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Featured Application: Tendon release surgery (TRS) improved the control of total leg stiffness-
sharing between the lower limbs and the bilateral symmetry in leg stiffness in children with
diplegic CP, suggesting that an analysis of the symmetry in bilateral leg stiffness and stiffness-
sharing will be useful for a more complete gait assessment in such patient group.

Abstract: Impaired motor control and musculotendon tightness in the lower extremities are char-
acteristic features of patients with diplegic cerebral palsy (CP). Tendon release surgery (TRS) helps
improve joint and leg stiffness, but the effects of TRS on inter-limb coordination in terms of the total
leg stiffness, and the bilateral symmetry in leg stiffness during gait, remain unknown. Ten children
with spastic diplegic CP scheduled for TRS and ten healthy controls participated in this study. The
inter-limb sharing of total leg stiffness during double-limb support phase and bilateral leg stiffness
symmetry during stance phase of gait were calculated using the kinematic and ground reaction force
data measured by a motion analysis system. Before TRS, the patients with diplegic CP walked with a
decreased share of total leg stiffness during weight-acceptance (p < 0.05) and with increased bilateral
leg stiffness asymmetry during single-limb support and weight-transfer during gait (p < 0.05) when
compared to healthy controls. After TRS, the bilateral leg stiffness asymmetry was significantly
reduced in the CP group, especially in the terminal stance phase, with inter-limb sharing of total leg
stiffness becoming similar to that in controls (p > 0.05). The surgery seemed to improve the lower
limb control and increased the bilateral limb symmetry during gait.

Keywords: cerebral palsy (CP); gait analysis; leg stiffness; inter-limb sharing; symmetry

1. Introduction

Spastic diplegic cerebral palsy (CP) is characterized by impaired motor control on
both sides of the body with shortened or improperly developed muscles, and impaired
joint movement in both lower extremities [1–6]. These impairments impact directly on
the body’s mobility and stability throughout the gait cycle [7], not only for body-weight
support during single-limb support (SLS), but also for body-weight transfer during double-
limb support (DLS). In particular, during DLS, both limbs are on the ground, forming
a closed kinetic chain. Thus, well-coordinated joint controls, both intra- and inter-limb,
are needed for smooth and stable body-weight transfer and balance control during gait.
Since the lower limbs exchange the roles of leading and trailing limbs between DLS phases,
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bilateral symmetry of the lower limb kinematics and kinetics is essential for walking.
Tendon release surgery (TRS) lengthens the affected muscle-tendon unit to treat the motor
dysfunctions and has been shown to help improve ranges of motion of lower limb joints
during gait in children with spastic diplegic CP [8–11]. Evaluation of the efficacy of the
TRS on the inter-limb coordination and bilateral symmetry in body-weight transfer and
balance control during CP gait is needed.

Motion analysis technologies have been used to identify the deviations of pathological
gait, as well as treatment effects on the affected limb during different phases of gait [8–11].
Generally, deviations in CP gait involve complex interactions of the lower limb joints
that are affected by factors such as muscle tightness, bony deformity and impaired motor
control. Evaluating the disease progression and treatment efficacy in terms of deviations
of individual joints can be very challenging [12], especially when attempting to identify
the between-limb interactions. Thus, very few studies have examined how the lower
limbs coordinate with each other for the observed gait patterns, especially during weight
transfer between limbs in DLS. Previous studies have shown that leg stiffness, incorporating
information of both the kinematics and kinetics of the lower limb joints, is a useful measure
and should be included in future clinical gait analysis for a more complete assessment of
gait in children with CP [13–15]. For assessing the effects of pathology and the efficacy of
TRS on the inter-limb coordination and bilateral symmetry in body-weight transfer and
balance control during CP gait, quantitative analysis of leg stiffness during the phases of
gait for both limbs can be a useful approach.

