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Abstract: Video object detection still faces several difficulties and challenges. For example, the
imbalance of positive and negative samples leads to low information processing efficiency, and
detection performance declines in abnormal situations in video. This paper examines video object
detection based on local attention to address such challenges. We propose a local attention sequence
model and optimized the parameter and calculation of ConvGRU. It could process spatial and
temporal information in videos more efficiently and ultimately improve detection performance under
abnormal conditions. The experiments on ImageNet VID show that our method could improve
the detection accuracy by 5.3%, and the visualization results show that the method is adaptive to
different abnormal conditions, thereby improving the reliability of video object detection.

Keywords: video object detection; local attention; sequence model; ConvGRU

1. Introduction

Object detection is a fundamental problem in computer vision and has been widely
used in the fields of surveillance, robots, medical intelligence, etc. In recent years, with the
rapid popularization of deep convolutional networks, many scholars have also conducted
much research on object detection algorithms based on deep convolutional networks [1,2],
which has greatly improved the performance of image object detection. In 2013, Girshick
proposed R-CNN [3], which used a deep convolutional network to achieve object detection
for the first time, and the mAP index on the VOC dataset was approximately doubled when
compared to traditional detection methods. Subsequently, Ren proposed Faster R-CNN [4]
and designed a region proposal network to extract candidate regions, which improves the
detection accuracy and greatly reduces the detection running time. However, the speed of
the two-stage detection model based on R-CNN is low. Redmon proposed the YOLO [5]
detection framework in 2015, which rasterizes images and predicts the object category and
bounding box for each grid at the same time.

Applying such image-based object detectors to the domain of videos, however, is often
unsatisfactory due to the deteriorated appearance caused by issues such as motion blur,
out-of-focus camera, and rare poses frequently encountered in videos. These problems
cannot be effectively solved by relying only on static images. The video can provide
context and temporal information containing multiple frames of images. Combining this
information can solve the above problems more effectively. Existing methods that leverage
temporal information for object detection from videos usually use optical flow to propagate
high-level features across frames. Extra optical flow models, e.g., FlowNet [6,7], have to be
utilized to establish motion information and achieve better performance, which leads to
excessive model parameters and calculations that are not conducive to model deployment.
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In addition, the optical flow models establish motion information between local pixels, and
it is difficult to model the continuity between high-level semantic features.

Instead of relying on optical flow, we propose an innovative video object detection
model based on local attention. Specifically, we design the spatial attention module and
local attention sequence model to improve video object detection accuracy and modify
ConvGRU (convolutional gated recurrent units) [8] to process video context and temporal
information in order to improve object detection reliability.

We conducted extensive experiments on ImageNet VID for video object detection.
Our results outperform the original method in accuracy and achieve real-time detection in
the same time duration.

In summary, our contributions are as follows:
We introduce a novel video object detector based on local attention to establish the

spatial and temporal correspondence across frames without extra optical flow models.
We propose a spatial attention module and local attention sequence module and mod-

ify ConvGRU to model spatial and temporal appearance and enhance feature representation.
We conduct experiments on ImageNet VID and achieve improved performance.

2. Related Work
2.1. Image Object Detection

Existing state-of-the-art methods for image object detection mostly follow two
paradigms, that is, two-stage and single-stage pipelines. A two-stage pipeline consists of
region proposals, region classification, and location refinement. Girshick proposed the
R-CNN [3] detection framework, which extracts image features through a convolutional
network. Subsequently, Ren proposed Faster R-CNN [4], designed an RPN network based
on a convolutional network, and introduced multi-scale anchor boxes to extract candidate
regions with higher confidence. Lin proposed FPN [9] to detect objects on a multi-stage
feature map. Comparing to two-stage detectors, single-stage methods are faster but less
accurate. Redmon proposed YOLO [5], predicting the categories and bounding boxes
on each grid simultaneously. Liu proposed SSD [10], which uses anchors on the feature
maps of different depths of deep convolutional networks and then obtains categories and
bounding boxes through convolution operations on each layer of the maps. Lin proposed
focal loss [11] function to address the imbalance of easy and hard examples. In this paper,
we use YOLO as our base detector.

