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Abstract: The creation of small-diameter tissue-engineered vascular grafts using biodegradable
materials has the potential to change the quality of cardiovascular surgery in the future. The
implantation of these tissue-engineered arterial grafts has yet to reach clinical application. One of the
reasons for this is thrombus occlusion of the graft in the acute phase. In this paper, we first describe
the causes of accelerated thrombus formation and discuss the drugs that are thought to inhibit
thrombus formation. We then review the latest research on methods to locally bind the anticoagulant
heparin to biodegradable materials and methods to extend the duration of sustained heparin release.
We also discuss the results of studies using large animal models and the challenges that need to be
overcome for future clinical applications.

Keywords: tissue-engineered vascular grafts; biodegradable material; anticoagulation; medication;
heparin; large-animal study

1. Introduction

More than 550,000 surgical bypass procedures are performed annually in the United
States for coronary artery disease and peripheral artery disease (PAD) [1]. However, an
estimated 80,000 patients are unable to undergo life-saving or limb-saving bypass graft
surgery due to the inadequate availability of autologous vascular graft material [2]. In
addition, vessel harvesting increases operation times and patient complications, leading
to graft fragility and increased risk of repeat surgery. Although these risks have been
addressed by prosthetic grafts, existing non-bioabsorbable options only work well in large
caliber vessels and are a significant source of morbidity and mortality from graft-related
complications such as infection, occlusion, and calcification [3–5]. For these reasons, the
development of small-diameter synthetic bioabsorbable grafts has been pursued as a viable
alternative solution.

2. Considerations

Several key challenges need to be overcome for small-diameter bioabsorbable grafts
to be successful. The first one is to resist thrombosis, while the second is to avoid intimal
hyperplasia. Before we dive more into these challenges, we will delve into the factors
that constitute scaffold fabrication. Afterwards, we will talk about how scaffolds relate to
these challenges. With respect to bioabsorbable grafts, electrospinning has been the most
prevalent means of fabricating a scaffold. This is because of electrospinning technologies’
ability to create fibers at a nanometer scale, which mimics a natural extracellular matrix
(ECM) [6–8]. An important point is that by controlling fiber size, scaffold porosity can also
be changed. It is crucial to understand that increasing graft porosity encourages cellular
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migration, adhesion, and remodeling onto the scaffold. However, increasing graft porosity
comes at the cost of losing mechanical properties and strength of the original scaffold [9].

Additionally, electrospinning is popular because of its ability to incorporate drugs,
growth factors, and helpful peptides into the scaffold [10]. These helpful graft modifiers
are often co-spun with various polymers during the scaffold fabrication process. Much has
been written about the polymers used in bioabsorbable grafts and their various fabrication
methods, so we will not go over them in much detail. The materials most often used are
PGA, PLA, and PCL [11]. Using these polymers individually, or as blends, can create a wide
range of mechanical properties and degradation periods. Additionally, these polymers
are the widely used because they have been approved by the FDA for numerous medical
applications, thereby making new device regulatory approval much simpler [12].

This brings us to our first challenge, that these graft materials have been susceptible to
thrombosis. Thrombosis is largely due to the surface charge of a given graft polymer, which
has little interaction with serum and allows for platelet deposition [13]. In general, graft
polymers are positively charged materials, whereas albumin, the most abundant blood
protein, and fibrinogen, a protein important for platelet-mediated blood clotting, both have
negative charges at blood pH [14]. This is a major problem, because when the opposite
charges of the material proteins attract, a coagulation cascade begins that often leads to
thrombosis [15].

Thankfully, material surface charge can be manipulated by chemical and/or cellular
modification. Although there are many approaches for chemical surface modification, the
binding of heparin continues to be the most widely used and promising method to prevent
thrombosis. The reason for this is that heparin has the highest negative charge density and
electrostatically repels a variety of blood proteins of similar charge. Conjugating heparin to
polymers effectively changes a scaffold’s surface from positive to negative. Static repulsion,
between heparin and these proteins, prevents albumin and fibrinogen from adhering to
the graft [16].