The control of the lower limbs as a whole in supporting the body during gait can be
modeled as a mass-spring system with a point body-mass supported by the leg simulated
as a non-linear spring. To support the body against collapse and to meet the demands of
movement during the stance phase of gait, the stiffness of the spring (called leg stiffness)
can be controlled by changing the joint torques provided by the musculotendinous units
(i.e., net internal moments) and thus the skeletal alignment of the lower limb. The changes
in the leg stiffness describe the modulation of the motions and joint loads of the lower limbs,
and thus are useful in assessing pathology and treatment efficacy [15–17]. For example, leg
stiffness has been used to study the effects of disease on the control of the lower limbs as a
whole during walking [15–17], and the efficacy of treatment in children with CP, showing
unaltered leg stiffness but significantly decreased joint stiffness at the hip and knee after
TRS [13]. The improvement in the joint kinematics and kinetics of the lower limb may either
change the coordination between limbs (change of biomechanical condition) or remain
unchanged (maintain walking habits), which are not easily revealed through traditional
gait analysis variables. Quantifying the inter-limb sharing during DLS phases of gait and
bilateral symmetry of the total leg stiffness will be useful for assessing the overall effects of
TRS on gait performance and lower limb control in children with diplegic CP. However, no
such study has been reported in the literature.

The purposes of this study were to quantify the inter-limb sharing and bilateral
symmetry of the total leg stiffness during gait in children with diplegic CP, and to identify
the changes of such features of total leg stiffness before and after TRS. It was hypothesized
that the CP group would show altered inter-limb sharing of total leg stiffness with bilateral
asymmetry during weight-transfer during gait, which would be improved to be similar to
controls after TRS.

2. Materials and Methods
2.1. Subjects

Ten boys with spastic diplegic cerebral palsy (CP group, age: 10.3 ± 5.7 years; height:
123.8 ± 24.8 cm; mass: 30.0 ± 15.0 kg) from the outpatient orthopedic clinic, and ten healthy
controls (Control group, age: 11.2 ± 2.5 years; height: 142.3 ± 12.6 cm; mass: 35.2 ± 9.4 kg)
were recruited between August 2016 and July 2019 to participate in the current study.
Informed written consent signed by the subject and his legal guardians was obtained from
all subjects, as approved by the Institutional Review Board. A subject was included in
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the CP group if he was graded I–III in the Gross Motor Function Classification System
(GMFCS) with moderate to normal muscle strength and mild to normal muscle tone and
was able to walk independently without an assistive device. A subject was excluded if he
had noticeable leg length discrepancy, serious muscle contractures, joint deformities, or any
other pathological conditions that might affect gait. Each subject in the CP group received
TRS on the gastrocnemius and hamstrings performed by a senior orthopedic surgeon
(T.M. Wang). The healthy controls were all free from any musculoskeletal, neurological
or cardiovascular disorders. Power analysis based on pilot results using GPOWER [18]
for the comparison of the leg stiffness for two-group independent t-tests showed that a
projected sample size of seven subjects would be needed for each group for a power of 0.8
and a large effect size (Cohen’s d = 0.88) at α = 0.05. Thus, ten subjects for each group were
considered adequate for the current study.

2.2. Experimental Protocol

In a gait laboratory, each subject walked at his preferred speed on a 10 m walkway
while wearing 39 retro-reflective markers placed on specific anatomical landmarks to track
the motions of the body segments [19]. The 3D trajectories of the markers were measured
at 200 Hz using an 8-camera optical tracking system (Vicon T-40, OMG, Oxford, UK), and
three forceplates (OR6-7-2000, AMTI, Watertown, MA, USA) were used to measure the
ground reaction forces (GRF) at 2000 Hz [20,21]. For subsequent analysis, data of six gait
cycles (three for each limb) were obtained from the Control group and from the CP group
before TRS and an average of ten months (±1 month) after TRS.

