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Abstract: Cardiac auscultation is a cost-effective and noninvasive technique for cardiovascular
disease detection. Recently, various studies have been underway for cardiac auscultation using
deep learning, not doctors. When training a deep learning network, it is important to secure large
amount of high-quality data. However, medical data are difficult to obtain, and in most cases the
number of abnormal classes is insufficient. In this study, data augmentation is used to supplement
the insufficient amount of data, and data generalization to generate data suitable for convolutional
neural networks (CNN) is proposed. We demonstrate performance improvements by inputting them
into the CNN. Our method achieves an overall performance of 96%, 81%, and 90% for sensitivity,
specificity, and F1-score, respectively. Diagnostic accuracy was improved by 18% compared to when
it was not used. Particularly, it showed excellent detection success rate for abnormal heart sounds.
The proposed method is expected to be applied to an automatic diagnosis system to detect heart
abnormalities and help prevent heart disease through early detection.

Keywords: cardiovascular disease; heart sounds; heartbeat classification; signal preprocessing;
convolutional neural network; deep learning

1. Introduction

One of the most important of the organs in the body is the heart, which supplies
blood to the whole body. The heart is a muscular pump, and whenever the heart contracts
strongly, it sends blood throughout the body to supply oxygen and nutrients. Since
the heart functions in harmony with blood vessels and muscles, electrical signals and
valves, cardiac disease occurs even if one of them is abnormal. Cardiovascular disease
(CVD) causes death and disabilities all around the world. According to the World Health
Organization (WHO), 16% of all deaths caused by CVDs [1]. In addition, cardiovascular
diseases are steadily increasing every year due to an aging population and increasing
causes such as high blood pressure, and high cholesterol, stress, smoking, obesity and so
on. Even if there is no past medical history or asymptomatic, CVD often occurs through
asymptomatic incubation periods, which can be accompanied by organ damage. In these
contexts, pre-diagnosis and treatment of heart disease have become very important.

There are many ways to check the condition of one’s heart. An electrocardiogram
(ECG) is an interpretation of the heart’s electrical activity. To perform an ECG, the examiner
places electrodes (a small round sensor attached to the skin) on the patient’s arms, legs,
and chest. These electrodes measure the magnitude and direction of the current in the
heart whenever the heart beats. A photoplethysmogram (PPG) is a method of estimating
blood flow by measuring changes in light transmitted to the skin or reflected in blood
vessels and bones by emitting green LED light to the skin from a light-based sensor. A
wide range of methods have been studied and proposed over the years for automatic
analysis of ECG [2] and PPG [3] signals. Lastly, auscultation, listening to the sound of
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the heart, began with Laennec [4] first listening to the sound of the heart. Auscultation is
very simple and cost effective, and it is a very important medical examination method in
cardiology. The heart sound is produced by the beating heart and the resulting blood flow.
In particular, the pulse and sound caused by blood movement can be heard around the
chest and neck. Two heart sounds are heard in healthy adults [5]. The first heart sound, S1,
is heard when closing the valves systole and its frequency components lie in the range of
100–200 Hz. The second heart sound, S2 sound is heard when opening the valves diastole
and has a higher frequency range of 50–250 Hz. The average interval between S1 and
S2 is about 0.45 s, and the normal cardiac cycle is about 0.8 s. Other than S1, S2, there
are pathologic sounds such as S3, S4, murmur, turbulent fluid, and extrasystole sounds.
Figure 1 shows the representative healthy person and patient’s heart waveforms. Doctors
listen to varying loudness, frequency, quality, and duration with a stethoscope, and can
determine the opening and closing of heart valves as well as blood flow and turbulence
through valves or defects in the heart. To do this, they need extensive knowledge and
experience [6]. In fact, the diagnostic accuracy of inexperienced doctors is 20–40% and the
diagnostic accuracy of professional cardiologists is about 80% [7].
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The main objective of this work is to detect cardiac abnormalities simply by the sound
of the heart and prevent cardiovascular disease through early detection. In this paper, we
distinguish between normal and abnormalities by detecting and classifying the sounds
in heart with signal processing and entering them into a convolutional neural network
(CNN) specialized in image processing. More specifically, we will be focusing on data
augmentation and data generalization for better CNN performance. As a result, not only
the overall accuracy, but also specificity is improved.