The second major hurdle is a graft’s ability to resist intimal hyperplasia (smooth
muscle cell (SMC) overgrowth) [17,18]. Heparin has so far been the best candidate in the
search for an anticoagulant to inhibit a graft’s SMC proliferative response while promoting
endothelial cell (EC) proliferation [19]. In fact, in vitro studies have shown that it inhibits
SMC, but enhances EC proliferation. However, in vivo studies have been inconsistent.
Heparin can be used directly as a coating inside of the graft (physical conjugation) or
indirectly via additional linkers or spacers (chemical/plasma conjugation). However, it is
not enough for heparin to be properly bound to the graft surface; it must be released in a
controlled manner at sufficient concentrations [20,21].

Unfortunately, heparin release profiles in bioabsorbable grafts are often characterized
by a large initial release of heparin, which we term as the initial burst. Often, very little
to no heparin remains on the scaffold after this initial burst. Therefore, investigators
are looking for ways to slow and control heparin release, which we term as heparin
immobilization. The success of the bioabsorbable material relies on the controlled release of
heparin. Satisfying the delicate balance between the time scale and the amount of heparin
released is a key factor for the success of bioabsorbable grafts.

3. Heparin Conjugation Methods
3.1. Physical Conjugation

Physical conjugation is generally the most inexpensive way to apply heparin to
bioabsorbable grafts. The three primary methods to physically conjugate heparin are: (1)
gas plasma; (2) straight mixing with sulfated biopolymers; and (3) coaxial electrospinning
(Table 1).

3.1.1. Gas Plasma Methods

There are several ways to anchor plasma-assisted heparin molecules to the scaffold
through the formation of desirable surface functionalities (e.g., –COOH and –NH2 surface
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groups). The most common way to attach–NH2 surface groups to biopolymers is NH3
plasma treatment [22]. Although plasma polymerization is an effective way to coat various
substrates with thin films, many coating precursors are usually highly toxic or cannot be
directly incorporated into standard plasma processing equipment.

Cheng et al. investigated a much less toxic gas plasma method, capable of imparting
appropriate surface functionalities to biopolymer surfaces for biomolecule immobilization,
and which could be easily applied to most plasma treatment devices [23]. Specifically, the
surface of electrospun fibrous scaffolds made of poly(lactic acid) (PLLA) was functionalized
with –NH2 groups using a two-step plasma treatment process: (1) argon and NH3 mixed
gas plasma treatment, and (2) H2 plasma treatment, to increase the density of surface-
conjugated sites for heparin immobilization. Their heparin-bound PLLA scaffolds were
evaluated by X-ray photoelectron spectroscopy (XPS), heparin binding measurements, and
platelet adhesion quantification. The results showed the potential of this plasma process,
but this method has not been validated in vivo [Table 1].
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Table 1. Bioabsorbable synthetic arterial graft–heparin conjugation methods.

Author Year Graft Material Graft
Diameter

Graft
Length

Heparin
Conjugation

Method

Heparin AntithromBotic
Testing Methods Patency Rate in Vivo Study Model

Ye et al., [24] 2012 PCL + VEGF 2 mm 4 cm Coaxial
electrospinning ELISA (VEGF), Cell density 4 weeks–100% Dog femoral

arteries

Wang et al., [25] 2013
P(LLA-CL)