2.3. Data Analysis

For calculating the leg stiffness (KL), the lower limb was modeled as a non-linear
spring, connecting the center of pressure (COP) of the GRF and the hip joint center
(Figure 1). During walking, the varying KL was calculated as the gradients of the force-
deformation curve [15]. The total leg stiffness (KT) was then obtained as the sum of the leg
stiffness values of both sides, and the proportional share of the total leg stiffness (KS) by a
lower limb over time was calculated during the double-limb support phases of gait (i.e.,
loading response, LR, and pre-swing, PS) as follows (Figures 1 and 2):

Ks(t) =
KL(t)
KT(t)

× 100% (1)
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Figure 1. Definitions of the leg stiffness (KL) and total leg stiffness (KT). Fe(t) is effective GRF, Le(t)
is effective leg length and ϕ(t) is the angle between the longitudinal axis of the shank and the line
joining the COP to the center of the hip joint. KT is defined as the sum of KL of the left leg (KLL) and
KL of the right leg (KRL) (Adapted from [14]).
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The proportional share, KS(t), was then time-averaged over the double-limb support
phases of gait (i.e., LR and PS). The symmetry index (SI (%)) of bilateral KL was calculated
for each gait phase as follows:

SI = 2 ×
∣∣∣∣
∫

KLL(t)dt −
∫

KRL(t)dt∫
KLL(t)dt +

∫
KRL(t)dt

∣∣∣∣× 100% (2)

where KLL was the leg stiffness of the left leg, KRL was the leg stiffness of the right leg and
the integrations were over the subphases of loading response (LR or initial DLS), mid-stance
(MS), terminal stance (TS) and pre-swing (PS or terminal DLS) (Figure 2). While an SI of
zero indicated perfect bilateral symmetry, the greater the SI value, the greater the bilateral
asymmetry in leg stiffness. Temporal-spatial parameters were also obtained, namely gait
speed (normalized to leg length), cadence, stride time, stride length (normalized to leg
length) and step width.

2.4. Statistical Analysis

Independent t-tests were performed to compare the variables between Control and
CP groups, before TRS (Control vs. Pre-OP) and after TRS (Control vs. Post-OP). Paired
t-tests were used to compare variables of the CP group between Pre-OP and Post-OP. A
significance level of 0.05 was set for all the tests. All the statistical analyses were performed
using SPSS version 20.0 (SPSS Inc., IBM, Armonk, NY, USA).

3. Results

Before TRS, the CP group walked at significantly decreased speed with increased step
width when compared to Control. TRS tended to increase the gait speed in the CP group,
with significantly increased stride time and decreased cadence (p < 0.05) as compared to
Control (Table 1).

No significant differences in time-averaged values of KL and KT over LR and PS
were found between CP and Control (Table 2). In the healthy Controls, the limb shared
greater KT during LR than during PS (Figures 3 and 4a,b). Compared to Control, the CP
group showed significantly decreased KS during LR but increased KS during PS before
surgery (Pre-OP) (Table 2), resulting in similar KS between LR and PS within the CP group
(Figures 3 and 4a,b, Table 2). After surgery, the CP group showed significantly greater KS
during LR than during PS (Figures 3 and 4a,b, Table 2).

Compared to Control, the CP group showed significantly increased SI values during
MS, TS and PS phases before TRS (Pre-OP). Generally, TRS tended to reduce the SI values
during MS, TS and PS, reaching statistical significance for TS (Table 3). After TRS, no
significant differences in SI between Control and CP (Post-OP) were found throughout the
whole gait cycle (Table 3).
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Table 1. Means (standard deviations) of the gait temporal-spatial parameters for the CP group (Pre-OP: before surgery;
Post-OP: after surgery) and the Control group (Con).