The paper is structured as follows. In Section 2, the proposed methods for predicting
heart diseases automatically, and the background knowledge for our method, are intro-
duced. In Section 3, the proposed methods are introduced: a method of making data
suitable for learning through signal preprocessing in Section 3.2; a method of making a
balanced dataset using data augmentation in Section 3.3; a method of making an input
of an image processing network in Section 3.4. Section 4 presents the experiments and
Section 5 shows the results. Section 6 presents conclusion of the work.

2. Related Work

In recent years, many studies have been conducted to automatically predict cardiac
diseases on the basis of the heartbeat [8,9]. Recently, with the development of deep
learning, many deep learning-based approaches have been studied to detect abnormal
heart sound using deep neural networks (DNN) [10], recurrent neural networks (RNN) [11],
and convolutional neural networks (CNN) [12,13]. As CNN extracts and learns features
autonomously, it has been employed in various fields, such as image classification and
speech recognition. It is also used to recognize abnormal heart sounds. In [12], CNN was
used for feature extraction and classification function estimation from heart sound signals.
The network of [13] was designed to classify normal and abnormal heart sounds by using
CNN with the mel-frequency cepstral coefficient (MFCC) heat map as input.
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As it is difficult to collect heart sound data, many previous studies have suffered from
lack of data [10,14]. A large dataset is required for training deep learning networks. To
solve this problem, some studies have applied data augmentation methods to increase the
amount of data. Ref. [10] increased the dataset size by using two methods to solve the
data shortage. The author augmented the data to prevent overfitting by performing noise
injection, which adds random noise to the input and an audio transformation that slightly
deforms the pitch and tempo. In [14], the authors suggested that the noise injection method
was effective for covering data shortage.

When data augmentation is performed, the quality of the source data has an important
influence. High-quality data means a clear signal without noise. However, noise is
unavoidable during recordings, and every piece of recorded data has a different length.
For effective analysis, noise reduction is necessary, and normalizing and generalizing the
raw dataset is required. Ref. [15] showed an improvement of performance by conducting
noise reduction in the preprocessing step. In [16], the authors mentioned the importance
and effect of data generalization.

To classify data according to class, it is important to extract appropriate features for
each label. There are several methods for extracting data, such as MFCC, spectrogram, and
using a deep learning network. A spectrogram is a visualization of the frequency spectrum
of a signal and is effective for analyzing audio signals. According to [17], the spectrogram
is a suitable feature for predicting cardiovascular disease by converting a time domain
signal into a spectrogram, which is a frequency domain, and using an experiment. In
addition, Ref. [18] extracted spectrograms and scaled them for effective feature extraction
and analysis of heart sounds.

3. Methods

The overall experimental process is shown in Figure 2. After inputting the recorded
heart sound, signal preprocessing including noise reduction, normalization, and general-
ization is applied. After that, the signal is converted into a spectrogram and used as an
input to the CNN. Finally, the features of each class are learned through the CNN and
classified as either healthy or unhealthy cardiovascular behavior.
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Figure 2. Block diagram of heart sounds identification system.

3.1. Dataset

Using three kinds of heartbeat audio datasets, we created a new dataset of two classes,
normal and abnormal. The PASCAL Heart Sound Challenge (HSC) dataset [19] was used
for the task of heart sound segmentation and classification. The HSC consists of dataset
A and dataset B. Dataset A has 176 heart sounds collected using the iStethoscope Pro
iPhone app, and dataset B has 656 heart sounds recorded using a digital stethoscope.
These two datasets are composed of normal, murmur, extrasystole, artifact, and extrahls
classes. Apart from HSC, we collected additional audio files through the iStethoscope
Pro iPhone application [20]. Divided into two classes, normal and abnormal, 10 and
50 audio files, respectively, were created. The 2016 PhysioNet computing in cardiology
challenge (CinC) [21] aims to encourage the development of algorithms to classify heartbeat
recordings. It includes 3240 audio files; 2575 normal and 665 abnormal.
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3.2. Signal Preprocessing
3.2.1. Noise Reduction and Normalization

Noise affects recognition rate by distorting the original signal. While recording
heart sounds, noises can occur such as external sounds, sweeping sounds due to body
movements, breathing sounds, thermal noise and so on. Noise due to skin rubbing occurs
at the beginning and end in most cases when recording actual heartbeats. To remove
this unwanted sound, 15% of the audio file was first eliminated. Cardiac sounds have
specific frequency ranges. S1 has a frequency of at least 100 to 200 Hz, S2 has a frequency
of 50–250 Hz, and sick cardiac sound has a maximum frequency of 400 Hz. Table 1 shows
the frequency range and diagnostic value according to the cardiac sound. The frequency
characteristics of these components can be used as important parameters for identification.
After converting to the frequency domain, the band-pass filter eliminates frequencies other
than 40–400 Hz, excluding S1, S2 and the heart noise frequency ranges.