+Autologus, EC
preendothelialization

4 mm 5–6 cm Coaxial
electrospinning

Toluidine blue- 25% in
7days: 90% released in 12

weeks
24 weeks–88.9% Canine femoral

arteries

Huang et al., [26] 2013 P(LLA-CL) 4 mm 5 cm Coaxial
electrospinning

Toluidine blue—50% in 1
days: 72% released in 14

days
3 months–75% Canine femoral

arteries

Hu et al., [27] 2017 P(LLA-CL) + Collagen
+ Elastin + VEGF 4 mm 1 cm Coaxial

electrospinning

Heparin and VEGF
cumulative released in 2

week, LDH assay
3 weeks–86% Rabbit infrarenal

aorta

Matsuzaki et al., [28] 2020
PCL electrospun +

PLCL sponge 5 mm 2 cm
Mixing Heparin

with sulfated
biopolymers

Toluidine blue–90% in 1
days: 99% released in

8 week–100%.
Maximum follow up 1

year

Ovine carotid
artery

2 weeks, LDH assay

Antonova et al., [29] 2020 PHBV/PCL-GF
mixHep/Ilo 4 mm 40mm

Hydrogel-coated
by

radiation-induced
graft

polymerization

- 1day 62.5% 50% in Ovine carotid
artery1 year post-operation.

Cheng et al., [23] 2014 PLLA - 5 mm Gel Plasma
methods

XPS, heparin binding measurements and platelet
adhesion quantification. Cell: Primary endothelial

cells (ECs), blood outflow endothelial cells (BOECs)
derived from endothelial progenitor cells (EPCs)

isolated from human peripheral blood, and smooth
muscle cells

In vitro study

Wang et al., [30] 2015 P(LLA-CL) 14 mm 10mm Covalent bonding Kinetic clotting time method, In vitro study
Cell: Pig iliac endothelial cells

Duan et al., [31] 2016 PCL+Collagen+Genipin - - Covalent bonding APTT, In vitro study
Cell: Endothelial cell, Smooth muscle cell

PCL: polycaprolactone, VEGF: vascular endothelial growth factor, PLLA: poly(L-lactic acid), EC: endothelial cell, PU: polyurethane, PEG: peptides coimmobilized graft, G:GRGDS, Y:YIGSR, PLCL: poly-l-lactide-
ε-caprolactone, ELISA: enzyme-linked immunosorbent assay, XPS: X-ray photoelectron spectroscopy, LDH: lactate dehydrogenase, EDC: 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride, NHS:
N-Hydroxysulfosuccinimide.
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3.1.2. Mixing Heparin with Sulfated Biopolymers

Conjugating heparin through gas plasma results in lower heparin bioactivity, drug
instability in high-pressured blood flow, and tissue toxicity [32]. The advantage of this
conjugation technique is that it can be adopted quickly and is inexpensive compared to
other methods. However, it has the disadvantage that heparin does not adhere to the
graft polymer strongly and/or uniformly, so the initial burst when exposed to blood is
unavoidable.

Matsuzaki et al., investigated dual-layered grafts made of an outer electrospun PCL
layer and inner PLCL sponge layer with heparin [28]. Heparin was dissolved and separated
by thermally induced phase separation (TIPS) to make a wet porous PLCL inner sponge
(Figure 1). In order to evaluate the amount of heparin conjugated to the graft and how it
affects platelet deposition, they activated sheep platelets in vitro and compared the extent
to which they deposited on the graft in the heparin group and control group. A comparison
was made using direct observation of the lumen by SEM and LDH assay methods for
quantitative evaluation [33]. The results showed that platelet absorption was significantly
suppressed in the heparin group. Heparin did not inhibit platelet aggregation; therefore,
we considered that heparin may have changed the charge on the luminal surface.
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Figure 1. Manufacturing process of heparin-eluting graft: (A) Heparin-eluting TEVGs were created with an outer poly-ε-
caprolactone (PCL) electrospun nanofiber layer with a 15 µm average pore Scheme 50. poly(l-lactide-co-ε-caprolactone)
copolymer (PLCL). SEM showed the inner heparin eluting layer; (B) Surgical implantation of TEVG to sheep carotid
artery, 3 out of 5 Control grafts were occluded within 1 week. On the other hand, heparin-eluting grafts were obvious
throughout the observation period; (C) Histological analysis of 15 µm TEVG and occluded control TEVG, red bar = 200
µm, grey bar = 500 µm. HE, heparin-eluting; TEVG, tissue-engineered vascular graft. Adopted with permission from
Shinoka et al.