Group Leg Length
(m)

Cadence
(Steps/min)

Normalized
Gait Speed

(m/s·m)
Stride Time (s)

Normalized
Stride

Length (m/m)
Step Width (m)

Con 0.74 (0.08) 120.4 (13.2) 1.22 (0.59) 1.01 (0.12) 0.73 (0.08) 0.10 (0.03)
Pre-OP 0.67 (0.12) 110.4 (27.4) 0.85 (0.31) 1.16 (0.29) 0.77 (0.22) 0.16 (0.07)
Post-OP 0.67 (0.11) 102.3 (15.5) 0.93 (0.19) 1.22 (0.21) 0.82 (0.20) 0.17 (0.08)

p (Con vs. Pre-OP) 0.12 0.31 <0.01 * 0.16 0.59 0.02 *
p (Con vs. Post-OP) 0.10 0.01 * <0.01 * 0.01 * 0.20 0.01 *

p (Pre-OP vs. Post-OP) 1.00 0.23 0.47 0.31 0.54 0.83

p (Con vs. Pre-OP): p-value between Pre-OP of CP group and Control. p (Con vs. Post-OP): p-value between Post-OP of CP group and
Control. p (Pre-OP vs. Post-OP): p-value between Pre-OP and Post-OP of CP group. *: significant difference (p < 0.05).

Table 2. Means (standard deviations) of the leg stiffness (KL) (N/m) and proportional share of total leg stiffness (% total
stiffness) during double-limb support in the CP group (Pre-OP: before surgery; Post-OP: after surgery) and the Control
group. LR indicates the loading response phase. PS indicates the pre-swing phase. Pp: p-values of differences in KS of a
limb between LR and PS. p: p-values of between-group differences.

Group KL (LR) KL (PS) Total Stiffness KS of LR Limb KS of PS Limb Pp

Con 16.2 (4.9) 8.6 (3.5) 24.8 (6.9) 65.3% (12.4) 34.7% (12.4) <0.01 !

Pre-OP 11.3 (8.9) 11.4 (9.8) 22.6 (17.6) 50.8% (14.6) 49.2% (14.6) 0.86
Post-OP 11.9 (7.3) 8.5 (4.9) 20.4 (12.0) 57.8% (8.2) 42.2% (8.2) 0.01 !

p (Con vs. Pre-OP) 0.14 0.41 0.71 0.03 * 0.03 *
p (Con vs. Post-OP) 0.14 0.96 0.33 0.13 0.13

p (Pre-OP vs. Pos-OP) 0.83 0.35 0.61 0.29 0.29

*: significant difference between groups. !: significant difference in KS of a limb between LR and PS.
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Table 3. Means (standard deviations) of the symmetry index (%) of bilateral leg stiffness during gait cycle for the CP group
(Pre-OP: before surgery; Post-OP: after surgery) and the Control group.

Group Load Response (%) Mid-Stance (%) Terminal Stance (%) Pre-Swing (%)

Con 66.7 (44.8) 16.2 (9.5) 17.9 (8.5) 27.3 (23.7)
Pre-OP 38.9 (38.7) 49.0 (37.7) 76.2 (41.1) 75.9 (54.7)
Post-OP 52.6 (45.3) 36.4 (30.9) 32.2 (20.1) 37.3 (26.3)

p (Con vs. Pre-OP) 0.15 0.02 * <0.01 * 0.02 *
p (Con vs. Post-OP) 0.49 0.06 0.05 * 0.38

p (Pre-OP vs. Post-OP) 0.48 0.42 0.01 * 0.09

p (Con vs. Pre-OP): p-value between Pre-OP of CP group and Control. p (Con vs. Post-OP): p-value between Post-OP of CP group and
Control. p (Pre-OP vs. Post-OP): p-value between Pre-OP and Post-OP of CP group. *: significant difference (p < 0.05).

4. Discussion

The current study aimed to quantify the inter-limb sharing of the total leg stiffness,
and the bilateral symmetry in leg stiffness, while supporting the body against collapse
during the stance phase of gait in children with diplegic CP before and after TRS. Before
TRS, the children with diplegic CP walked with a decreased share of total leg stiffness
during weight-acceptance and increased bilateral leg stiffness asymmetry during single-
limb support and weight-transfer during gait when compared to healthy Controls. The
asymmetry in bilateral leg stiffness was significantly reduced in the CP group, especially
in the terminal stance phase, with inter-limb sharing of total leg stiffness becoming similar
to that of Controls. The results supported the hypothesis that the CP group would walk
with improved, close-to-normal bilateral symmetry and inter-limb sharing of leg stiffness
after tendon release surgery.

