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Abstract: This paper addresses group multi-objective optimization under a new perspective. For each
point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined
by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting
boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be
maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in
charge of making the final decision, finding the best compromise between the collective satisfaction
and dissatisfaction. Imperfect information on values of objective functions, required and available
resources, and decision model parameters are handled by using interval numbers. Two different
kinds of multi-criteria decision models are considered: (i) an interval outranking approach and
(ii) an interval weighted-sum value function. The proposal is more general than other approaches
to group multi-objective optimization since (a) some (even all) objective values may be not the
same for different DMs; (b) each group member may consider their own set of objective functions
and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on
resources availability and requirements may be handled; (e) each group member may have their
own perception about the availability of resources and the requirement of resources per activity. An
important application of the new approach is collective multi-objective project portfolio optimization.
This is illustrated by solving a real size group many-objective project portfolio optimization problem
using evolutionary computation tools.

Keywords: group multi-objective optimization; multi-criteria classification; project portfolio selection;
interval mathematics; evolutionary algorithms

1. Introduction

Frequently, real-life decision problems need several or many decision-makers (analysts,
experts, stakeholders, participants, voters, etc.). A group decision-making problem (GDM)
is described as a decision case in which a group of decision-makers (DMs) recognize the
existence of a collective problem and are interested in finding a common action (alternative)
that could be accepted as a good agreement.

Since the early Condorcet and Borda’s works, including the seminal Arrow’s impossi-
bility theorem, GDM has attracted the attention of researchers for a very long time to the
present date (e.g., [1–4]). Imprecision and vagueness are important issues in GDM. Since
GDM is a process carried out by humans, fuzzy set-based methods, with their ability to
model vagueness of human judgments and preferences, are especially suitable to address
such problems. For a recent paper that revisits fuzzy and linguistic decision-making, the
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reader is referred to [5]. Some other modern challenges faced by researchers in GDM are:
(i) large-scale problems (LSGDM) involving more than twenty decision-makers (e.g., [6,7]);
and (ii) manipulation and group dictatorship (e.g., [8]). These challenges have gained
increasing importance as a consequence of the modern digital economy and the relevance
of social networks.

The main processes for solving GDM are the consensus reaching process (CRP) and the
selection process (SP) [9–11]. CRPs have the objective of obtaining the maximum degree of
satisfaction from the DMs with the collective decision [9]. The search for consensus is an ac-
tive process, with repetitive interactions (rounds, consensus steps) among group members,
which contains a measure of consensus and a feedback method [10]; the last one suggests
whether the group members should change their preferences, beliefs, and judgments to
allow a better agreement [11,12]. Usually, the CRP is guided by a moderator [13]. The final
solution is found through an SP, considering the preferences, beliefs, and judgments of the
group members. Frequently, the SP consists of two phases: (A) aggregation of preferences,
beliefs, and judgments from the members; and (B) use of these preferences, beliefs, and
judgments, that were aggregated collectively, to find a solution which should correspond,
as much as possible, to the aggregated group opinions [9,14]. In this paper, our interest is
limited to problems in which the decision alternatives are described by multiple criteria,
the so-called multi-person-multi-criteria decision making [5]. Here, the aggregation of the
group member’s preferences on conflicting criteria plays a crucial role in identifying an
acceptable collective agreement.

Usually, the selection process concerns a relatively small set of options; many methods
have been proposed to address such cases (e.g., [3,4,15–17]). Alternatively, the group multi-
objective decision problem on very large decision sets (characterized by constraints) has
received comparatively very little attention. According to [18], we call this problem GDM-
MOP, denoting the combination of group decision making and multi-objective optimization.

To the best of our knowledge, the existing GDM-MOP approaches are not free of some
of the following criticisms:

1. Most interactive methods implicitly assume that group preferences are transitive and
comparable relations, although the lack of transitivity is a well-established charac-
teristic of voting systems (e.g., [19]). Even in the case of a single DM, transitivity,
and comparability of their preference relation are subject to question, mainly in the
presence of veto conditions, and/or when the number of objectives overcomes the
cognitive limitations of the human mind.

2. Many methods are susceptible to manipulation. According to classical voting theory,
under very general conditions, every voting procedure can be manipulated by some
voters by declaring insincere preferences (e.g., [19]).

3. Popular interactive approaches help to obtain acceptable agreements because each
DM learns the preferences from the other DMs and correspondingly fits their own.
However, the final accepted solution may significantly differ from those that each DM
would have considered as satisfactory if the decision had depended solely of them.
Thus, the consensus does not result from the search in the set of possible solutions
but from mutual concessions. Group satisfaction is partial because it is only achieved
by recognizing that a more satisfactory result is not possible.

4. The handle of imprecision, uncertainty, and ill-definition in GDM-MOP is a real
concern. GDM-MOP approaches typically assume that the whole group agrees on
the resource availability, the resource consumption, and objective values for each
point in the decision variable space. However, there could be several sources of
imperfect information which affect that assumption. Indeed, each DM may have their
own perception (no free of certain imprecision, uncertainty, or arbitrariness) about
objective values, available and required resources. Such imperfect knowledge may
impact the individual best solutions, on the collective preferences, and the consensus
degree. Under imperfect information, the consensus search process is even more
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difficult and relevant since the diverse perceptions from the DMs and different levels
of conservatism should be aggregated and, if possible, agreed.

5. In complex problems, some DMs with very different value systems and/or roles
with respect to the other group members may consider different sets of objective
functions and constraints. Such a case is not addressed by most of the methods to
solve GDM-MOPs.

This paper presents a proposal that strongly reduces the above criticisms. Since group
(dis)satisfaction depends on the number of its (dis)satisfied members, the paper focuses on
a consensus measure based on counting the number of DMs who are satisfied (respectively
dissatisfied) with their respective objective values on a common point in the decision
variable space. For each point in the feasible decision set, satisfaction or dissatisfaction
from each group member is determined by a multi-criteria ordinal classification approach,
based on comparing solutions with a limiting boundary between classes “unsatisfactory”
and “satisfactory”. By counting the group members who are (dis)satisfied with solutions
in the decision variable space, group satisfaction and dissatisfaction can be simultaneously
optimized. This paper has perhaps the merit to be the first in addressing consensus
evaluation as multi-criteria ordinal classification problems solved by the entire set of group
members. Consensus is identified by a high level of group satisfaction and a low level of
dissatisfaction. The group moderator is in charge of making the final decision, finding the
best compromise between collective satisfaction and dissatisfaction.

Interval numbers are used to model imperfect information from each group member.
This model is less sophisticated than more general fuzzy approaches, but, to a great extent,
without their mathematical complexity. Choosing interval numbers as the model of impre-
cisions allows using recently proposed interval-based multi-criteria ordinal classification
methods. Two different decision models are proposed in this paper; the first one uses the
interval outranking approach and INTERCLASS-nB method by Fernandez et al. in [20,21];
the second one is based on building and exploiting an interval weighted-sum value func-
tion. On one hand, the outranking model is appropriate for handling non-compensatory
preferences, allowing veto effects and incomparability situations. On the other hand, the
weighted-sum function is, to a certain extent, a simpler and rougher model, which may be
recommended to represent compensatory preferences. With a little loss of generality, we
address multi-objective maximization problems under resource constraints (as typically
in project portfolio optimization), but the method can be trivially extended to other kinds
of problems.

The structure of the paper follows: In Section 2, we outline the background on
which our proposal is based. Section 2.1 refers to several relevant precedent papers.
The concept of good consensus, some fundamental aspects about interval numbers, and
an interval-based multi-criteria classification method are briefly described in Section 2.2,
Section 2.3, Section 2.4. The problem is detailed in Section 3. Sections 4 and 5, combined
with the concept of maximum consensus, form the core of the proposal. These sections
present the mathematical model of what a satisfied/dissatisfied DM is from two points
of view: the outranking model of preferences (Section 4) and the weighted-sum model
(Section 5). The method is summarized in Section 6; the whole proposal is illustrated
by a real-size many-objective project portfolio optimization problem in Section 7. Lastly,
several concluding remarks are discussed in Section 8. Two evolutionary algorithms used
in solving optimization problems are described in appendices.

2. Background
2.1. An Overview of GDM-MOP Literature

In the GDM-MOP field, some approaches obtain a representative Pareto sample and
then apply a method to aggregate individual preferences in a model of collective preference,
which is used to find a final solution (e.g., [22,23]). Other popular approaches propose an
integration of group preference handling with interactive procedures of multi-objective
optimization (e.g., [24–26]). In some methods, the interaction is performed during the
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optimization process. In other methods, the interaction is performed once a Pareto sample
has been generated (e.g., [27]).

Efremov et al. in [28] developed a decision support system for e-democracy inspired
on Pareto frontier visualization, goal identification, and arbitration. Collective intelligence
methods to aggregate reference points from different DMs have been proposed in ([29–32]) to
approach the region of the Pareto frontier that is more preferred by the DMs. Bechickh et al.
(2013) proposed a negotiation support system that includes the DMs’ preferences through
reference points; priorities on the set of DMs are characterized by weights; the output of a
negotiation round is a single group reference point. Xiong et al. (2013) introduced fuzzy
reference points; this approach contributes to improving the robustness of the final solution
dealing with imprecise and changing preferences.

Fernandez and Olmedo in [33] search for good consensus solutions by maximizing,
(respectively, minimizing), the number of group members who are satisfied (resp. dissat-
isfied) with the current solution in the decision variable space. To solve the bi-objective
optimization problem, they used the NSGA2 evolutionary algorithm. The DMs are declared
as (dis)satisfied by comparing the current solution with their best compromise.

The NEMO-GROUP, a set of interactive evolutionary multi-objective optimization
(MOO) methods, was developed by Kadzinski and Tomczyk in [34]. In these approaches,
an evolutionary algorithm is modified with the introduction of pairwise comparisons of
several DMs. Solutions are evaluated using utilitarian and egalitarian additive group value
functions; the evolutionary algorithms accept weights assigned to the DMs.

Borissova and Mustakerov in [35] presented a two-step placement algorithm, which
combines MOO and GDM. First, MOO is used to identify a set of design alternatives for
object placement. In the second step, business intelligence and group decision making are
used to evaluate design alternatives.

A particular application of MOO is the distributed engineering design, the complex
systems built in this area are getting more popularity (e.g., [36]). These systems are often
designed by a group of DMs; the design of each subsystem is in charge of a DM. The design
teams only have partial information about the global design, and negotiations are relevant
to reach a consensus. Guarneri and Wiecek in [37] developed a mathematical model of
the problem considering the aspect of distribution and decomposition. The solution of the
model is based on Lagrangian relaxation.