They quantitatively examined the release of heparin using the toluidine blue method [34,35].
A large initial burst of heparin release occurred within 24 h. However, continuous, albeit
low, heparin release was observed for the next 14 days. They implanted this heparin graft
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in sheep carotid arteries and maintained patency for up to one year. The positives of this
method are that it is simple and cost-effective.

Liu et al., fabricated a tissue-engineered small intestine, using a subcritical CO2
exposure system to slowly release heparin-binding EGF-like growth factor (HBF-GF)
embedded in a PGA/PLLA scaffold. Heparin-binding EGF-like factor (HBF-GF) embedded
in PGA/PLLA scaffolds was successfully released slowly in an active form [36] and was
able to stimulate crypt growth in vitro and intestinal mucosa formation in vivo. A notable
aspect of this technique is that exposure to subcritical CO2 does not deform the scaffold
structure and does not impair its mechanical properties [37,38].

Matsuzaki et al., has also attempted to embed already-submerged heparin particles
deep into the scaffold by using subcritical CO2 exposure in the inner PLCL layer of our
dual-layered grafts. Furthermore, it was found that reducing the heparin burst in the
early stages in vitro increased the heparin release profile (Figure 2). This has the potential
to further improve graft patency by embedding to a deeper level with the addition of a
subcritical CO2 exposure technique. Future implantation using scaffolds larger than 5 cm
are needed.
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Figure 2. Subclinical CO2 technique for long-term sustained release of heparin. (A) Adaptation of subclinical CO2 exposure
for TEVG. (B) Scanning electron microscopy (SEM) of HB-EGF on the scaffold. (C) Long release profile. Adopted with
permission from Shinoka et al.

Antonova et al. have shown that polyhydroxybutyrate/valerate(PHBV)/polycaprola-
ctone (PCL) grafts modified with growth factors such as VEGF, bFGF, and SDF-1α (PHBV/
PCL-GFmix) performed well when implanted in the rat abdominal aortas [29]. Subse-
quently, they used a sheep model, which is considered to be more suitable for the in vivo
testing of cardiovascular implants [39]. They had expectations of a high incidence of
thrombosis in a sheep model; therefore, attempted to reduce the thrombogenicity of the
PHBV/PCL-GFmix grafts by combining heparin and iloprost on the surface of the grafts.
At the end of one year, 50% of the PHBV/PCL–GFmixHep/Ilo grafts were completely
patent, indicating that modification with heparin and iloprost can greatly improve the
performance of PHBV/PCL grafts in the experimental large animal models [40].

3.1.3. Coaxial Electrospinning Technique

Electrospinning technology is often used to create grafts that take into account a
variety of important properties of bioabsorbable synthetic grafts, such as degradation
rate, response to high-pressure environments (arteries), and cell infiltration rate. Among
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electrospun materials, synthetic or natural polymers such as PLLA, PCL, PGA, collagen,
fibrin gel, and chitosan are frequently used [41].

Coaxial electrospinning has been widely used to produce scaffolds with heparin
blends. Coaxial electrospinning (Figure 3) is an extension of regular electrospinning. It
can mix different materials in different ratios to produce core and shell fibers. The grafts
made by coaxial electrospinning also can cooperate with different drugs, proteins, and
cells. Furthermore, coaxial electrospinning has been shown to produce scaffolds that can
mimic the natural ECM in terms of fiber alignment and scaffold seamlessness [42].
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Coaxial electrospinning conjugation technology has been shown to inhibit thrombus
deposition associated with heparin-induced changes in the electrified environment of the
material, and at the same time, it has been shown to regulate SMC growth by adjusting
the fiber and pore diameters of the electrospun fibers while creating the graft. This is
considered to be superior to other physical conjugation methods [43]. In terms of materials,
PCL and PLLA are used as grafting materials because of their longer degradation period
and higher mechanical strength compared to other materials. In addition, poly(l-lactide-co-
ε-caprolactone) (P(LLA-CL)) copolymers are very popular among small-diameter arterial
graft blends [25]. Huang et al., compared P(LLA-CL) (50:50), endothelialized P(LLA-
CL) and heparinized P(LLA-CL) grafts in a canine femoral artery model. This group
used coaxial electrospinning with two syringes pumping 6% PLLA-CL and 12% heparin
solutions, respectively [26].
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The patency rate at day 7 for both pure P(LLA-CL) and endothelialized P(LLA-CL)
groups was 75%, while P(LLA-CL)/heparin was 100%. For pure P(LLA-CL) on day 14,
the endothelialized P(LLA-CL) was 25% when P(LLA-CL)/Heparin was 50%; the patency
rate for the P(LLA-CL)/Heparin group on day 30 was 25% compared to 0% for the other
groups. There was no endothelialization along the graft luminal surface in the P(LLA-
CL)/Heparin graft. The Cheng group similarly examined heparin-loaded grafts. However,
they were concerned that their combination might not be sufficient to maintain patency for
a longer time period, therefore they considered a blend of natural polymers. The synergistic
effects of combining P(LLA-CL) with natural polymers, vascular endothelial growth factor
(VEGF), and heparin encapsulation altered the graft lumen’s surface and had a marked
effect on surface endothelialization [23].