Table 1. Types of heart sounds and corresponding frequency ranges.

Cardiac Signal Frequency Range (Hz)

Heart sounds
First heart sound Normal 100–200

Second heart sound Normal 50–250

Heart
murmurs

Systolic murmur

Aortic stenosis 100–450

Pulmonary stenosis 150–400

Mitral regurgitation 60–400

Tricuspid regurgitation 90–400

Atrial septal defect 60–200

Ventricular septal defect 50–180

Diastolic murmur

Mitral stenosis 45–90

Tricuspid stenosis 90–400

Aortic regurgitation 60–380

Pulmonary regurgitation 90–150

Continuous murmur Patent ductus arteriosus 90–140

Each sound in the dataset has a different amplitude range, and the quality of the sound
may vary depending on the environment where the heartbeat is recorded. Therefore, it is
necessary to uniform the dataset for accurate comparison. The signals must be equalized to
the same amplitude range and have the same quality. To change the data to a common scale
without distorting the difference in range, the signals were scaled between 0 and 1 through
min-max normalization. As a result, time-domain noise in the audio files was reduced.

3.2.2. Data Generalization

The length of audio files in the dataset is diverse, ranging from 4 s to 120 s. However,
CNN takes a constant size of image as an input. If the audio signals of 4 s and 120 s are
made into spectrograms of the same size, the difference is large even within the same class.
Additionally, the different lengths of the data make feature extraction more difficult if the
data are not sufficient. Therefore, the following method was used to make constant lengths
of data. Two assumptions were made for the experiment:

• Heart sounds can be judged to be about 5 s.
• Abnormal heart sounds are observed within 5 s.

To achieve a constant length of data, we assumed that it took about 5 s to judge
between normal and abnormal heart sounds. However, extracystoles, where the pulse
beats normally and then skips once, can occur once or twice or dozens of times a minute.
Atrial fibrillation, in which the heart beats irregularly, can also be temporary or persistent.
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Therefore, in the experimental data, the assumption that this irregular abnormal heartbeat
occurs within 5 s was added.

The number of samples in the audio file was equalized to adjust the length of the
heart signal. Sampling range was determined using the cardiac sound peaks. The peaks
of S1 and S2 can be found using the time interval features of S1 and S2. Figure 3 shows
S1 and S2 detection through time difference. The time difference between S1 and S2 ranges
from 250 to 350 ms, and between S2 and the next S1 the time ranges from 350 to 800 ms.
Therefore, after finding peaks larger than a certain amplitude, the intervals between the
peaks were calculated. If the previous interval was between 250 and 350 ms and the current
interval is between 350 and 800 ms, then S1 and S2 can be identified [22].
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Ref. [22] was able to find S1 and S2 easily in ideal heartbeats, but there are many
exceptions for diseased heartbeats. For example, as shown in Figure 4, S1 and S2 were
not found when the size of a particular heartbeats were large or small, when the intervals
between the extracted peaks were irregular, when the intervals of the heart signals were
not constant, or if the heart signals were not clear. In this paper, we propose a method of
finding peaks and make them into constant length data. Normally, S1 is louder than S2 at
the apex, and softer than S2 at the base of the heart. Empirically, the louder heart sound
was close to 1, and the softer heart sound had about half the amplitude of the loud sound
in the normalized signal. Thus, 0.65 was set as the threshold, and then peaks larger than
the threshold were selected from the normalized signals. Since the cardiac cycle is 800 ms,
a peak larger than 0.65 with at least 800 ms intervals was considered the main cycle S. The
coordinates of the S were obtained through the Scipy python library. Among them, the
first S and sixth S coordinates were truncated to produce data. However, if the heart beats
irregularly or if the murmur is large, it is impossible to find S1 using this method and to
cut it at regular intervals. Therefore, when the number of peaks is shorter or longer than
the average cardiac rate of a healthy person (60–100 beats per minute), that is, when the
number of peaks is less than 0.5 or more than 1 per second, 5 s data from the first peak
were used. For example, if the sampling rate was 2000, the first S point t to t + 2000 × 5 was
used to make data. The whole process can be seen in the flow chart in Figure 5.
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3.3. Data Augmentation