An important case of GDM-MOPs is group multi-objective project portfolio optimiza-
tion. Project portfolio selection is one of the most important problems faced by top-level
managers in large enterprises and public organizations. Often, projects are described by sev-
eral (or many) conflicting criteria, and the selection of the “best” portfolio should be made
by a collective entity. This group may be composed of experts in different/complementary
fields or members of the top level management. The group members share an interest in
finding the portfolio that could bring the best results for the organization, but they have
different value systems, beliefs, preferences on conflicting criteria, and judgments about
resource consumption and availability. Individual preferences and beliefs are typically
modeled by certain parameters and values in a decision model; they can significantly
differ from different DMs. If the whole group is seen as an entity, the dispersion of model
parameters and values can be considered as imperfect information in the sense of Roy
et al. (2014). According to such a paper, imperfect knowledge comes from arbitrariness,
imprecision, ill-determination, and uncertainty in data and model parameters ([38]). In
project portfolio optimization, imperfect information concerning weights and criterion
scores has been addressed by Liesio et al. in [39,40], Fliedner and Liesio in [41], Toppila
and Salo in [42], and Balderas et al. in [43] using interval mathematics, although no one of
these papers concern the specific characteristics of GDM.

2.2. Toward a Maximum Consensus

According to Fernández and Olmedo (2013), in GDM, reaching an acceptable agree-
ment is not always possible. This comes from strong contradictions amongst important
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disjoint subsets of group members; for instance, there could be a clear opposition of a
numerically significant minority that does not want to accept a preference coming from
a not very strong majority of the group. Reaching a collective agreement is only possible
when there is unanimity or an appreciable level of consensus. Among many ways to
address and define consensus (e.g., [10,14,44–47]), Fernandez and Olmedo (2013) consider
a good consensus as associated with the fulfillment of two conditions:

(A) There is an important agreeing majority with a particular alternative (or solution);
(B) There is no appreciable disagreeing minority.

With Condition (B), Fernandez and Olmedo in [33] and Fernandez et al. in [48] rejected
“majority dictatorship”, which neglects the importance of the intensity of disagreement
and degrades fairness and equity concerning minorities.

Let us consider a group with ng members under the following general premise:
Fundamental Premise: Each solution z in the decision variable space (with its corre-

sponding objective values and feasibility) can be classified by the i-th DM into one and
only one of the following classes: (i) z is a satisfactory solution; (ii) z is an unsatisfactory
solution; (iii) the i-th DM is neither satisfied nor dissatisfied with z.

Point (iii) concerns situations in which a DM hesitates about the appropriate classifica-
tion of a solution and confers to the above premise a very high generality.

Let Nsat (resp. Ndis) denote the number of group members who are satisfied (resp.
dissatisfied) by a particular solution z. Nsat and Ndis are integer functions of z. The ideal
consensus (if possible) should correspond to a point z* such that Nsat(z*) = ng and Ndis(z*) = 0.

Therefore, the ideal consensus is the ideal solution to the bi-objective optimiza-
tion problem:

Maximize Nsat(z), Minimize Ndis(z) (1)

Unlike typical multi-objective optimization problems in which its ideal solution is
not feasible, Problem 1 may reach the ideal point Nsat(z*) = ng and Ndis(z*) = 0 as much
as the preferences and beliefs of all the individual DMs become close enough through an
effective consensus reaching process. Even when the ideal consensus is not possible, good
agreements can be identified when Nsat ≥ 2/3 ng (Condition A) and Ndis ≈ 0 or Ndis << 0.5
ng (Condition B).

For a given closeness of preferences and beliefs of the individual DMs, the best
consensus is a non-dominated solution to Problem 1. If this current consensus level is not
high enough, a new CRP step should allow identifying better agreements.

To make operational the process of solving Problem 1, we need a mapping between
the decision variable space and the values Nsat and Ndis. Therefore, we require a model
that permits, for each DM and each z in the decision variable space, knowing to which
class of satisfaction/dissatisfaction z is assigned to. Most of the remaining paper is devoted
to discussing some preference models and assignment procedures to this end. Since in
the objective space, z is described by multiple objective values, its assignment should be
considered as a multi-criteria ordinal classification problem.

2.3. Some Fundamental Notions on Interval Mathematics

Moore in [49] defines an interval number as an extension of the concept of a real
number and as a subset of the real line R, describing it as a range, E = [E +

_
E], where E

is the lower limit and E is the upper limit. In the rest of this paper, an interval number is
denoted with boldface italic letters.

Let D and E two interval numbers and F a real number. Basic arithmetic operations
are defined below.

D + E =
[
D + E, D + E

]
(2)

D− E =
[
D− E, D− E

]
(3)

D·E =
[
min

{
D·E, D·E, D·E, D·E

}
, max

{
D·E, D·E, D·E, D·E

}]
(4)

D·F =
[
D·F, D·F

]
(5)
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A possibility measure of an order relation over interval numbers is given by Equa-
tion (6) [50].

P(E ≥ D) =


1 if pED > 1,

pED if 0 ≤ pED ≤ 1,
0 if pED ≤ 0

(6)

where pED =
E− D(

E− E
)
+
(

D− D
)

If e = e = e and d = d = dP(E ≥ D) =

{
1 if e ≥ d,

0 otherwise.
(7)

According to Fliedner and Liesio (2016), a real number e within the interval [E, E] is
said to be a realization of the interval number E. In [20], P (D ≤ E) = α is interpreted as the
degree of credibility that once two realizations are given from E and D, the realization d
will be smaller than or equal to the realization e.

According to Fernández et al. (2019), the possibility function satisfies Equation (8).
This equation is combined with the interpretation of the order relation in Equation (9).

P(E ≥ D) = α⇒ P(D ≥ E) = 1− α (negation) (8)

E > D⇔ P(E ≥ D) > 0.5 (strict order) (9)

A more reliable strict order (denoted by >α) on interval numbers is defined in Equation (10).

E > αD ⇐⇒ P(E ≥ D) ≥ α > 0.5 (10)

2.4. Multi-Criteria Ordinal Classification Based on an Interval Outranking Approach

There are more than one hundred multi-criteria decision-making (MCDM) methods.
According to the model of the decision-maker’s preferences, most of the methods can be
grouped in one of three basic paradigms:

• The functional paradigm, based on building functions that model the decision-maker’s
preferences (e.g., [51,52]);

• The relational paradigm, based on building crisp or fuzzy binary relations (e.g., [53]);
• The symbolic paradigm, which is mainly related to artificial intelligence (e.g., [54]).

Whatever the model of the DM’s preferences, we can distinguish three MCDM fun-
damental problems: multi-criteria choosing, ranking, and sorting. Each MCDM method
addresses one of these general problems. For choosing and ranking, multi-attribute utility
theory (MAUT) ([51]) and the analytic hierarchy process (AHP) ([52]) are the most popular
approaches. Although Ishizaka et al. in [55] proposed a variant of AHP for multi-criteria
sorting (also called multi-criteria ordinal classification) problems, outranking and symbolic
methods are more popular for this purpose.

Perhaps the most known multi-criteria ordinal classification method is ELECTRE TRI-
B ([56]), which was generalized to ELECTRE TRI-nB in ([57]). Such methods make use of an
outranking relation, which means that for a pair of decision actions (x,y), we should check
the validity of the assertion “action (alternative) x is at least as good as action (alternative)
y”. Two effects (concordance and discordance) are combined to determine the degree of
credibility of the outranking (cf. [53]). In ELECTRE TRI-B and nB, the boundary between
adjacent classes is described by limiting actions. Unlike ELECTRE TRI-B, its extension
allows characterizing the boundary between adjacent classes by several limiting profiles.
Recently, ELECTRE TRI-nB was extended to handle imperfect information in terms of
interval numbers ([21]). The so-called INTERCLASS-nB shares similar assignment rules and
consistency properties with ELECTRE TRI-nB, but using the interval outranking approach
proposed in ([20]). This handles imperfect information on criterion scores, weights, veto
thresholds, and majority thresholds with interval numbers. Even missing criterion scores
can be handled by the approach. According to Fernández et al. (2020), “eliciting model
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preference parameters generally suffer from arbitrariness and imperfect knowledge (in
particular, due to ill-determination). This occurs in a more acute way when there is a group
of DMs, so that conflicting views are quite natural and frequent.”

The interval outranking approach and INTERCLASS-nB work with several interval
preference relations:

Definition 1.

(i) xS(β,λ)y⇔ σ(x,y,λ) ≥ β (interval outranking);
(ii) xPr(β,λ)y⇔ σ(x,y,λ) ≥ β and σ(y,x,λ) < β (interval preference);
(iii) xI(β,λ)y⇔ σ(x,y,λ) ≥ β and σ(y,x,λ) ≥ β (interval indifference);

where:

σ is the credibility index of the interval outranking;
λ is an interval number representing a majority threshold; λ > [0.5, 0.5] and λmin ≥ 0.5;
β is a credibility threshold for establishing a credible crisp outranking relation; β > 0.5.

The INTERCLASS-nB, adapted to the case of only two ordered classes, is presented below:
Conditions on the limiting profiles: Let C1 and C2 be ordered classes (C2 is the most preferred).

Set β > 0.5 and λ > [0.5, 0.5] with λmin ≥ 0.5. The boundary between C1 and C2 is characterized
by a set of limiting profiles, B = {bj}, such that:

(i) All bj of B belongs to C2;
(ii) There is no pair (bj, bi) such that bjPr(β,λ)bi.

The method requires the definition of interval outranking and preference relations
between actions and the limiting boundary, as follows:

Definition 2.

(i) xS(β,λ)B iff there is a w ∈ B such that xS(β,λ)w and there is no y ∈ B with yPr(β,λ)x;
(ii) BPr(β,λ)x iff there is a w ∈ B such that wPr(β,λ)x and there is no y ∈ B with xPr(β,λ)y.

The “pessimistic” and “optimistic” assignment rules are:

Definition 3 (“pessimistic” rule). Suppose Set B satisfies the conditions on the limiting profiles.

Step 1: Compare x to B;
Step 2: If xS(β,λ)B, then assign x to class C2;
Step 3: If not(xS(β,λ)B), then assign x to C1.

Definition 4 (“optimistic” rule). Suppose Set B satisfies the conditions on the limiting profiles.

Step 1: Compare x to B;
Step 2: If BPr(β,λ)x, then assign x to class C1;
Step 3: If not(BPr(β,λ)x), then assign x to C2.

It is easy to prove that the “optimistic” rule always suggests an assignment to a class
not worse than the one suggested by the “pessimistic” procedure.

For a detailed description of INTERCLASS-nB, the reader is referred to [21].