Other experiments using natural polymers include one recent study on a rabbit
infrarenal aortic model. They compared heparin/P(LLA-CL)/collagen/elastin, P(LLA-
CL)/collagen/elastin with VEGF, and ePTFE before endothelialization. The grafts were
prepared using P(LLA-CL) with heparin and VEGF. Heparin and VEGF had a synergistic
effect with each other for slower heparin release and longer VEGF bioactivity. The results
showed that the test group maintained a higher patency than the other control groups, and
the graft specimens at day 7 proved that endothelialization had occurred sufficiently by
using DAPI staining [26].

On the other hand, Wang’s group hypothesized that a certain P(LLA-CL) blend, a
blend of 60% PCL and 40% PLLA, could simulate native ECM and found that it could
mimic natural blood vessels without the addition of natural materials [26]. They conducted
an in vivo study by implanting heparin pre-endothelialized P(LLA-CL) grafts into canine
femoral arteries. Heparin was conjugated by coaxial electrospinning as in the other group,
but they employed a higher heparin solution concentration of 25%. Their heparin-bound
graft was more than 85% patent compared to 37.5% patent for the control PLLA-CL after
24 weeks. They also noted that heparin binding to P(LLA-CL) decreased the maximum
scaffold tensile strength and initial burst of heparin release, while increasing its elasticity
and suture retention [30].

Not only is P(LLA-CL) useful, electrospun PCL also has its uses: Luong-Van et al.
suggest that among the many bioabsorbable materials, PCL electrospun fibers can be
used to increase the amount of release. Specifically, an 8% w/v solution of heparin in
polycaprolactone (PCL) was spun with 7:3 dichloromethane:methanol to produce fibers
with a smooth surface [44]. The sustained release of heparin was confirmed by fluorescent
labeling, and after 14 days, about half of the encapsulated heparin was released from the
heparin/PCL fiber by diffusion control, indicating good, sustained release. Duan et al.
fabricated tubular vascular tissue engineering scaffolds with fibers in a core-shell structure
using a coaxial electrospinning method with an appropriate flow ratio of inner and outer
solutions. PCL was used as the core to give the scaffold mechanical properties and integrity,
and collagen was used as the shell to improve vascular cell attachment and proliferation
due to its excellent biocompatibility [31].

Furthermore, the functional inner layer using a coaxial electrospinning technique is
expected to prevent the acute thrombosis of non-bioabsorbable materials such as ePTFE
and promote rapid endothelialization of artificial vascular grafts. Based on this finding,
salvianolic acid B (SAB) promotes the proliferation and migration of endothelial cells.
Kuang et al., fabricated the inner layer of an artificial graft using coaxial electrospinning
and loaded it with heparin and SAB [45]. Kim et al. reported that in situ implantation
of ePTFE grafts coated with heparin/substance P-conjugated PLCL could ensure long-
term patency by forming a proper endothelial layer and smooth muscle cells in the graft,
resembling a native artery [46].