Double-limb support (DLS) is the key feature of human walking as opposed to running,
enabling the body-weight transfer between the lower limbs for the subsequent single-
limb support and swing of the contralateral limb for continuous progression of the body.
Smooth and stable transfer of the body weight during DLS relies on the highly coordinated
kinematic and kinetic interactions of the lower limbs, the quality of which could be used
to evaluate the roles of the lower limbs in the control of the whole-body balance during
gait. During loading response (weight-acceptance), the CP group showed a significantly
decreased share of the total leg stiffness without a significant difference in the bilateral
leg stiffness symmetry before TRS when compared to the Controls. The healthy Controls
were expected to sustain greater stiffness and share of the total leg stiffness during weight-
acceptance than the CP group was, which could be beneficial for preventing collapse
when facing a sudden load during this phase of gait. However, the tightness of the
musculotendinous units in the CP group led them to walk with more flexed lower limbs,
and with an increased muscular effort (i.e., net internal joint moments) [15], which appeared
to contribute to the decrease in the total leg stiffness sharing in the weight-acceptance limb.
TRS increased the total leg stiffness sharing during loading response, which may be related
to previously reported benefits of TRS, including improvement of dynamic lower limb
alignment, impact absorption, smoothness of body-weight transfer with reduced energy
expenditure and improved endurance [22,23].

During pre-swing (weight-release), the task is to transfer the body weight from the
support limb to the contralateral limb. Before TRS, the CP group showed a significantly
increased share of the total leg stiffness and bilateral stiffness asymmetry when compared
to the Controls. These results suggest that the patients kept the body weight more on the
trailing support limb during pre-swing, showing a more cautious but less smooth pattern
of weight transfer to the contralateral limb. After TRS, the stiffness-sharing was decreased
and the transfer of the body weight to the leading stance limb became easier. The reduced
asymmetry also suggests improved muscle and joint conditions between limbs, as well as
overall gait improvement after TRS.
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During SLS, the TRS was found to improve the symmetry of bilateral leg stiffness,
which would help decrease the risk of collapse of the lower limbs when supporting the
body weight for dynamic balance during gait in the children with diplegic CP. Generally,
children with spastic diplegic CP showed reduced leg stiffness with increased joint stiffness
during SLS, which was related to the more flexed posture of the stance limb [15]. Vari-
ability of the degrees and severity of impairment of the muscles and joints often leads to
bilateral mechanical asymmetry in children with spastic diplegic CP. The TRS improved
the alignment and musculotendinous conditions of both the lower extremities, which in
turn improved the bilateral symmetry in leg stiffness.

The current study was the first attempt to quantify the effects of TRS on the inter-limb
sharing of the total leg stiffness during DLS and bilateral symmetry in the leg stiffness
throughout the gait cycle in children with diplegic CP. Further study may be needed to
test whether similar effects also exist in children with spastic hemiplegic CP. The gait data
of patients were collected before and an average of 10 months after surgery. Similar time
intervals post-surgery for gait analysis were also found in previous CP gait studies [24,25],
as muscle weakness due to surgery would normally resolve within 6–9 months [26]. Further
gait analyses at different time intervals post-surgery may be needed for a more complete
picture of how inter-limb sharing of the total leg stiffness and bilateral symmetry in leg
stiffness would change over time.

5. Conclusions

The modulation of the sharing of the total leg stiffness between the lower limbs during
DLS and the bilateral symmetry in leg stiffness throughout the gait cycle in children with
diplegic CP who had undergone TRS was revealed in the current study. Before TRS, the CP
group had greater stiffness-sharing in the weight-release limbs and asymmetry between
lower limbs during gait. The surgery seemed to improve their lower limb control and
increased the bilateral limb symmetry during gait. The current results suggest that an
analysis of the symmetry in bilateral leg stiffness and stiffness-sharing will be useful for a
more complete gait assessment in children with CP.
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