3. Characterization of GDM-MOPs Under-Study

In this paper, we address group multi-objective optimization problems described by
the following characteristics:

a. There is a group moderator who is in charge to control and guide the consensus
reaching process;

b. The individual DMs participate in the decision process providing information about
their preferences, beliefs, and level of conservatism, and modifying this information
during consecutive steps of the CRP;

c. Some (even all) objective values may be not the same for different DMs;
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d. Each DM may handle a different set of objective functions;
e. The objective values may be imperfectly known (subject to imprecision or uncer-

tainty);
f. The availability of resources may be imperfectly known;
g. Resource requirements per activity (project, in case of portfolio optimization) may be

imperfectly known;
h. Each group member has their own opinion about the availability of resources and

requirements per activity (project, in case of portfolio optimization);
i. All the DMs consider a common point in the decision variable space.

Points c, d, e, f, g, and h imply that each group member faces their own MOO problem
under imperfect knowledge. The model of such imperfect knowledge is based on the
following assumption:

Assumption 1. Each DM is willing to represent as interval numbers the imperfect information on
objective values, availability, and requirement of resources.

In the framework of project portfolio optimization, the above statement has been
assumed by Liesio et al. (2007, 2008), Fledner and Liesio (2016), Toppila and Salo (2017),
and Balderas et al. (2019). This assumption is a bit more restrictive than it appears. As
stated by [41], if we assume that a magnitude is an interval number, one should admit
that (i) this magnitude can take any value within this interval, and (ii) the DM does not
privilege the credibility of any particular value within the range.

Let ARj
i be the interval number used to represent the estimated availability of the j-th

resource from the point of view of the i-th DM; NRj
i is the interval number used to denote

the aggregation of required resources, which depends on the decision variables vector z.
In order to find a feasibility condition for the i-th DM, a solution z must satisfy

ARj
i > ξi NRj

i (z) according to the order relation given by Equation (10). The i-th DM faces
the MOP in Equation (11).

Maximize
z∈RFi

Fi = ( f1i(z), f2i(z), . . . , fNi(z)) (11)

where Ni is the number of the evaluation criterion for the i-th member of a group; Fi is
the vector function being considered by the i-th DM; z is the vector of decision variables;
in project portfolio optimization, z is a vector composed of binary variables, in which “1”
means “the related project belongs to the portfolio”, and “0” otherwise.

RFi is the feasible region from the point of view of the i-th DM. It is defined by the interval-
based resource constraints ARj

i > ξi NRj
i (z), and perhaps other non-resource constraints.

In Problem 11, ξi is the credibility threshold for the expression “the available resources
are sufficient to satisfy the requirements”. The more conservative the i-th DM, the higher
the value of ξi.

Definition 5 (α-dominance). Let Oi be the image of the feasible region of Problem 11. Consider
an element (x,y) belonging to Oi × Oi, where x 6= y, and α a real number in [0.5, 1]. The solution
y is α-dominated by x (denoted by xD(α)y) iff min{P(fji(x) ≥ fji(y)), j = 1, . . . , Ni} = α and
P(fki(x) ≥ fki(y)) > 0.5 for some k.

Identifying satisfactory solutions is a preference judgment. Such a judgment is related
to what the DMs consider as their maximum aspiration levels, which come from the best
solution to Problem 11. Therefore, the DM should be able to determine such levels.

The best solution to Problem 11 is ill-defined due to the conflicting nature of its
objective functions. The following two definitions are useful to characterize a necessary
condition to be the best compromise solution.
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Definition 6 (a preferred solution by the i-th DM). A solution x ∈ Oi is preferred to y∈ Oi
by the i-th DM if the following statement is considered as true by them: “x is at least as good as y,
but y is not at least as good as x”.

Remark 1. The interval preference relation from Definition 1 (xPr(β,λ)y) and the dominance
relation from Definition 5 (xD(α)y) are good arguments in support to “x is preferred to y” for
sufficiently high values of β and α.

Definition 7 (necessary conditions to be the best compromise solution for the i-th DM).
xi* ∈ Oi is the best compromise solution to Problem 11 for the i-th DM only if it fulfills two condi-
tions:

(A) There is no y in Oi such that y is preferred to xi* by the i-th DM;
(B) There are arguments to justify that the i-th DM considers xi* as at least as good as many

solutions that satisfy Condition A.

Assumption 2 (capacity to identify the best compromise solution from the i-th DM’s
point of view). Let Oi be the image of the feasible region of Problem 11. Each individual DM is
able to solve Problem 11, thus identifying their best compromise solution xi* ∈ Oi.

The way in which the i-th DM can find their best compromise depends on the model
of multi-criteria preferences; this should correspond to how the DM aggregates prefer-
ences on conflicting criteria. As stated in Section 2, there are three main paradigms: (i) the
functional approach; (ii) the relational approach; and (iii) symbolic methods from Artificial
Intelligence, mainly those based on rough sets theory. To the best of our knowledge, no sym-
bolic multi-criteria decision method in the frame of interval numbers has been reported. The
functional approach bases its prescriptions on a value or utility function, fulfilling axioms of
full comparability and transitivity; these value or utility functions are compensatory models
in which poor scores of some criteria can be compensated by good scores of other ones.
There are a few papers that have used interval-based weighted sum functions as decision
tools in project portfolio selection problems (e.g., [39–41]). To our knowledge, more complex
forms of interval-based value functions have not been proposed to address multi-objective
optimization problems; further, interval value functions have not been used in solving
multi-criteria classification problems. The relational paradigm is generally focused on
building and exploiting outranking relations; this approach can handle non-compensatory
effects, veto situations, incomparability, and non-transitive preferences. In the frame of in-
terval numbers, the method in ([20]) allows building credible interval outranking relations,
and the INTERCLASS-nB method in ([21]) is able to suggest appropriate assignments in
multi-criteria ordinal classification problem under imperfect information.

4. Model of Preferences and Judgments of a DM with a Non-Compensatory
Aggregation of Preferences

In this section, we suppose that the i-th DM is compatible with the interval outranking
model by Fernández et al. (2019). We refer to a generic DM, and for simplicity, we avoid
the use of the subscript “i”. Firstly, let us present an overview of the interval outranking
approach from [20].

4.1. The Interval Outranking Model

The method requires the following assumption:

Assumption 3 (modeling arbitrariness and ill-definition of parameters). The DM is willing
to specify an outranking model in terms of weights, veto thresholds, a majority threshold, and a
credibility threshold. In order to model imperfect information, those parameters can be specified as
interval numbers. Therefore, the weights will be denoted as wj = [wj

−, wj
+], the veto thresholds as

vj = [vj
−, vj

+], the majority threshold as λ = [λ−, λ+], and the credibility threshold as β = [β−, β+].
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The credibility index δj(a′, a) of the assertion “a′ is at least as good as a regarding
criterion fj” is

δj(a′, a) = P(fj(a′) ≥ fj(a)) j = 1, . . . , N (12)

where P is the possibility function of Equation (6).
We say that criterion fj is γ-concordant with the statement “a′ is at least as good as a

regarding criterion fj” (denoted a′Sja) if and only if a′Sja with a credibility index of at least
γ. The set of criteria fj such that δj(a′, a) ≥ γ (γ = min{δj}) is called γ-possible concordance
coalition with “a′ is at least as good as a” and is denoted by C(a′Sγa). γ is the credibility
that all criteria in C(a′Sγa) agree that “a′ outranks a”. All criteria not in C(a′Sγa) form the
γ-possible discordance coalition, D(a′Sγa).

For consistency reasons, the interval weights should satisfy the following constraints:

N
∑

j=1
w−j ≤ 1,

N
∑

j=1
w+

j ≥ 1.

The concordance index of “a′ outranks a” is an interval number denoted by c(a′, a) =
[c−(a′, a), c+(a′, a)], and calculated as follows:

c−
(
a′, a

)
= ∑

f j∈C(a′Sγa)
w−j (13)

when
∑

f j∈C(a′Sγa)
w−j + ∑

f j∈D(a′Sγa)
w+

j ≥ 1

otherwise,
c−
(
a′, a

)
= 1− ∑

f j∈D(a′Sγa)
w+

j (14)

similarly,
c+
(
a′, a

)
= ∑

f j∈C(a′Sγa)
w+

j (15)

when
∑

f j∈C(a′Sγa)
w+

j + ∑
f j∈D(a′Sγa)

w−j ≤ 1

otherwise,
c+
(
a′ a
)
= 1− ∑

f j∈D(a′Sγa)
w−j (16)

Since the set of criteria in C(a′Sγa) is determined by γ, the concordance index c depends
on such a value. Such a dependence is denoted by c(a′, a, γ).

Each possible concordance coalition C(a′Sγa) provides reasons in favor of “a′ outranks
a”, and each possible discordance coalition D(a′Sγa) provides reasons against it. In the
following, we denote as dj(a′,a) the credibility index of the statement “a′Sa is vetoed by gj”.
dj(a′,a) is defined as P(fj(a) ≥ fj(a′) + vj), where vj is the interval veto threshold related to fj.

The credibility of a possible outranking given a γ-possible concordance coalition and
the corresponding discordance coalition is defined as follows:

Definition 8. Let Ω be the set {δj > 0, j = 1, . . . , N}. Given γ ∈ Ω we say that a′ outranks a for
the γ-possible concordance coalition with credibility index σγ and majority threshold λ > 0.5 with
λ− > 0.5 iff σγ = min {γ, P(c(a′, a, γ) ≥ λ), (1 − max

f j∈D(a′Sγa)
dj(a′,a))}.
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For each particular value of γ, this index can be interpreted as a credibility degree of
the conjunction of two predicates: (i) “the γ-concordance coalition is strong enough” and
(ii) “the γ-discordance coalition does not exert veto”.

The above marginal (single coalition) credibility indices are merged by using the “max”
operator in the following definition:

Definition 9 (interval outranking credibility index). From the point of view of the interval
outranking approach and under the above notation, a′ outranks a (“a′ is at least as good as a”) with
credibility index σ(a′,a,λ) = max{σγ} (γ ∈ Ω) and majority threshold λ > 0.5 with λ− > 0.5. If Ω
is empty, then σ(a′,a,λ) is zero.

Let β an interval number (0.5 <β < 1 with β− > 0.5) considered as a credibility threshold
to establish crisp preference relations. In the following we will use a′S(β,λ)a, a′I(β,λ)a, and
a′Pr(β,λ)a similarly to Definition 1, but using the interval number β instead of the real
number β. Such a change gives more flexibility to the DM in setting the credibility threshold.

Remark 2.

(a) As was proved in [20], if fj(a) are real numbers for j = 1, . . . , N, then aS(1,1)a.
(b) a′s(β,λ)a⇒ a′S(ξ,λ)a ∀ ξ < β.