Based on the above, physical heparin conjugation can change a graft lumen’s surface
charge and solve the problem of early thrombosis. However, there are few reports on their
effect in long-term animal studies.
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Physically conjugated heparin grafts may be pretreated first or blended with nat-
ural polymers to promote EC adhesion and proliferation. Furthermore, bioabsorbable
materials with heparin could be used to increase the biocompatibility of existing non-
bioabsorbable materials. Future reports in long-term large animal studies on the efficacy of
grafts physically conjugated with heparin are awaited.

3.2. Chemical Conjugation

This section describes how to chemically conjugate heparin to bioabsorbable materials.
Ionic and covalent bonding reactions are the main methods used for chemical conjugation.
Chemical immobilization of heparin on an ionized surface provides long-term stability
of the drug. This has also been reported to be a very efficient and affordable approach.
However, it has also been suggested that this method may be complicated due to multi-step
coating and repeated cleaning and drying of the inner luminal membrane.

3.2.1. Covalent Interaction

Heparin which is covalently bonded to surfaces has been proven to last longer than
electrostatically bonded heparin. Covalent bonding of heparin is the best option to solve
the problem of burst release. Additionally, this approach promotes resistance to mechanical
forces at the blood and luminal surface interface [45].

However, the carboxyl groups present on heparin molecules contribute to the drug’s
mobilization, which limits binding to proteins and may reduce its anticoagulant properties.
The lack of heparin bioactivity may be due to ineffective immobilization methods. Heparin
conjugated with covalent or ionic bonds is not easily removed by water rinsing, but it has
also been suggested that heparin may be depleted over time in the presence of blood flow,
exposing a surface without anticoagulant [47].

Chemical conjugation of heparin can be achieved using covalent cross-linkers between
the carboxyl groups in the heparin molecule, and amino covalent heparin immobilization
to scaffolds is often intended to mediate the addition of growth factors via electrostatic in-
teractions between heparin and the added protein (growth factor such as VEGF) (Figure 4).

With the addition of growth factors, heparin not only exhibits a sustained release
profile (details in the next section), but also the highest activated partial thromboplastin
time (APTT) to date, with a reported synergistic effect of sustained growth factor release
rate and no burst release for up to three weeks. As mentioned in the previous section, the
negative charge of heparin may inhibit the fibrinogen adsorption [24].

Ye et al., hypothesized that increasing the hydrophilicity of heparinized electrospun
PCL scaffolds and negative charge of heparin may inhibit the fibrinogen adsorption [27].
In vivo studies in a canine model have shown that their heparin-containing scaffold remains
patent after one month, and a nearly confluent layer of ECs was observed in the graft
lumen. The high cytocompatibility of the scaffolds may be attributed to heparin molecules,
possibly promoting cell adhesion and proliferation by entrapping VEGF in the blood. As
also mentioned in physical conjugation, it is possible to exploit the flexibility and structural
integrity of PLLA and PLCL polymers to fabricate heparinized nanofibers [34]. Recently,
the Wang group prepared various P(LLA-CL) blends using the TIPS method, and then
conjugated them with heparin using carbodiimide chemistry/EDC/NHS, which utilizes
the esterification reaction between the terminal hydroxyl groups of PLLA and PLCL and
the carboxyl groups of heparin molecules (Figure 3) [48].
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In another study, VEGF was covalently bonded to hydrophilic heparin molecules. The
VEGF–heparin molecules were then coaxially electrospun with P(LLA-CL) as the shell, and
then combined to a collagen–elastin core material [31]. Heparin had an initial burst release
causing a cumulative release of 48% on day one, although it continued to be released for
22 days; they concluded that the burst release of VEGF and structures in collagen may be
the reason for the rapid growth of seeded endothelial cells. There is also an innovative
method that uses photopolymerization reactions, which are part of covalent bonding.

