagnosis decision support system. In Proceedings of the 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, Birmingham, UK, 24–26 April 2003; pp. 354–357. [Google Scholar]
- Kang, S.H.; Joe, B.G.; Yoon, Y.Y.; Cho, G.Y.; Shin, I.S.; Suh, J.W. Cardiac Auscultation Using Smartphones: Pilot Study. JMIR mHealth uHealth 2018, 6, e49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Han, J.; Deng, S. Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Syst. Appl. 2017, 84, 220–231. [Google Scholar] [CrossRef]
- Bentley, P.; Glenn, N.; Coimbra, M.; Mannor, S. Classifying Heart Sounds Challenge. Available online: http://www.peterjbentley.com/heartchallenge (accessed on 22 March 2021).
- Bentley, P.J. iStethoscope: A demonstration of the use of mobile devices for auscultation. In Mobile Health Technologies; Humana Press: New York, NY, USA, 2015; pp. 293–303. [Google Scholar] [CrossRef]
- Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.; et al. Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 609–612. [Google Scholar]
- Thiyagaraja, S.R.; Dantu, R.; Shrestha, P.L.; Chitnis, A.; Thompson, M.A.; Anumandla, P.T.; Sarma, T.; Dantu, S. A novel heart-mobile interface for detection and classification of heart sounds. Biomed. Signal Process. Control 2018, 45, 313–324. [Google Scholar] [CrossRef]
- Park, D.S.; Chan, W.; Zhang, Y.; Chiu, C.C.; Zoph, B.; Cubuk, E.D.; Quoc, V.L. SpecAugment: A simple data augmentation method for automatic speech recognition. arXiv 2019, arXiv:1904.08779. [Google Scholar]
- Nisar, S.; Khan, O.U.; Tariq, M. An efficient adaptive window size selection method for improving spectrogram visualization. Comput. Intell. Neurosci. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 621–624. [Google Scholar]
- Tschannen, M.; Kramer, T.; Marti, G.; Heinzmann, M.; Wiatowski, T. Heart sound classification using deep structured features. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 565–568. [Google Scholar]
- Wu, J.M.T.; Tsai, M.H.; Huang, Y.Z.; Islam, S.H.; Hassan, M.M.; Alelaiwi, A.; Fortino, G. Applying an ensemble convolutional neural network with Savitzky-Golay filter to construct a phonocardiogram prediction model. Appl. Soft Comput. 2019, 78, 29–40. [Google Scholar] [CrossRef]
Cardiac Signal | Frequency Range (Hz) | ||
---|---|---|---|
Heart sounds | First heart sound | Normal | 100–200 |
Second heart sound | Normal | 50–250 | |
Heart murmurs | Systolic murmur | Aortic stenosis | 100–450 |
Pulmonary stenosis | 150–400 | ||
Mitral regurgitation | 60–400 | ||
Tricuspid regurgitation | 90–400 | ||
Atrial septal defect | 60–200 | ||
Ventricular septal defect | 50–180 | ||
Diastolic murmur | Mitral stenosis | 45–90 | |
Tricuspid stenosis | 90–400 | ||
Aortic regurgitation | 60–380 | ||
Pulmonary regurgitation | 90–150 | ||
Continuous murmur | Patent ductus arteriosus | 90–140 |
Heart Sound (Waveform) | Spectrogram | |||
---|---|---|---|---|
Normal | Abnormal | Normal | Abnormal | |
Training set | 2112 | 669 | 1802 | 2880 |
Validation set | 824 | 240 | 743 | 223 |
Total | 2936 | 909 | 2545 | 3103 |
Author (Year) | Approach | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|---|
Potes et al. [25] (2016) | AdaBoost and CNN | 94.24 | 77.81 | 86.02 |
Tschannen et al. [26] (2016) | Wavelet-based CNN | 81.2 | 84.8 | 77.6 |
Rubin et al. [13] (2017) | CNN | 72.78 | 95.21 | 83.99 |
Wu et al. [27] (2019) | CNN | 86.46 | 85.63 | 86.00 |
Fen et al. [12] (2020) | CNN | 87.00 | 86.60 | 84.98 |
Ours | CNN | 93.32 | 83.00 | 91.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Kim, J.; Kim, D.; Kim, J.; Lee, K. Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization. Appl. Sci. 2021, 11, 4544. https://doi.org/10.3390/app11104544
Jeong Y, Kim J, Kim D, Kim J, Lee K. Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization. Applied Sciences. 2021; 11(10):4544. https://doi.org/10.3390/app11104544
Chicago/Turabian StyleJeong, Yoojin, Juhee Kim, Daeyeol Kim, Jinsoo Kim, and Kwangkee Lee. 2021. "Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization" Applied Sciences 11, no. 10: 4544. https://doi.org/10.3390/app11104544
APA StyleJeong, Y., Kim, J., Kim, D., Kim, J., & Lee, K. (2021). Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization. Applied Sciences, 11(10), 4544. https://doi.org/10.3390/app11104544