Proposition 1. Some properties of the interval dominance combined with the interval outranking
and preference relations:

For all (x,y,z) ∈ O × O × O:

i. yD(α)x and xS(β,λ)z⇒ yS(ε,λ)z for some ε ≥ min(α,β)
ii. zPr(β,λ)y and yD(α)x⇒ zPr(ε,λ)x for some ε ≥ min(α,β)
iii. yD(α)x and xPr(β,λ)z⇒ yPr(ε,λ)z for some ε ≥ min(α,β)
iv. If α > 0.5, then xD(α)y⇒ xPr(β,λ)y for some β ≥ α and for all λ ≤ [1,1]
v. xD(α)y and yD(η)z⇒ xD(ε)z with ε = min (α,η)

The proofs are similar to the ones in [20]. The single difference consists of replacing
the real value of β with the middle points of the interval number β.

4.2. Finding the Best Compromise solution to Problem 11

According to Assumption 2, each DM is capable of finding their best solution to
Problem 11. Here we discuss a method for this purpose.

Definition 10 ((β,λ) non-strictly outranked solution). A solution x ∈ O such that there is no
y ∈ O fulfilling yPr(β,λ)x is called a (β,λ) non-strictly outranked solution. The (β,λ) non-strictly
outranked frontier of Problem 11 is the set of these solutions.

Remark 3.

(i) With appropriate values of β and λ, a non-strictly outranked solution fulfills Condition A of
Definition 7, that is, the first necessary condition to be the best compromise.

(ii) Condition B of Definition 7 is proved on the non-strictly outranked frontier, using the
outranking strength measure. This measure is described as OS(x) = card {ai ∈ NSF such that
xS(β,λ)ai}, where NSF denotes the (β,λ) non-strictly outranked frontier.

(iii) More than one solution can fulfill the necessary conditions of Definition 7. The solution
selected as the final best compromise should be one with the highest value of the outrank-
ing strength.
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Problem 11 can be solved through the following steps:

1. The individual DM (perhaps helped by a decision analyst) sets their model parameters
according to Assumption 3.

2. The (β,λ) non-strictly outranked frontier is identified by an optimization algorithm;
the set of solutions that fulfill Definition 10 is determined;

3. The DM selects the best compromise solution according to Remark 3.iii.

The optimization algorithm for the step 2 depends on the problem characteristics.
Balderas et al. (2019) proposed an evolutionary algorithm called I-NOSGA for solving
project portfolio optimization problems with several or many interval-valued objective
functions and with an outranking relation defined on the objective space. I-NOSGA
separates each population into non-strictly outranked fronts. An extension of I-NOSGA to
address the optimization problems in this paper is provided in Appendix A.

4.3. Making Judgments of Satisfaction and Dissatisfaction

Let x* be the best compromise solution obtained by an individual DM by exploiting
the interval outranking relation of Section 4.1.

Assumption 4 (capacity to set the limiting boundary between classes). Let Csat and Cdis
denote classes “satisfactory” and “unsatisfactory”, respectively. Consider β > 0.5 (β− > 0.5) and λ
> 0.5 (λ− > 0.5). Taking x* as reference, the DM is able to set a boundary B= {b1, . . . bn} between
Csat and Cdis fulfilling:

i. fj(bk) are real numbers, j = 1, . . . N and k = 1, . . . n;
ii. Each bk (k = 1, . . . n) belongs to Csat;
iii. For all bk belonging to B, we have x*Pr(β,λ)bk;
iv. There is no pair (bi, bk) such that biPr(β,λ)bk.

Let us back to Definition 2, which establishes relations between solutions and the
boundary. Replace β with the interval number β. Assumption 4 guarantees the con-
ditions to apply INTERCLASS-nB (see Section 2.4) to making judgments of satisfaction
and dissatisfaction.

From Definition 2, it follows that xS(β,λ)B⇒ not (BPr(β,λ)x) and BPr(β,λ)x⇒ not
(xS(β,λ)B). If a solution x outranks the limiting boundary B, x is assigned to the best class by
the “pessimistic” procedure (Definition 3); additionally, since xS(β,λ)B⇒ not (BPr(β,λ)x),
x is also assigned to Csat by the “optimistic” procedure (Definition 4) contrarily, if the
boundary is preferred to x, since BPr(β,λ)x⇒ not (xS(β,λ)B), x will be assigned to the worst
class by both assignment rules. If not (xS(β,λ)B and not (BPr(β,λ)x) are both fulfilled, then
x is assigned to Cdis by the “pessimistic” rule and to Csat by the “optimistic” procedure. In
such a case, the DM may be doubtful about the class x should be assigned to.

Assumption 5 (compatibility with INTERCLASS-nB). Suppose that x and its pre-image
satisfy the constraints imposed by the i-th DM. We assume that the DM is willing to accept the
assignment suggested by INTERCLASS-nB.

As a consequence of Assumption 5, even if xS(β,λ)B or not (BPr(β,λ)x), the nonfulfill-
ment of the constraints vetoes a satisfactory assignment. Based on this assumption, the
definitions of what is a satisfactory (non-satisfactory) solution for a DM (who is compatible
with the interval outranking model) are straightforward.

Definition 11. Suppose that an individual DM is compatible with the outranking model of Section 4.
The DM is said to be satisfied with a solution x iff the following conditions are fulfilled:

(a) xS(β,λ)B
(b) x and its pre-image satisfy the constraints imposed by the DM.

Definition 12. Under the same premise of the above definition, the DM is said to be dissatisfied
with a solution x iff at least one of the following conditions is fulfilled:
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(A) BPr(β,λ)x
(B) x and/or its pre-image do not satisfy the constraints imposed by the DM.

Definition 13. The DM is neither satisfied nor dissatisfied with a solution x if the following
conditions are all fulfilled:

1. not (xS(β,λ)B)
2. not (BPr(β,λ)x)
3. x and its pre-image satisfy the constraints imposed by the DM.

It is obvious that the above definitions follow from the INTERCLASS-nB assignment
rules and Assumption 5.

Suppose that the individual DM is satisfied with a solution x. Let us define the
outranking credibility index of x with respect to the boundary B as follows:

σ(x, B, λ) = max {σ(x, bk, λ), k = 1, . . . card(B) (17)

The value of σ can be interpreted as a measure of how much the DM feels satisfaction
with x. The following proposition states several consistency properties of the assignments
from Definitions 11–13.

Proposition 2 (consistency properties of assignments). Under Assumptions 4 and 5, suppose
that x and its pre-image satisfy the constraints imposed by the DM. The following propositions
are valid:

(a) x is assigned to a single element of the set of classes (satisfactory, unsatisfactory, neither
satisfactory nor unsatisfactory).

(b) The assignment suggested for x is independent of the assignment of other solutions.
(c) The class to which x is assigned by the i-th DM is independent of the assignment made by any

other DM.
(d) Let y be a feasible solution. Given λ, if x and y have the same interval outranking credibility

indices with respect to the limiting profiles, then they are assigned to the same element of the
set of classes (satisfactory, unsatisfactory, neither satisfactory nor unsatisfactory).

(e) If there is bk ∈ B fulfilling x = bk, then x is assigned to the satisfactory class.
(f) If there is bk such that xI(β,λ)bk and there is no bi ∈ B fulfilling biPr(β,λ)x, then x is assigned

to the satisfactory class.
(g) If x = x*, then x is assigned to the satisfactory class.
(h) Let y be a feasible solution such that y D(α)x (α ≥ β). If x is assigned to the satisfactory class,

then y is assigned to the same class.

Proof.

Proposition 2(a): The proof follows from two facts: (i) x has to fulfill one of the three
Definitions 11–13, and (ii) the fulfillment of one definition excludes
fulfillment of another.

Proposition 2(b): The proof is obvious from Definitions 11–13.
Proposition 2(c): The proof is obvious from Definitions 11–13.
Proposition 2(d): The proof is obvious from Definitions 11–13.
Proposition 2(e): x = bk, Assumption 4.i, Remark 2.a, Definition 2.i and Assumption 4.iv

⇒ xS(β,λ)B x is feasible and xS(β,λ)B⇒ x is satisfactory for the DM
(Definition 11).

Proposition 2(f): xI(β,λ)bk ⇒ xS(β,λ)bk (Definition 1.iii) xS(β,λ)bk and there is no bi ∈
B such that biPr(β,λ)x ⇒ xS(β,λ)B (Definition 2.i) x is feasible and
xS(β,λ)B⇒ x is satisfactory for the DM (Definition 11).



Appl. Sci. 2021, 11, 4575 14 of 36

Proposition 2(g): The proof follows trivially from Assumption 4.iii, Definition 2.i and
Definition 11.

Proposition 2(h): x is assigned to Csat ⇒ xS(β,λ)B from Definition 11⇒ ∃ bk ∈ B such
that xS(β,λ)bk and there is no bi ∈ B with biPr(β,λ)x.

A. From Proposition 1.i and Remark 2.b, yD(α)x (α ≥ β) and xS(β,λ)bk ⇒ yS(β,λ)bk.
B. There is no bi ∈ B with biPr(β,λ)x and y D(α)x (α ≥ β) ⇒ There is no bi ∈ B with

biPr(β,λ)y counter-reciprocal of Proposition 1.ii.

�

Combining (A) and (B), we have yS(β,λ)B (Definition 2.i) ⇒ y is assigned to Csat
(Definition 11). The proof is finished.

It should be noticed that the first condition in Assumption 4 (real values in the limiting
actions) is required to prove Property 2.e and thus achieving consistency with Condition
ii in Assumption 5. From Propositions 2.e and 2.f, it follows that a solution only slightly
different from any bk ∈ B should be considered as satisfactory by the DM.

5. Model for a DM Whose Preferences Are Compatible with a Weighted-Sum Function

5.1. The Preference Model

In this section, we suppose that the i-th DM’s preferences are compatible with a simple
interval weighted-sum value function of the form:

U = Σwjfj (j = 1, . . . N) (18)

In Equation (18), U is an interval number that is calculated through the arithmetic
operations defined in Section 2.3. We refer to a generic DM, and for simplicity, we avoid
the use of the subscript “i”.

Assumption 6 (modeling arbitrariness and ill-definition of parameters). The DM is will-
ing to set a weighted-sum function model in terms of weights and objective function values. With the
purpose of modeling imperfect information, those magnitudes will be considered as interval numbers.

This assumption was implicitly made by Liesio et al. (2007, 2008) and Fliedner and
Liesio (2016) in the frame of project portfolio optimization.

Remark 4. Let us consider a pair (x,y) in the objective space of Problem 11. The conditions P(U(x)
≥ U(y)) > 0.5 or xD(0.5)y may not suffice to guarantee a credible preference favoring x over y.
However, there should be a credibility threshold α > 0.5 such that P(U(x) ≥ U(y)) ≥ α and/or
xD(α)y are good arguments to justify a credible preference.