Heparin-functionalized bioabsorbable microspheres and nanoparticles have been
widely reported for the delivery of several growth factors such as basic fibroblast factor
(bFGF) and vascular endothelial growth factor (VEGF) [49–51]; in these nanostructures,
the development of nanosponge technology is remarkable. Nanosponges refer to a class
of nanomaterials with nanoporous structures and excellent absorption/composite proper-
ties. Various “nanosponges” based on organic/polymeric and inorganic materials been
reported [52–56]. These have high volume expansions in addition to being porous [57].
Choi et al., searched for a chemically stable vehicle for the sustained release of various
growth factors. They developed a method to form photo-crosslinked, thermosensitive hep-
arin nanosponges (Hep-NS) by a one-step photopolymerization reaction of diacylated and
thiolated heparin molecules [58]. In vitro studies showed that their Hep-NS sustained the
release of all growth factors for almost 60 days, which was similar and directly correlated
to the amount of heparin released. These heparin nanosponges are good candidates for a
long-term sustained release system until scaffolds are fully endothelialized.
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3.2.2. Electrostatic Interactions

Heparin-loaded gelatin electrospun scaffolds have been used to exploit the drug de-
livery potential of heparin scaffolds as vascular grafts [32]. Heparin-containing scaffolds
were developed by exploiting the electrostatic interaction between positively charged
gelatin and negatively charged heparin. Sustained release of heparin was observed from
the gelatin–heparin scaffold in vitro over a period of 14 days. Biocompatibility studies
performed with human umbilical vein endothelial cells (HUVECs) in vitro showed that cell
viability and proliferation were better on the gelatin–heparin scaffold when compared to
the control. In a study by Choi et al., electrospun grafts were prepared from polyurethane
elastomer (PU) containing cell adhesion peptides and heparin as an anticoagulant [58]. The
cell adhesion peptides enhance effective EC adhesion, which is essential for the biocompat-
ibility of the scaffold. The bio-functionalization of the scaffold was confirmed in vitro by
increased HUVEC adhesion and cell proliferation. A significant increase in patency of the
surface-modified graft compared to the pristine polyurethane graft was also reported in a
60-day validation. The patency rate at nine weeks after grafting was significantly higher in
the modified PU graft (71.4%) than in the control graft (46.2%). The non-treated PU grafts
showed higher levels of α-SMA expression compared to the modified grafts.

Additionally, heparin conjugation is useful to prevent the thrombosis of otherwise
positively charged materials due to its highly negative charge. As such, some groups have
improved sustained heparin release by changing the surface charge. Zhu’s group selected
mesoporous silica SBA-15 composed of silicon for the sustained release of heparin and
optimized the surface conditions of their bioengineered scaffold. Their modified SBA-15
material promoted the sustained release of heparin and extended the release equilibrium
time up to 60 days. Furthermore, the APTES-modified SBA-15 sample was able to capture
three-fold more heparin than the parent SBA-15 due to the positive charge that attracted
heparin through electrostatic interaction, increasing the release rate to 80% (38% for SBA-
15) [59,60]. These results suggest the feasibility of this approach.

4. Discussion

This review describes two methods to improve small-diameter arterial graft patency.
One, the heparin conjugation method, improves the patency of grafts made from bioab-
sorbable materials. The second is a method of extending the suspended release period
of heparin to maintain the graft patency rate for a longer time. Adequate and sustained
heparin release is considered a means of increasing graft patency, while the long-term
endothelialization process is completed. Heparin has been shown to prevent thrombosis
associated with thrombin suppression, inhibition of vascular smooth muscle cell (VSMC)
proliferation, and prevention of graft occlusion [61,62], but that is not all. Heparin can also
stabilize physiologically unstable growth factors in the heparin-binding domain [63,64].
Heparin has the potential to overcome the challenges associated with growth factor insta-
bility in solution, self-aggregation, low bioavailability, short half-life in vivo, and in vivo
delivery [65–67]. This has led to many advances in the patency of the smallest diameter
tissue-engineered arterial grafts.