2.2. Video Object Detection

The T-CNN [12] framework designed the multi-context suppression module and
motion-guided propagation module to process context and motion information between
adjacent frames and combine tracking algorithms in order to improve the classification
accuracy of detection sequences. The Seq-NMS [13] algorithm only incorporates video
temporal information in the post-processing operation of image object detection and can
significantly improve the performance of video object detection through simple expansion.
Zhu designed the FGFA [14] framework, which uses an optical flow model at the feature
map level to estimate the motion information between adjacent frames. By combining
motion information and adjacent frame features to improve the feature response of the
current frame to obtain higher quality detection results, the FGFA framework effectively
improves the detection effect of video frames affected by motion blur. However, the content
of only part of the key frames in the video shows great changes, and the other adjacent
frames have a high degree of correlation. It is not necessary to perform feature fusion
on each frame of image. Thus, Zhu [15] only uses the deep convolutional network to
extract image features in key frames and combines the optical flow network to fuse the
motion information between key frames, while the features of non-key frames are obtained
by updating the features of the motion part based on the previous key frame features
according to the optical flow network. At the same time, the selection of key frames is
adaptively decided based on the quality of the feature map, which steadily improves the
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detection performance and runs efficiently. Liu [16] combined the ConvLSTM [17] module
at the SSD detection feature map level to process spatial and temporal information at the
same time and obtained features with higher timing consistency and quality, allowing for
improved detection performance. Xiao designed the spatial temporal memory nodule [18]
to achieve video object detection. STMM and ConvLSTM are similar and use a two-way
recurrent network to process the information of the preceding and following frames at the
same time.

2.3. Self-Attention

Self-attention is a mechanism first introduced in [19] for machine translation. Jaderberg
proposed spatial transformer networks [20], which implement global scaling, rotation,
and other transformations on the feature map, enabling the network to have invariance
of scaling, rotation, and other transformations. Hu proposed a squeeze-and-excitation
network [21]. By modeling the correlation between the channels in the convolution feature
map, each channel was assigned a different importance weight, thereby recalibrating
different channel features. Through this channel domain attention mechanism, the network
can combine global features to learn to select and improve features that have a more
important impact on the current target and suppress less important features, thereby
improving the efficiency and performance of the network. He Kaiming proposed non-
local neural networks [22], drawing on the method of non-local means filtering in image
processing, using the weighted sum of all location features to represent the feature response
of the location so as to model long-distance feature dependence.

3. Kinematic Control of CDHRM
3.1. Overview

In order to make more effective use of the temporal information in the video, the
video object detection framework based on local attention is as shown in Figure 1. Given a
video, each frame is first processed by a CNN like DarkNet53 [23] to extract features. This
is followed by the YOLO detector to predict multi-scale object categories and bounding
boxes. Aiming at reducing the imbalance of positive and negative samples, we propose
the spatial attention module to classify foreground objects on multi-scale feature layers.
The local attention sequence model is used after the spatial attention module to obtain
the distribution of spatial attention with temporal consistency, thereby improving the
performance of video target detection. We also modify ConvGRU to effectively establish
the temporal information across frames, providing higher quality features for the followed
detector. In the following sections, we describe in detail the proposed spatial attention,
local attention, and modified ConvGRU.

3.2. Spatial Attention

The spatial attention module obtains the distribution of spatial attention by modeling
the correlation of features at various positions in space and instructs the model to pay more
attention to the areas of the feature that can perform subsequent tasks more effectively.
As shown in Figure 2, in order to obtain the spatial attention distribution, firstly, the
maximum feature response and the average feature response in each grid of the feature
map are obtained through max pooling and average pooling operations. Then, these two
features are stitched together, and a small convolutional network is used to model the
feature correlation in its local area. Following this, the attention distribution of each area is
obtained on this basis. Finally, the attention distribution and the original feature map are
multiplied in the spatial dimension to strengthen the more noteworthy regional features,
and the remaining unimportant regional features are suppressed.
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Figure 2. Spatial attention module.

Formally, let F and F′ be the original feature map and spatial attention feature map,
respectively. After obtaining the maximum and average feature response, we use a small
convolutional network to compute the distribution of spatial attention as

Favg = AvgPool(F)
Fmax = MaxPool(F)
F′ = F⊗ σ

(
W2g

(
W1

[
Favg; Fmax

])) (1)

where W1 and W2 are the parameters of the two-layer convolutional network with 3 × 3
kernel size. Function g represents the ReLU (rectified linear unit) activation function, and
σ represents the sigmoid activation function.

3.3. Local Attention Sequence Model

The distribution of spatial attention changes with time and has a certain continuity,
and optical flow networks are usually used to establish motion information. However,
this requires the introduction of additional deep convolutional networks such as FlowNet,
leading to excessive model parameters and calculations, which is not conducive to model
deployment. In addition, the optical flow network establishes local pixels corresponding
to motion information, and it is difficult to model the continuity between high-level
semantic features. Since the motion between adjacent moments occurs more in the local
domain, we design the local attention sequence model, focusing on the small-range motion
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information in the local domain, so as to establish the temporal consistency of the spatial
attention module.