Definition 14 (α-preference). Given a pair (x,y) in the objective space of Problem 11 and α a real
number greater than 0.5, we say that x is α-preferred to y iff at least one of the following conditions
is fulfilled:

a. P(U(x) ≥ U(y)) ≥ α
b. xD(α)y

5.2. Identifying the Best Compromise Solution to Problem 11 with the Functional Preference Model

We follow here a rather similar way as in Section 4.2 to make operational Assumption
2 in the frame of the functional model of preferences.

Definition 15 (α non-strictly outranked solution). A solution x ∈ O will be called α non-
strictly outranked iff there is no y ∈ O such that y is α-preferred to x. The set of these solutions is
called the α non-strictly outranked frontier of Problem 11.
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Remark 5.

I. With an appropriate value of α, a non-strictly outranked solution from Definition 15 fulfills
Condition A of Definition 7, that is, the first necessary condition to be the best compromise
solution of Problem 11.

II. Condition B of Definition 7 is verified through a value strength measure on the non-strictly
outranked frontier. This measure is defined as VS(x) = card {y ∈ NSF such that x is
0.5-preferred to y}, where NSF denotes the α non-strictly outranked frontier.

III. Several solutions can fulfill the necessary conditions of Definition 7. The final best compro-
mise should be one of the solutions with the highest measure VS.

Under the interval value function approach, Problem 11 can be solved through the
following steps:

1. The individual DM (perhaps helped by a decision analyst) sets the interval weights in
Equation 18 and the α value.

2. An optimization algorithm is used to identify the α non-strictly outranked frontier.
3. The set of solutions that fulfill Definition 10 is identified.
4. The DM selects the best compromise solution according to Remark 5.III.

Similarly to Section 4, the appropriate optimization algorithm in the second step
depends on the characteristics of the problem. For combinatorial problems like project
portfolio optimization, we can exploit the α-preference defined on O × O with only slight
changes with respect to the I-NOSGA proposed in [38] (see Appendix A for a detailed de-
scription).

5.3. Making Judgments of Satisfaction and Dissatisfaction with the Functional Model

We will present here an idea that is, to a certain extent, similar to the one on which
INTERCLASS-nB and the proposal in Section 4.3 are inspired. If the DM is capable of
setting a limiting boundary between the two classes, all feasible solutions preferred to the
boundary should be assigned to the best class and vice versa.

Formally: Let x* be the best compromise solution obtained by the individual DM
following the procedure exposed in the previous section.

Assumption 7 (capacity to set the limiting boundary between classes). Let Csat and Cdis
denote classes “satisfactory” and “unsatisfactory”, respectively. Consider a sufficiently high value
of the credibility threshold α. Taking x* as reference, the DM is able to set a limiting boundary B=
{b1, . . . bn} between Csat and Cdis fulfilling:

i. For all bk belonging to B, we have x* is α-preferred to bk;
ii. There is no pair (bi, bk) in B × B such that bi is α-preferred to bk;
iii. For all bk belonging to B, the DM hesitates about its assignment.

Definition 16 (α-preference between a solution and the boundary).

(a) x is α-preferred to B iff there is bk ∈ B such that x is α-preferred to bk and there is no bi ∈ B
such that bi is α-preferred to x.

(b) The boundary B is α-preferred to x iff there is bk ∈ B such that bk is α-preferred to x and there
is no bi ∈ B such that x is α-preferred to bi.

Definition 17. Consider x ∈ O and bk ∈ B. The credibility index of the statement “x is preferred to
bk” is defined as σP (x, bk) = Maximum χ fulfilling at least one of the following conditions:

a. P(U(x) ≥ U(bk)) = χ
b. xD(χ)bk

The credibility index σP (x, B) of the statement “x is preferred to the boundary B” is
defined as:

σP (x, B) = Max {σP (x, bk)}, k = 1, . . . card (B) (19)
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σP (x, B) can be interpreted as the degree of credibility of the statement “x is preferred
to the boundary by the i-th DM”.

Definition 18. Suppose that an individual DM is compatible with the weighted-sum function
model and Assumptions 6 and 7. The DM is said to be satisfied with a solution x iff the following
conditions are fulfilled:

- x is α-preferred to the Boundary B;
- x and its pre-image fulfill the constraints imposed by the DM.

Definition 19. Suppose that an individual DM is compatible with the weighted-sum function
model and Assumptions 6 and 7. The DM is said to be dissatisfied with a solution x if at least one of
the following conditions is fulfilled:

- B is α-preferred to x;
- x and/or its pre-image do not fulfill the constraints imposed by the DM.

Definition 20. The DM is neither satisfied nor dissatisfied with a feasible solution x iff the following
conditions are held:

- x is not α-preferred to the Boundary B;
- B is not α-preferred to x.

Proposition 3 (consistency properties of assignments). Suppose that x is feasible. The
following propositions are valid:

(a) x is assigned to a single element of the set of classes (satisfactory, unsatisfactory, neither
satisfactory nor unsatisfactory).

(b) The assignment suggested for x is independent of the assignment of other solutions.
(c) The class to which x is assigned to by the i-th DM is independent of the assignment made by

any other DM.
(d) If there is bk ∈ B fulfilling x = bk, then x is neither satisfactory nor unsatisfactory.
(e) If x = x*, then x is assigned to the satisfactory class.
(f) Suppose that x is α-preferred to all bk ∈ B. Let y be a feasible solution such that yD(α)x. Then

y is assigned to the satisfactory class.

Proof.

Proposition 3(a): The proof is obvious from Definitions 16, 18, 19, and 20.
Proposition 3(b): The proof is obvious from Definitions 16, 18, 19, and 20.
Proposition 3(c): The proof is obvious from Definitions 16, 18, 19, and 20.
Proposition 3(d): From the way in which B is built (Assumption 7), there is no bi ∈ B

such that bk is α-preferred to bi or bi is α-preferred to bk. Then, bk is not
α-preferred to B and B is not α-preferred to bk (Definition 16). From Defi-
nition 20, it follows that bk is neither satisfactory nor unsatisfactory.

Proposition 3(e): The proof follows from Definitions 16 and 18 and the way in which
the limiting boundary is built (Assumption 7).

Proposition 3(f): It is evident that y D(α)x and P(U(x) ≥ U(bk)) ≥ α⇒ P(U(y) ≥ U(bk))
≥ α. In addition yD(α)x and xD(α)bk⇒ yD(α)bk from transitivity of
dominance (Proposition 1.v). Hence, y is α-preferred to the Boundary
B (Definitions 14 and 16). From Definition 18, y is assigned to the
satisfactory class. The proof is finished.

�
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Remark 6.

(a) Unlike the proposal in Section 4, the solutions in the limiting boundary do not belong to any
class. Objectives of these solutions may be described by interval numbers, what gives more
flexibility to the DM and may reduce their cognitive effort.

(b) Proposition 3.d is consistent with Condition iii of Assumption 7. It follows that a solution only
slightly different from any bk ∈ B should be considered neither satisfactory nor unsatisfactory
by the DM.

6. Summary of the Method

The models and methods described in Sections 4 and 5 are alternatives. The DMs
may select the model of preferences they feel more compatible with. Each DM sets their
own model parameters, solves their own Problem 11, identifies their best compromise, and
defines their limiting boundary according to Assumption 4 or Assumption 7. Then, it is
possible to evaluate the number of satisfied and dissatisfied DMs, exploring the decision
variable space to solve Problem 1. Since the preference models and their parameters differ
from two disjoint subsets of the whole group, the consensus reaching process should be
carried in different subgroups.

The proposal maintains its validity even if the DMs face different optimization prob-
lems (with different objectives and constraints) but with common decision variables ranging
in the intersection of the feasible regions of each DM optimization problem. The main
reasons for such a general performance come from Propositions 2.c and 3.c and the inde-
pendent way in which each DM sets their limiting boundary and defines what a satisfactory
(unsatisfactory) solution is. The specific characteristics, preferences, and judgments from
each DM influence on determining whether particular solutions are satisfactory or not
for the respective group member. The collective final decision comes from optimizing
(Nsat, Ndis) in Problem 1, but the calculation of these objectives is made by aggregating the
independent assignments of all the DMs.

It should be underlined that the proposal is, to a great extent, robust with respect
to malicious intents of manipulation from some group members. To analyze this issue,
suppose that some DMs are interested in manipulating the final solution. To achieve
this, they should try (providing insincere information), to increase Nsat(z*) and reduce
Ndis(z*) in the points z* where they are really satisfied, and to decrease Nsat(z**) and increase
Ndis(z**) in the points z** where they are really dissatisfied. The information required from
them is basically of three kinds: (i) parameters of their preference model; (ii) solutions
describing the limiting boundary between classes “satisfactory” and “unsatisfactory”; (iii)
their constraints and objective values. This information determines if the DMs are satisfied
or dissatisfied and counted in Nsat or Ndis. If they report insincere information on any of
the three previous aspects, solutions that are really satisfactory for them could become
unsatisfactory according to the model, and vice versa. This does not contribute to reaching
a final solution really satisfactory for the DMs that provide insincere information. In
addition, each DM should be impeded to know the limiting boundaries elicited by other
DMs. Under this restriction, the i-th DM cannot evaluate solutions from the point of view
of other DMs, being thus unable to determine what insincere information should provide
for maliciously influencing other opinions. Therefore, during collective discussions, the
i-th DM should defend their real preferences and beliefs and try to convince others.

The method for finding the maximum consensus can be summarized as steps:

1. Helped by a decision analyst/moderator, the DMs select the model of multi-criteria
preferences that they consider as more appropriate. The group is separated into two
disjoint subgroups in correspondence to the model of preferences that were chosen
by each DM.

2. In each subgroup, under the guidance of the moderator, the DMs bring their positions
closer. They exchange opinions about the objective functions to consider, the objective
values, the related model’s parameter values, levels of conservatism, and constraints.
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3. Each group member sets their multi-objective optimization problem (Problem 11)
and their model’s parameter values. Interval numbers can be used according to
Assumptions 1, 3, and 6.

4. According to Assumption 2, each group member obtains their best compromise
solution by solving Problem 11.

5. Each DM sets their limiting boundary in correspondence to Assumption 4 (when the
DM is compatible with the outranking model) and Assumption 7 (for DMs compatible
with the functional model).

6. Applying the classification models of Sections 4 and 5, the moderator finds non-
dominated solutions (Nsat, Ndis) of Problem 1.

7. If there is no solution of good agreement, further discussions in each subgroup are
needed to close divergent beliefs, preference parameters, and constraint settings. We
need to update these data.

8. The DMs should judge whether, given the updated data, they want to modify their
limiting boundary. In the case of “yes”, restart the process in Step 5. In the case of
“no”, restart the process in Step 6. If a good consensus (Nsat, Ndis)* is found, then:

9. If the pre-image of (Nsat, Ndis)* is a single point in the decision variables space, this
point corresponds to the best consensus, and the process finishes. Else:

10. Apply some additional criterion to select a single pre-image of (Nsat, Ndis)*. The
process finishes.

The method is based on seven assumptions. Table 1 summarizes the set of assumptions
and their role within the approach.