In addition, to test the efficiency of TEVG grafting in these studies, small animal
models are not suitable for preclinical testing due to the differences in metabolism and
arterial pressure from humans. It is necessary to test the efficacy and safety of these
materials in large animal models such as sheep or pigs prior to clinical trials. In fact, in this
review, we have focused on experiments performed on large animal models.

Although we have no choice but to use animals, we must always consider the three
Rs of animal use (reduction, refinement, and replacement) in order to protect the animals.
For instance, adequate mechanical strength should be verified before implantation in the
animals.

Before implanting the grafts to the animals, some in vitro tests need to be performed.
For example, the tensile strength test alone is not sufficient to ensure that the graft will
not cause an aneurysm in an arterial environment. Thus, beating tests simulating arterial
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pressure [68], and evaluation of heparin release using the toluidine blue method must be
performed [27,28]. In vitro evaluations of biocompatibility, such as platelet deposition on
the luminal surface of the graft and the LDH assay [26], are necessary. For the biodegrad-
ability, although different reagents are used for different polymers, we should verify the
degradation rates of different biodegradable grafts using serial accelerated degradation
studies [69].

Due to the nature of tissue engineering grafts, some studies expect neo-tissue forma-
tion using materials with fast degradation rates [70,71]. In the arterial environment, these
grafts tend to dilate relatively quickly. Hence, materials with a longer degradation period
are preferable at this point. Animal studies should be performed with grafts that meet the
above in vitro criteria.

Many studies have shown that endothelialization is important to maintain graft pa-
tency. However, these studies shown transanal endothelial growth at most of 1 to 2 cm [44].
This might be the reason why TEVG has been relatively successful in experimental models
such as sheep carotid or porcine femoral arteries, where 2–5 cm prostheses have been
evaluated (currently, the recommended length of TEVG is limited to 10 times the diameter
(4–6 cm for ovine carotid grafts), but clinically, coronary and lower limb bypass graft
prostheses are, on average, 15 cm in length [72].

Hematogenous or percutaneous endothelialization is a time-consuming process, and
large-animal experimental designs need to use grafts > 5 cm in length to validate clinical
importance. After grafting, if patency can be maintained without graft dilatation, long-
term observation for about one year is desirable. In regenerative medicine research, the
assessment of tissue regeneration and inflammation typically requires animal sacrifice and
graft harvesting for histological evaluation. There are existing imaging methods, such as
echocardiography and angiography, that can assess the in vivo characteristics of implanted
arterial grafts. However, these methods are generally limited to anatomical evaluations of
luminal diameter, neo-tissue formation, and flow velocity. Imaging tools that can evaluate
tissue regeneration in vivo, while the animal is alive, will be helpful in the future. We are
currently examining the use of nuclear medicine to evaluate the neo-tissue formation in
grafts [73]. It would be ideal if we could prove safety by sacrificing the fewest number of
large animals possible, use computational modeling to simulate optimal graft design and
heparin release, and design a clinical trial.

In conclusion, although there are many obstacles to overcome, advances in heparin-
binding technology have further improved the patency of these experimental grafts. The
impact of this research on the field of clinical cardiovascular surgery will be tremendous.
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APTT Activated Partial Thromboplastin Time
b-FGF basic Fibroblast Growth Factor,
DAPI 4′,6-diamidino-2-phenylindole
EC Endothelial Cell
ECM Extracellular Matrix
FDA Food and Drug Administration
Hep-NS Heparin Nanosponges
HBF-GF Heparin-binding EGF-like growth factor
HUVECs Human Umbilical Vein Endothelial Cells
PAD Peripheral Artery Disease
PLCL Polylactide-co-epsilon-caprolactone
PCL Polycaprolactone
PGA Polyglycolic acid
PLLA Poly-L-lactide acid
PU Polyurethane elastomer
TIPS Thermally Induced Phase Separation
TEVG Tissue Engineered Vascular Graft
SEM Scanning Electron Microscopy
SMC Smooth Muscle Cell
VEGF Vascular Endothelial Growth Factor
VSMC Vascular Smooth Muscle Cell
XPS X-ray Photoelectron Spectroscopy
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