Specifically, the local attention sequence model can be formulated as follows: The
first step is to achieve the aligned distribution of spatial attention by aggregating the
corresponding feature cells with correspondence weights. Given two adjacent frames
Ft and Ft−1, we first compute the affinity between two feature cells at various positions.
Then, we compute the normalized correspondence weights in the local area. Finally, we
compute the weighted sum of the corresponding feature cells in the local area as the aligned
distribution as

Cx,y(i, j) = Ft(x, y) · Ft−1(x + i, y + j)

Tx,y(i, j) =
exp(Cx,y(i,j))

∑
a,b∈{−k,...,k}

exp(Cx,y(a,b))

Ât(x, y) = ∑
i,j∈{−k,...,k}

Tx,y(i, j) ·At−1(x + i, y + j)

(2)

where Cx,y represents the affinity matrix. Tx,y represents the correspondence weight matrix,
and it is restricted in the sub-region with stride k. Ât represents the aligned distribution of
spatial attention.

After achieving the aligned distribution of spatial attention, a small neural network,
named the update network, is devised to fuse two distributions adaptively, with the goal
of incorporating the temporal context of videos. As shown in Figure 3, the update network
takes the concatenation of two distributions to obtain an adaptive weight through a single
convolutional network. Then, we compute the weighted sum of the two distributions as
the final distribution.
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3.4. Modified ConvGRU

Video object detection has a high demand for real-time performance. We introduce
ConvGRU to establish video temporal information. However, ConvGRU has a large
amount of parameters and calculations, which seriously affects the efficiency of the model.
Therefore, we modify the traditional ConvGRU and optimize its parameters and calculation
so as to improve the video object detection performance without excessively increasing the
running time.

The network details of the modified ConvGRU are shown in Figure 4. First, a con-
catenate layer is used to connect the input state Xt and the hidden state Ht−1, which can
make full use of the spatial and temporal information. However, it also causes the feature
dimension to be expanded by 2 times. Therefore, 1 × 1 convolution is used to compress
the feature dimensions in order to reduce the calculation amount of subsequent modules,
and, then, the design of grouped convolution [24] is adopted to optimize the parameters
and calculation.
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Formally, let X and H be the current feature map and the hidden feature map, respec-
tively. Here we use ReLU6 as the activation function to make the gating unit activation
sparse so that more unimportant historical information will be forgotten. We establish the
temporal information as

X̂t = W1 ∗ [Xt, Ht−1]
Zt =

1
6 ReLU6

(
Wz ∗ X̂t

)
Rt =

1
6 ReLU6

(
Wr ∗ X̂t

)
M̂t = W2 ∗ [Xt, Rt �Ht−1]

Ĥt = ReLU
(
Wh ∗ M̂t

)
Ht = W3 ∗

(
(1− Zt)�Ht−1 + Zt � Ĥt

)
(3)

where Z and R represent the update gate and reset gate, respectively; [x,y] is the concate-
nate operation; ∗ is the convolution calculation; and � is the matrix element multiplication.
W1∼3 represents 1 × 1 convolution parameters, and W{z,r,h} represents grouped convo-
lution parameters. The gating unit activation function uses the ReLU6 function, which
makes the gating unit activation sparse, allowing more unimportant historical information
to be forgotten.

4. Experiments
4.1. Dataset and Setup

We evaluated our framework on the ImageNet VID [25] dataset, which contains objects
of 30 classes with fully annotated bounding boxes. Experiments were based on the PyTorch
framework to implement the video object detection model on the basis of local attention.
The hardware environment of the training server is Intel Xeon (Skylake) Platinum 8163
2.5 GHz CPU, 32 GB DDR4 memory, NVIDIA V100 16 GB GPU.

The video object detection model training consisted of two stages: first, images were
used to train the object detection network that did not contain the sequence model, and,
then, the sequence model was introduced to train using video sequences. We used data
enhancement with random scaling and cropping, and it was controlled within 1/5 of the
image size. The exposure and saturation of the image were randomly adjusted, controlled
within 1.5 times on the HSV color space, and finally horizontally flipped randomly with a
probability of 50%. During training, we used an SGD optimizer, the momentum coefficient
was 0.9, the batch size was 64, the initial learning rate was 0.001, and the weight decay rate
was 0.0005. Furthermore, using the warm-up strategy, the learning rate linearly increased
from 0.0001 to the initial learning rate in the first 2000 iterations, and then, the learning rate
decreased by 10 times at the 40,000th iteration, giving a total of 60,000 iterations.
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4.2. Results

We compared our methods with the original YOLO method for video object detection.
The results are shown in Table 1, where mAP is the mean average precision metric, P is the
precision score, and R is the recall score. F1 = 2*P*R/(P + R).