Table 1. Summary of assumptions.

It’s Subject Allows Related to

Assumption 1 Interval numbers as model of imprecisions Modeling imprecision Steps 1–2
Assumption 2 Capacity to identify the best compromise Identifying best compromises Step 4
Assumption 3 Compatibility with an outranking model Preference modeling Step 1

Assumption 4 Capacity to set the limiting boundaries related
to the outranking model Identifying limiting boundaries Step 5

Assumption 5 Compatibility with INTERCLASS-nB Assigning solutions to classes of
satisfaction/dissatisfaction Step 6

Assumption 6 Compatibility with an interval value function Preference modeling Step 1

Assumption 7 Capacity to set the limiting boundaries related
to the value function model Identifying limiting boundaries Step 5

All the DMs should accept Assumptions 1 and 2. DMs who are compatible with the
outranking model should agree to Assumptions 3–5, whereas the other DMs should accept
Assumptions 6 and 7.

Remark 7.

i. In the case of project portfolio optimization, the computational cost depends mainly on Step 4.
The computational complexity of this step is linear with respect to the number of applicant
projects (see the description of the I-NOSGA algorithm in Appendix A).

ii. Handling group interactions in Steps 1, 2, and 7 is the main difficulty to extend the proposal to
problems with many DMs. In such problems, Steps 3, 4, 5, and 8 should be performed by each
DM in an independent and parallel way. Parallel processing in Step 4 is strongly recommended.
Steps 9 and 10 are independent of the number of group members. The computational effort in
Step 6 is, at most, proportional to the number of DMs (see Appendix C). Therefore, with some
modifications in Steps 1, 2, and 7, the proposal can be used in large-scale GDM-MOPs.
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iii. In Step 7, in order to accept a solution as a good consensus, the group may agree previously
appropriate values of Nsat and Ndis to represent what a strong majority and a weak minority
mean, respectively.

iv. In Step 10, there could be several (even many) pre-images of the best consensus (Nsat, Ndis)*.
To choose a single one, the group and/or its moderator can use different points of view (e.g.,
impacts of the solutions, resource consumption, who are the satisfied and dissatisfied DMs,
number of supported projects in case of portfolio optimization, etc.). Perhaps the most elegant
way is a logical approach based on the outranking credibility index of a solution with respect
to the limiting boundary (see Equations (17) and (19)).

Let us denote as zG1, . . . , zGL the points in the decision variable space, which are all
pre-image of the best consensus (Nsat, Ndis)*. Let Cag denote the agreeing coalition (the set
of group members who are satisfied with the image of zGk). In the paragraph below, we use
“i” (respectively “j”) for the DMs who are compatible with the outranking (resp. weighted
sum functional) model.

If we denote as ZGki (resp. ZGkj) the image of zGk in the original objective space Oi
(resp. Oj), σi (ZGki, Bi, λi) (resp. σPj(ZGkj, Bj)) can be interpreted as the degree of truth of
the predicate “the i-th DM (resp. the j-th DM) considers that ZGki (resp. ZGkj) outranks
the limiting boundary Bi (resp. Bj)”. Then, the degree of truth of the predicate “all the
DMs belonging to the agreeing coalition consider that ZGki (resp. ZGkj) outranks the related
limiting boundary” can be calculated as the conjunction of all the values σi(ZGki, Bi, λi) and
σPj(ZGkj,Bj), where “i” (resp. “j”) is the index of the i-th DM (resp. the j-th DM) within the
agreeing coalition. Such a truth value is calculated as:

µsat(zGk) = min{σi(ZGki, Bi, λi), σPj(ZGkj, Bj)}
i, j ∈ Cag

(20)

Remark 8. Although the proposal exhibits remarkable advantages in comparison with previous
approaches to group multi-objective optimization, it can be still criticized from the following points:

• To set the limiting boundaries could be a hard cognitive task for DMs; it would be
more complex in large scale problems.

• The bi-objective measure of collective satisfaction/dissatisfaction does not contain
information about which DMs are strongly (dis)satisfied. This information can be
important to discriminate among non-dominated solutions of Problem 1. Perhaps the
multi-criteria ordinal classification method should take into account more classes of
satisfaction/dissatisfaction, but this would require much more cognitive effort from
the DMs in defining more limiting boundaries.

• The role of the moderator is crucial in choosing the final consensus decision among
the non-dominated solutions of Problem 1. A model of consensus agreed by the group
would be welcome. Such a model should aggregate the information about satisfac-
tion/dissatisfaction, thus helping to make the final choice among non-dominated
solutions to Problem 1.

7. An Illustrative Example of Project Portfolio Optimization

In this section, we will apply both models of multi-criteria preferences to the many-
objective project portfolio optimization problem addressed by Balderas et al. (2019). For
simplicity of our illustrative purpose and with a little loss of generality, we consider
that all the DMs are compatible with the same model (interval outranking or interval
weighted-sum function).

The case study involves 100 applicant social projects whose impacts are described by
nine objectives. We suppose that all the DMs agree on the same set of objective functions.
The description of the project impacts and their budget requirements are shown in: https:
//www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0 (accessed on
12 May 2021).

https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
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The objectives are the number of beneficiaries identified per social group and the
level of impact of this benefit. The group is integrated by 10-equally important DMs, who
may interact several rounds until reaching consensus. Consistently with Assumption 1,
let us suppose that in the first interaction, the moderator achieved an initial agreement
of the DMs on the project impacts and budget requirements, given as interval numbers.
These intervals, specified in dollars, represent the variability of the DM’s judgments and
beliefs. Derived from the first interactive round, the feasible region, which is defined by
the available budget, is set as the interval [240,260] million dollars.

7.1. Solution When All the DMs Accept the Interval Outranking Model and Its Assumptions

Based on Assumption 3, the parameter values of the model (specified by the group
members) are shown in Table A2 (See Appendix B). Weights and vetoes are the same as
in [38].

Problem 11 was solved by each group member through the procedure explained in
Section 4.2 and the evolutionary algorithm in Appendix C with the parameters given in
Table A2a–c. The best compromise solution was identified by each DM (Assumption 2),
as shown in Table 2. The conditions under which our computer experiments were carried
out are the following: (1) the algorithms were implemented using the Java programming
language and run on a computer with Intel Core i7-6700HQ 2.6 GHz CPU, 8 GB of RAM,
and Windows 10 Pro operating system; and (2) the solutions were obtained from 30
independent runs. The parameter values for the algorithms were tuned through a cover-
ing array experimental design [58]. The involved factors were population size, number
of evaluations of the objective function vector and mutation probability, with levels of
{50, 100, 200}, {10,000, 100,000, 200,000} and {0.01, 0.02, 0.05}, respectively. The results from
the fine-tuning process indicated as the best configuration the following values: Population
size = 100, number of evaluations = 100,000, and mutation probability = 0.02. The time
required by the extended I-NOSGA to solve Problem 11 per group member was of 153 min
and 56 s.

Taking their best compromise as an ideal reference, the DMs selects their associated
limiting boundary between Csat and Cdis. Each boundary is composed of three solutions
that fulfill the conditions in Assumption 4. The boundaries are described in Table A3 in
Appendix B.

There is (β,λ)-preference favoring the best compromise in its comparison with the solu-
tions in the limiting boundary (Condition iii in Assumption 4), but there is no α-dominance.

Now, for identifying the best consensus, we should solve Problem 1. We use MOEA/D,
whose brief description can be found in Appendix C. This algorithm found two solutions
in the decision variable space, both fulfilling Nsat = 9 and Ndis = 0. In the objective space,
such solutions are given in Table 3. The time consumed by MOEA/D to solve Problem 1
was 35 min and 59 s.

There is no dissatisfaction with such solutions. All the DMs are satisfied except a
single one who is neither satisfied nor dissatisfied. It is a high consensus level that may be
accepted as the final collective decision. However, we suppose that the group moderator
wishes to carry on a consensus reaching step to close even more the group judgments
and beliefs.

Suppose that, under the guidance from the moderator; the group members make
closer criterion weights, veto thresholds, credibility thresholds α, β, and ξ, and the required
budget per project. We made a computer simulation of this consensus round as follows:
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The procedure in Algorithm 1 is applied for Parameter p in the set MP = {lower bound
of wj (j = 1, . . . , 9), upper bound of wj (j = 1, . . . , 9), lower bound of vj (j = 1, . . . , 9), upper
bound of vj (j = 1, . . . , 9), lower bound of β, and upper bound of β, α, ξ}.

Algorithm 1. Consensus Round Simulation

For each p in MP
Let pi be the value of Parameter p set by the i-th DM.
Let pa denote the average value of p on the set of DMs.
Repeat from i = 1 to 10
Calculate d = pi − pa
If d > 0, update pi as pi − d/2
If d < 0, update pi as pi + |d/2|
If d = 0, then pi keeps its value
End of Repeat
End of For

Applying Algorithm 1, the distance between the previous value of p from the i-th
DM and the average value of such a parameter on the set of DMs is reduced by half.
The interval budget required by projects is updated from their original values (see https:
//www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0 (accessed on
12 May 2021)) in such a way that the new interval number has the same middle point but
whose length is reduced by half. The updated weights, vetoes, and credibility thresholds
are provided by Table A4a–c, and the updated budget per project is shown in Table A5 (see
Appendix B). λ remains the same as in Table A2c.

With the updated values, again, MOEA/D is used in solving Problem 1. Since pref-
erences, attitudes facing imperfect knowledge, and judgments from the DMs are closer
than before; the optimization problem is now more relaxed. The ideal consensus Nsat = 10,
Ndis = 0 is achieved, with many pre-images in the decision variable space. In this example,
the solutions satisfying the ideal consensus are ordered following the values of µsat in
Equation (20). The first ranked solutions are shown in Table 4.

The values σi(ZGki, Bi, λi) from Equation 17 are provided by Table A6 (see Appendix B).
These values represent measures of the level of satisfaction for each group member.

https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
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Table 2. Best compromise solution for each DM (the i-th row corresponds to the i-th DM).