For medical datasets, it is often difficult to obtain the data themselves or to label
them with the correct answer. In addition, since it is generally difficult to obtain patients’
data when collecting data, the amount of data for healthy people is much greater than
that that of pathological data. The cardiac sound dataset is a deficient and unbalanced
dataset that is lacking in terms of total amount of data, and the amount of abnormal data
is insufficient in comparison to the amount of normal data. When training a deep neural
network classification model, a biased classification model may appear if the number
of data points of each class is not similar, and the number of data points emphasizes a
specific class. Therefore, we used data augmentation to build a balanced dataset. Data
augmentation is a technology that increases the amount of data while changing them
through various algorithms. In this paper, data augmentation methods at the audio stage
and the spectrogram stage were used. The audio stage uses a method to add random noise,
move signals to the left, and flip the phase of the signal relative to the x-axis. Approaches



Appl. Sci. 2021, 11, 4544 7 of 12

such as pitch shifting or speed changing that could distort the audio signal were not used.
In the spectrogram phase, various image augmentation methods can be used. However,
augmentations such as random rotation, random brightness, and random zoom can make
the spectrogram very different. Therefore, we used an effective augmentation in speech
recognition. SpecAugmentation [23] has been proposed as a method for random frequency
masking and time masking. Additionally, adding salt and pepper noise, similar to masking,
was used to create a new spectrogram.

3.4. Feature Extraction

Data in the time domain are converted into the frequency domain through Fourier
transform for signal analysis. However, the Fourier transform (FT) does not represent the
transition of the signal over time. In other words, when using FT, it is impossible to know
at what point the frequency changes when the frequency changes over time. A Short Time
Fourier Transform (STFT) was proposed to overcome this. STFT divides time by a specific
window size and performs a Fourier transform. Window length may vary depending on
the application. In the spectrogram, a long window size is used to increase the frequency
resolution, and a short window size is used to increase the time resolution. When applying
STFT to the heart sound, the appropriate window length is 98.91% of the heart sound
data length [24]. A spectrogram represents the frequency content of the audio as colors
in an image. The horizontal axis is time information. The vertical axis is the frequency
and the lowest frequencies at the bottom and the highest frequencies at the top. The colors
are the amplitude of a specific frequency at a specific time. In this paper, time-domain
audio signals of about 5 s were transformed into frequency-domain spectrogram features
as Figure 6. Figure 7 shows augmented abnormal data spectrograms in train dataset.

CNN is a kind of artificial neural network, and the structure of CNN can be divided
into feature extraction and classification. Feature extraction uses convolution operations
to maintain spatial and local information of the image. It learns the features of the image
by repeating the convolutional layer, the activation function, and the pooling layer. Clas-
sification uses fully connected layers reducing the amount of computation, and the last
layer outputs the score of each class. Compared with general artificial neural networks,
CNNs effectively recognize image features because they have the advantage of having
fewer learning parameters and use filters as shared parameters.
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4. Experiments
4.1. Datasets

In this experiment, a total of 3890 cardiac sound files, 2936 normal and 909 abnor-
mal, obtained from three datasets, were used. Training data and test data were roughly
divided into 7:3, and data shorter than 5 s were excluded during the preprocessing pro-
cess. The training data of the abnormal class created six spectrograms per sound through
augmentation. The detailed numbers can be found in Table 2.

Table 2. The detailed dataset used in the experiment.

Heart Sound (Waveform) Spectrogram

Normal Abnormal Normal Abnormal

Training set 2112 669 1802 2880
Validation set 824 240 743 223

Total 2936 909 2545 3103

4.2. Implementation Details

The network used in the experiment takes a 217 × 334 heart sound spectrogram as
input. The convolution layer, pooling layer, and dropout layer were repeated four times
and then two dense layers were added. This network performed a binary classification that
distinguished two classes, nonsick and sick. Binary cross entropy loss and Adam optimizer
were used during training. The structure of the network is shown in Figure 8.
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Figure 8. Our CNN architecture.