Table 1. Performance of our method on ImageNet VID.

mAp P R F1 Airplane Antelope Bear Bike Bird Bsus

YOLO 33.77 48.03 28.55 35.81 36.62 11.46 22.62 36.93 31.97 56.55
LA 35.57 55.23 29.43 38.4 70.28 25.34 15.22 42.06 41.35 47.95

car cattle dog cat elephant fox panda hamster horse lion lizard monkey

20.34 46.66 8.26 48.47 29.98 47.34 44.85 79.73 55.04 3.99 5.19 0.65
21.92 40.02 3.68 35.99 26.53 50.33 50.01 83.36 44.45 1.95 14.93 0.78

moto rabbit redpanda sheep snake squirrel tiger train turtle boat whale zebra

55.48 10.57 10.47 70.11 20.14 0.3 15.77 93.81 34.74 63.91 13.42 37.82
49.16 13.03 18.74 71.27 25.31 0.54 17.56 89.73 38.01 72.37 21.15 34.11

Through the comparison of experimental results, the following conclusions can be
drawn: (1) The video target detection based on the local attention sequence model pro-
posed in this section can effectively improve the performance of video target detection.
(2) Compared with single-image target detection, mAP is increased by 1.8 points after the
introduction of the sequence model, which is a relative increase of 5.3%.

In order to further understand the improvement of the reliability of video object
detection by introducing the local attention sequence model, we randomly selected some
video object detection results, as shown in Figure 5. It can be seen from the comparison of
the results that the video object detection model after the introduction of the local attention
sequence model can better solve the difficult detection problems caused by the occlusion of
the object movement process in the video, posture transformation, and the blurring caused
by camera movement.

4.3. Ablation Study

We conducted an ablation study on ImageNet VID to validate the effectiveness of
the proposed modules. The results are shown in Table 2, where mAP is the mean average
precision score, time represents the inference time, FLOPs is the calculation of the module,
and Parameters represents the number of module parameters.

By comparing the results of ablation experiments, the following conclusions can be
drawn: (1) Modified ConvGRU and local attention sequence models can improve the
performance of video target detection. (2) Compared with the traditional ConvGRU, the
improved ConvGRU increases the amount of parameters and calculations to a lesser extent,
with relative increases of 17.3% and 9.5%, respectively, which are equivalent to 24.8% and
30.3%, respectively, of the traditional ConvGRU, and the model accuracy is basically the
same. (3) By contrast, the improvement of the performance of ConvGRU is more obvious.
mAP increased by 1.09, a relative increase of 3.2%, and the local attention sequence model
increased mAP by 0.69, a relative increase of 2.1%. (4) However, the numbers of parameters
and calculations added to the local attention sequence model are relatively small, increasing
by 1.4% and 3.1%, respectively. (5) Using the modified ConvGRU and local attention
sequence model at the same time can improve the performance more obviously, as mAP
increased by 1.8 with this method. We randomly select some illustration results of the local
attention as shown in Figure 6.
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Table 2. Ablation results.

YOLO

ConvGRU X
Modified ConvGRU X X

Spatial & Local Attention X X

mAP 33.773 35.026 34.867 34.467 35.571
time/ms 4.731 6.701 5.636 5.019 5.882
FLOPs/G 0.39 0.512 0.427 0.402 0.439

Parameters/M 1.013 1.718 1.188 1.027 1.202

5. Conclusions

In this paper, we examined the video object detection technology that integrates local
attention, mainly focusing on three aspects: (1) we designed a spatial attention module to
improve the efficiency and accuracy of object detection; (2) we designed a local attention
sequence model to process video context and temporal information more efficiently and to
solve the problem of low abnormality detection performance in videos; (3) we modified
the ConvGRU to more effectively establish temporal information, thereby improving the
quality of the video features. We conducted ablation studies on ImageNet VID to examine
the effectiveness of our framework in video object detection. The proposed framework
achieved 35.57% mAP on ImageNet VID. However, there remains a lack of studies focusing
on this topic, and there are similar areas worthy of further research, such as combining
video key frames for calculation optimization and introducing additional supervision
signals to improve the accuracy of attention distribution.
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