O1 O2 O3 O4 O5 O6 O7 O8 O9

1,234,925 1,337,795 995,015 1,077,935 1,417,065 1,535,135 929,930 1,007,440 1,507,725 1,633,405 1,211,330 1,312,210 1,925,345 2,085,795 1,365,315 1,479,045 1,658,795 1,796,975
1,259,905 1,364,855 975,365 1,056,625 1,474,745 1,597,625 959,470 1,039,430 1,480,450 1,603,850 1,279,330 1,385,880 1,904,455 2,063,165 1,486,095 1,609,895 1,633,700 1,769,780
1,239,515 1,342,765 1,024,090 1,109,430 1,449,225 1,569,975 924,815 1,001,875 1,643,530 1,780,530 1,255,190 1,359,740 2,009,685 2,177,205 1,358,450 1,471,650 1,661,035 1,799,395
1,189,995 1,289,115 1,060,215 1,148,545 1,425,755 1,544,545 938,105 1,016,275 1,600,580 1,734,010 1,312,095 1,421,375 1,984,560 2,149,970 1,370,165 1,484,325 1,610,035 1,744,125
1,215,945 1,317,235 1,010,400 1,094,590 1,429,165 1,548,235 927,465 1,004,755 1,634,045 1,770,235 1,234,430 1,337,260 1,992,975 2,159,115 1,383,445 1,498,725 1,647,005 1,784,205
1,169,800 1,267,240 1,015,325 1,099,915 1,442,685 1,562,875 962,570 1,042,800 1,586,845 1,719,105 1,211,310 1,312,200 2,012,250 2,179,980 1,445,540 1,565,980 1,576,135 1,707,435
1,211,085 1,311,975 1,026,425 1,111,955 1,394,220 1,510,390 910,105 985,945 1,588,335 1,720,725 1,216,135 1,317,415 1,948,120 2,110,500 1,358,375 1,471,545 1,663,015 1,801,545
1,245,805 1,349,585 969,110 1,049,850 1,471,245 1,593,835 946,720 1,025,610 1,538,740 1,667,020 1,231,455 1,334,015 1,820,550 1,972,310 1,392,165 1,586,475 1,596,360 1,729,340
1,139,045 1,233,925 1,034,565 1,120,765 1,377,385 1,492,165 925,280 1,002,380 1,507,990 1,633,660 1,215,730 1,317,000 1,903,360 2,061,980 1,429,490 1,548,590 1,584,005 1,715,955
1,262,100 1,367,230 1,030,870 1,116,770 1,385,135 1,500,545 931,350 1,008,950 1,629,665 1,765,505 1,201,845 1,301,955 1,932,615 2,093,685 1,392,655 1,508,695 1,628,245 1,763,875

Table 3. Best consensus solution to Problem 1 with Nsat = 9 and Ndis = 0.

O1 O2 O3 O4 O5 O6 O7 O8 O9

1,199,230 1,299,120 1,038,945 1,125,525 1,431,025 1,550,265 909,215 984,995 1,546,755 1,675,685 1,243,915 1,347,515 1,939,700 2,101,360 1,355,805 1,468,735 1,647,945 1,785,225

1,210,965 1,311,855 1,048,275 1,135,635 1,411,335 1,528,925 908,875 984,625 1,524,965 1,652,065 1,243,445 1,346,995 1,955,170 2,118,120 1,346,425 1,458,585 1,633,100 1,769,130

Table 4. Best ranked solutions to Problem 1 with Nsat = 10 and Ndis = 0 (after the consensus round).

O1 O2 O3 O4 O5 O6 O7 O8 O9 µsat

1,283,185 1,390,075 1,045,960 1,133,110 1,468,445 1,590,815 924,670 1,001,730 1,568,155 1,698,875 1,253,555 1,357,965 1,922,775 2,083,025 1,429,465 1,548,565 1,646,745 1,783,915 0.8345
1,219,040 1,320,580 1,041,655 1,128,455 1,471,845 1,594,475 922,825 999,735 1,587,925 1,720,275 1,291,315 1,398,885 2,028,640 2,197,730 1,431,800 1,551,090 1,640,255 1,776,895 0.8068
1,241,255 1,344,665 997,255 1,080,345 1,491,285 1,615,545 922,435 999,305 1,513,260 1,639,390 1,301,545 1,409,955 1,949,135 2,111,575 1,426,035 1,544,825 1,655,110 1,792,980 0.7984
1,222,780 1,324,630 1,053,970 1,141,790 1,463,215 1,585,125 925,105 1,002,195 1,644,730 1,781,850 1,262,320 1,367,460 1,976,335 2,141,065 1,357,765 1,470,895 1,642,285 1,779,075 0.7910
1,257,785 1,362,565 1,043,480 1,130,430 1,462,865 1,584,755 913,840 989,990 1,639,715 1,776,395 1,245,910 1,349,680 2,005,805 2,172,985 1,392,880 1,508,940 1,641,615 1,778,365 0.7880

Table 5. Best compromise solution for each DM (the i-th row corresponds to the i-th DM).

O1 O2 O3 O4 O5 O6 O7 O8 O9

1,172,035 1,269,655 935,955 1,013,925 1,293,390 1,401,160 921,260 998,020 1,703,365 1,845,315 1,059,975 1,148,295 1,831,405 1,984,095 1,366,425 1,480,285 1,420,215 1,538,515
1,210,295 1,311,165 989,555 1,072,025 1,322,445 1,432,625 899,420 974,370 1,607,385 1,741,335 1,165,840 1,262,970 1,915,940 2,075,640 1,451,480 1,572,410 1,478,550 1,601,720
1,169,955 1,267,395 1,012,675 1,097,065 1,366,235 1,480,075 871,970 944,640 1,771,940 1,919,620 1,191,690 1,290,980 1,874,150 2,030,360 1,469,130 1,591,510 1,433,435 1,552,855
1,202,270 1,302,430 1,006,320 1,090,160 1,393,975 1,510,105 897,320 972,100 1,566,755 1,774,835 1,163,860 1,260,850 1,914,190 2,073,740 1,462,680 1,584,530 1,479,985 1,603,305
1,210,395 1,311,205 1,005,315 1,089,095 1,379,125 1,494,045 843,045 913,305 1,668,500 1,807,560 1,184,000 1,282,630 1,869,795 2,025,655 1,465,640 1,587,720 1,392,025 1,507,935
1,134,520 1,228,990 1,002,865 1,086,435 1,283,820 1,390,790 864,205 936,225 1,667,285 1,806,245 1,098,580 1,190,120 1,872,725 2,028,815 1,356,185 1,469,155 1,448,755 1,569,405
1,172,035 1,269,655 935,955 1,013,925 1,293,390 1,401,160 921,260 998,020 1,703,365 1,845,315 1,059,975 1,148,295 1,831,405 1,984,095 1,366,425 1,480,285 1,420,215 1,538,515
1,142,135 1,237,275 930,485 1,008,005 1,331,435 1,442,355 876,760 949,810 1,619,515 1,826,155 1,147,440 1,243,030 1,905,355 2,064,205 1,465,220 1,587,270 1,451,000 1,571,890
1,157,660 1,254,110 981,860 1,063,670 1,363,505 1,477,115 890,910 965,140 1,535,575 1,663,575 1,182,040 1,280,510 1,775,935 1,923,955 1,396,465 1,512,805 1,434,775 1,554,305
1,164,705 1,261,715 962,750 1,042,940 1,275,670 1,381,990 860,665 932,405 1,605,355 1,739,175 1,141,455 1,236,555 1,822,560 1,974,440 1,452,580 1,573,600 1,411,810 1,529,430
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7.2. Solution When All the DMs Accept the Interval Dum Function Model and Its Assumptions

The criterion weights in this model are in general different from the weights in an
outranking model. Based on Assumption 6, for simplicity and without loss of generality,
we set in this Section the same values provided by Table A2a. The model of Section 5
requires credibility thresholds α and ξ. These are set as in Table A2c. Specifications about
projects and requirements are the same as in https://www.dropbox.com/s/t80u9kbdcub6
jua/Projects%20Description.pdf?dl=0 (accessed on 12 May 2021).

Problem 11 was solved by each group member through the procedure explained in
Section 5.2 and the evolutionary algorithm in Appendix C with the parameters given
in Table A2a,c. According to Assumption 2, the best compromise solution for each DM
was determined, as shown in Table 5. Under the same conditions defined in the previous
experiments, the extended I-NOSGA algorithm required 37 min and 47 s per group member
to solve Problem 11.

With their best compromise as an ideal reference, the DMs identify their associated
limiting boundary between Csat and Cdis. Each boundary is composed of three solutions
that fulfill the conditions in Assumption 7. The boundaries are detailed in Table A7 in
Appendix B.

Once the limiting boundaries have been set, the evaluation of functions Nsat and Ndis
is straightforward through Definitions 18–20. Using MOEA/D (see Appendix C), a single
non-dominated solution of Problem 1 was found, with Nsat = 6, Ndis = 0. In the original
nine-objective space, this solution is given in Table 6.

As in Section 7.1, suppose that, under the guidance from the moderator, the group
members make closer criterion weights, credibility thresholds α and ξ, and the required
budget per project. Our computer simulation of this consensus round, similarly to
Section 7.1, is performed through Algorithm 1. Here, the procedure in Algorithm 1 is
applied for Parameter p in the set MP = {lower bound of wj (j = 1, . . . , 9), upper bound of wj
(j = 1, . . . , 9), α, ξ}. Since the simulation algorithm is identical, the updated parameters are
the same as in Table A4a,c. The interval budget required by projects is updated identically
to the way followed in Section 7.1 (see the updated values in Table A5, Appendix B).

Solving Problem 1, again, MOEA/D identified many solutions in the decision variable
space, which satisfies the best consensus Nsat = 10 and Ndis = 0. To select a small subset of
solutions, we use the “min” operator for conjunction as in Equation 20. The first ranked
consensus solutions are provided in Table 7.

The values σPi(ZGki, Bi) from Equation 19 are shown in Table A8 (see Appendix B).
These represent the level of satisfaction for each DM.

Remark 9. The example has illustrated the importance of the assumptions on which the proposal
is based, the way to build and use both model of multi-criteria preferences, the search for optimum
consensus solutions, the handle of imperfect information through interval numbers, and the modeling
of conservatism from individual DMs when they face this imperfect information. For simplicity and
space consumption reasons, the example assumed that all the DMs face the same set of objective
functions, and consider the same resource consumption per project and the same resource availability,
although the DMs may have their own conservatism attitude concerning these issues; the ill-
definition of proper collective judgments is modeled by interval numbers.

https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
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Table 6. Best consensus solution to Problem 1 with Nsat = 6 and Ndis = 0.

O1 O2 O3 O4 O5 O6 O7 O8 O9

1220175 1321785 1014920 1099490 1376910 1491640 893130 967550 1660130 1798520 1172815 1270545 1897530 2055690 1450070 1649190 1470300 1592790

Table 7. Best ranked solutions to Problem 1 with Nsat = 10 and Ndis = 0 (after the consensus round).