The performance of the proposed method in the paper was evaluated using several
metrics. We assessed diagnostic accuracy, as well as specificity, sensitivity, and accuracy
for each class. As the classes were imbalanced, the F1-score was used as the performance
metric in the paper. True Positive (TP) is a normal heart sound diagnosed as normal. False
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Negative (FN) is a normal heart sound, but diagnosed as an abnormal heart sound. True
Negative (TN) is an abnormal heart sound diagnosed as abnormal. False Positive (FP) is an
abnormal heart sound, but diagnosed as normal.

sensitivity(SE) =
Normal heart sounds detected correctly

normal heart sounds
=

TP
TP + FN

(1)

speci f icity(SP) =
Abormal heart sounds detected correctly

Abnormal heart sounds
=

TN
TN + FP

(2)

Normal predictive value (NPV) =
TP

TP + FP
(3)

Abnormal predictive value(APV) =
TN

TN + FN
(4)

F1 score =
(SE + SP)(NPV + APV)

SE + SP + NPV + APV
(5)

5. Results and Discussion
5.1. Ablation Study

Diagnostic performance was compared through an ablation study to find out the
effect of improving the performance of data generalization (DG) and data augmentation
(DA). The experiment was conducted in the same environment except for DG and DA.
The amount of data used for the test was 208, which did not belong to the training or
validation dataset.

Figure 9 shows the diagnostic results of each algorithm on the CNN. The test accuracy
was 82% when the audio signal was directly converted into a spectrogram without DG and
DA. However, the sensitivity was 43%, which means the accuracy of diseased heartbeats is
low. More than half of the abnormalities were classified as normal, and it can be seen that
the network could not accurately distinguish between sick and nonsick heartbeats. When
augmented data were added, the test accuracy was 76%, which was lower than without the
augmented data. This shows that increasing the amount of data is not always good, and the
quality of the data is more important for improving performance. Although specificity was
high, sensitivity was very low, and most of the cardiac abnormalities could not be detected.
When data generalization was added, the accuracy was 83%. Additionally, the sensitivity
improved compared to the previous cases. However, the accuracy of detecting pathologic
heart beats is about 51%, which still cannot be considered as distinguishing pathologic
heart sounds. When the data were created using the DG and DA proposed in the paper,
the accuracy increased to 90%. Additionally, the specificity was 96% and the sensitivity
was 73%, thus yielding higher diagnostic accuracy and sensitivity than other methods.

5.2. Comparison with CNN Models

We compared the performance with existing heart sound classification methods based
on CNN. These methods used the PhysioNet dataset, so our model was also trained using
only the PhysioNet dataset for accurate performance comparison. The performance of
each method is listed in Table 3. Our method achieved better or similar performance than
other methods.

5.3. Limitations

This study had several limitations. First, the assumption that abnormal heart sounds
can be observed within 5 s is different from reality. In fact, some of the abnormal data after
generalization were similar to the normal data. Second, the abnormal heartbeat could be
increased through data augmentation, but the types of heart disease were limited. Third,
although the frequency band was used to remove noise, noise remained, hindering the
ability to clearly classify heart sounds.
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Table 3. Comparative evaluation of CNN models.

Author (Year) Approach Sensitivity (%) Specificity (%) Accuracy (%)

Potes et al. [25] (2016) AdaBoost and CNN 94.24 77.81 86.02

Tschannen et al. [26] (2016) Wavelet-based CNN 81.2 84.8 77.6

Rubin et al. [13] (2017) CNN 72.78 95.21 83.99

Wu et al. [27] (2019) CNN 86.46 85.63 86.00

Fen et al. [12] (2020) CNN 87.00 86.60 84.98

Ours CNN 93.32 83.00 91.00

6. Conclusions

Detecting cardiac abnormalities through cardiac sounds is a method that has been
proven after a long period of research. However, since auscultation is a method that relies
on human senses, it has some drawbacks. For example, different doctors have different
auscultation skills, so sometimes the diagnosis is unreliable. Recently, studies have been
conducted to diagnose cardiovascular diseases based on deep learning to compensate for
this. In this paper, we proposed a preprocessing method for better deep learning training.
In data generalization, we used an appropriate peak processing algorithm to generate
uniform forms of data. Data augmentation solved the problems of an insufficient amount
of data and the imbalance of pathologic heart data, which are difficult to obtain. The
proposed method improved the accuracy of auscultation and demonstrated performance
improvements through accuracy comparisons in the basic CNN network. Furthermore,
performance improvement can be expected when applied to other deep learning networks.
The proposed method showed an improved detection success rate for unhealthy heart
sounds. It is considered that this could be applied to an automatic diagnosis system.
Therefore, if the heart sound can be acquired, it will help to detect patients quickly and
prevent cardiovascular disease through early detection. In particular, it would be useful in
areas where medical services are scarce.

In future work, we will apply better noise reduction and signal processing methods to
obtain the ideal cardiac signal. In addition, studies will continue to diagnose various heart
diseases that are not simply normal or abnormal.
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