O1 O2 O3 O4 O5 O6 O7 O8 O9 µsat

1,223,260 1,325,180 1,026,360 1,111,900 1,455,145 1,576,405 905,975 981,465 1,590,645 1,723,195 1,201,815 1,301,915 1,980,240 2,145,280 1,458,810 1,580,330 1,603,185 1,736,745 0.7087
1,205,000 1,305,400 1,023,920 1,109,250 1,452,195 1,573,215 918,285 994,805 1,574,665 1,705,875 1,218,895 1,320,415 1,963,310 2,126,930 1,451,450 1,572,360 1,605,365 1,739,105 0.7069
1,218,835 1,320,385 1,000,750 1,084,130 1,486,750 1,610,620 902,530 977,760 1,577,835 1,709,335 1,223,220 1,325,120 1,886,760 2,044,020 1,436,160 1,555,800 1,630,050 1,765,860 0.7026
1,209,115 1,309,855 1,006,320 1,090,170 1,500,955 1,626,005 906,960 982,560 1,558,585 1,688,475 1,253,740 1,358,180 1,901,730 2,060,230 1,428,970 1,548,010 1,597,895 1,731,025 0.7019
1,218,590 1,320,110 1,020,780 1,105,840 1,434,715 1,554,285 929,865 1,007,325 1,618,785 1,753,695 1,226,165 1,328,295 1,895,680 2,053,670 1,468,330 1,590,660 1,582,605 1,714,455 0.7015
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8. Concluding Remarks

The criticisms to GDM-MOP approaches discussed in the introduction have been
basically overcome. To our knowledge, this paper has presented one of the most compre-
hensive approaches to group multi-objective optimization under imperfect information. Its
remarkable generality is supported by several important features: (a) some group members
may be compatible with an outranking model of preferences, but other ones may feel
comfortable with a preference model based on a weighted-sum value function; (b) the use
of outranking models allows to handle veto situations, incomparability and intransitive
preferences, whereas the value function model is more appropriate for compensatory aggre-
gation of preferences; (c) some (even all) objective values maybe not the same for different
group members; (d) group members may consider their own set of objective functions and
constraints; (e) objective values may be imprecise or uncertain; (f) imperfect information
on available resources and requirements may be handled; and (g) each group member
may have their own perception about the availability of resources and the requirement of
resources per activity. It should be remarked that, although the problem was formulated in
terms of maximization with resource constraints as in project portfolio optimization, the
extension of the method to other formulations is straightforward.

Another important feature is related to the definition of what a satisfied group mem-
ber is. Unlike other group decision making approaches, that definition is independent
of the satisfaction stage of other group members. In this paper, the group members’
stage of satisfaction/dissatisfaction is assigned by using multi-criteria ordinal classifica-
tion approaches. These assignments fulfill several consistency properties whose theo-
retical proofs have been provided by the paper. The level of group satisfaction is rep-
resented by a bi-objective measure containing the number of group members who are
satisfied/dissatisfied with each particular solution. Taking as bases (i) a limiting boundary
(set by each group member) between classes “satisfactory” and “unsatisfactory”, (ii) an
outranking/preference relation, and (iii) an algorithm able to optimize the bi-objective
measure of satisfaction/dissatisfaction, the method is capable of finding (within the deci-
sion variable space) the highest group satisfaction related to each particular stage of the
consensus reaching process.

The whole approach is based on seven reasonable assumptions. The first two assump-
tions are common to both models of preferences (outranking and weighted-sum function).
Assumptions 3–5 support the outranking model, whereas Assumptions 6–7 are basic for the
functional model. Assumptions 4 and 7 show only a very slight difference; Assumptions 3
and 6 play the same role in each model of multi-criteria preferences.

In our approach, a good consensus is associated with a high level of satisfaction
and a very low level of dissatisfaction. If the bi-objective measure of collective satisfac-
tion/dissatisfaction is not judged as sufficiently close to the desired consensus level, then
the group should perform an additional consensus round in which preference parameters,
judgments, beliefs, and attitudes facing imperfect knowledge, should be closed. If, after
several consensus rounds, the bi-objective measure of collective satisfaction/dissatisfaction
does not reach the desired consensus level, the group (or the group moderator) should
make a final decision among the different non-dominated solutions in the space of satisfac-
tion/dissatisfaction.

To reach high consensus levels requires collaborative attitudes from the group mem-
bers; this is frequent in project portfolio optimization since the individual DMs represent
the common organizational interest. However, as a consequence of the independence of
judgments about satisfaction/dissatisfaction, the method can work even in cases of very
conflicting views from the individual DMs, helping to identify the best possible partial
consensus. During discussions and exchange of opinions, the group members should
report their real preferences and beliefs. There is no way to manipulate the consensus
solution maliciously by declaring insincere preferences and beliefs.

The present proposal is capable of modeling priorities on the set of group members;
when the moderator has sufficient authority, (s)he can weigh the different non-dominated
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solutions (group satisfaction, group dissatisfaction) according to who are the satisfied and
dissatisfied group members.

The method (with both models of preferences) behaved well in an illustrative group
many-objective project portfolio optimization problem. For simplicity, we used the same
parameters for both models, what is a rough approximation since the weights have different
meanings. The ideal consensus was achieved with a single consensus round. There is no
obstacle to the combined use of both preference models.

Another interesting feature of our approach is its potential to handle large scale GDM-
MOPs. If parallel processing is used in solving Problem 11, the computational cost of the
proposal depends weakly on the number of DMs (see Remark 7.ii in Section 6). With only
minor changes, the method could be adapted to handle such optimization problems as an
avenue of future research.

Other directions for future research are the following:

• Since consensus is affected by intense (dis)satisfaction, we require to model also high
satisfaction and strong dissatisfaction. This could be addressed by multi-criteria
ordinal classification methods, but the model would be more complex due to the
increment of classes.

• Development of models for making an appropriate selection of the best consensus
among non-dominated solutions of Problem 1. Logic-based models representing
predicates like “a strong majority is satisfied with . . . ” and “a very weak minority
disagrees with . . . ” may be used to select one of the non-dominated solutions in the
space of collective satisfaction/dissatisfaction. This would permit to reduce, perhaps
replace, the role of the moderator in choosing the final decision. These models should
be able to reflect intense satisfaction and dissatisfaction from the group members.

• To alleviate the DM hard cognitive task in assessing limiting boundaries, this is more
relevant as the numbers of objective functions and DMs increase.

Author Contributions: Conceptualization, E.F., L.C.-R. and N.R.-V.; methodology, E.F., C.G.-S., N.R.-
V. and L.C.-R.; software, N.R.-V. and C.G.-S.; validation, E.F., L.C.-R., N.R.-V. and C.G.-S.; formal
analysis, E.F., L.C.-R., C.G.-S.; investigation, L.C.-R., E.F., N.R.-V. and C.G.-S.; writing—original draft
preparation, E.F., C.G.-S. and N.R.-V.; writing—review and editing, C.G.-S., L.C.-R., E.F. and N.R.-V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The instances and other files used here are available at https://www.
dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0 (accessed on 12 May 2021).

Acknowledgments: Authors thanks to CONACYT for supporting the projects from (a) Cátedras
CONACYT Program with Number 3058. (b) CONACYT Project with Number A1-S-11012 from Con-
vocatoria de Investigación Científica Básica 2017–2018 and CONACYT Project with Number 312397
from Programa de Apoyo para Actividades Científicas, Tecnológicas y de Innovación (PAACTI),
(c) CONACYT Project with Number 236154 and (d) CONACYT Project with Number 280081.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Extended I-NOSGA Method

The I-NOSGA algorithm was proposed by Balderas et al. (2019). Using an outranking
relation, this method identifies non-strictly outranked portfolios (modeled using interval
mathematics) during the evolutionary search, satisfying a set of constraints that can be
described by intervals. In the present paper, we use a variant of the original algorithm.

https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
https://www.dropbox.com/s/t80u9kbdcub6jua/Projects%20Description.pdf?dl=0
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The pseudo-code of the main loop of I-NOSGA is shown in Algorithm A1. The present
work slightly modifies the algorithm to allow a generalization that admits the use of
different models of preferences (PM), and strength measures (SM), which are appropriate
for the specific characteristics of each decision maker; such elements of the algorithm
are used to define the preference relation that supports the incorporation of the DM’s
preferences in the evolutionary search. The experiments in this paper explore two different
PMs, one based on outranking, and the other based on a weighted-sum value function;
each model is associated with its SM.

The Algorithm A1 starts by combining the existing population of parents and children
in Line 1; then, using the specified preference model PM, the algorithm builds the non-
outranked fronts (see Line 2). The fronts F formed in this way are used to create the new
generation of parents PopT+1 (see Lines 5–11). The algorithm orderly includes complete
fronts in PopT+1 (Line 6) and complete it with the best solutions from the last front Fi that
does not fit entirely; the solutions are taken in order according to the specified SM (see
Lines 9 to 11). Finally, a new generation of individuals QT+1 is evolved from PopT+1 using
the genetic operators chosen for this purpose (see Line 12).

Algorithm A1. Interval Non-Outranked Sorting Genetic Algorithm

Input:
PopT, the population of parents,
QT, the children generated in the previous iteration,
PM, the binary preference model used to compare pairs of solutions (x,y)
SM, the computation model for the strength measure of built solutions
Output: Next generation of parents PopT+1 and children QT+1
01: RT = PopT ∪ QT //combine parents and children population
02: F = sort-by-preferences (RT, |PopT|, PM) //create outrank fronts F = (F0, F1, . . . ) from RT using PM
03: PopT+1 = Ø //initialize new population PopT+1
04: i = 0
05: while |PopT+1| + |Fi| ≤ N do //fill the new population set PopT+1
06: PopT+1 = PopT+1 ∪ Fi //include front Fi that fits completely in PopT+1
07: i = i + 1 //move to next front in the order set F
08: end

09: FS = strength- assignment(Fi, PM, NSF) //measures the strength of the solutions in Fi,
NSF = F0

10: F′ i = SORT(Fi, FS) //sort solutions in Fi by FS in descending order

11: PopT+1 = PopT+1 ∪ F′ i[1:N-|PopT+1|] //complete PopT+1 with best solutions in F’I when
|PopT+1| < N

12: QT+1 = make-new-pop(PopT+1)
//construct next generation of children QT+1 using PopT+1
and the chosen operators for selection, crossover and
mutation

13: T = T + 1 //iterate

Observe that the pseudocode presented in Algorithm A1 reflects the main loop of
I-NOSGA, i.e., the actions that are repeated until a user-defined stop criterion is met. In
addition, note that the initialization strategies for the parent PopT and children QT popula-
tions are left to the user, and the best solutions will be in the front F0 of the last iteration.

Figure A1 represents the individual encoding (chromosome) used by the evolutionary
algorithm. This is a binary array x of size n (the number of projects) in which the i-th
element (gen) contains 1 if the i-th project belongs to the portfolio and 0 otherwise. Parents
are chosen by binary tournament; the solution belonging to the better front is selected for
crossover; ties are broken randomly. The implemented strategy used a one-point crossover
and flip mutation. The mutation probability for each allele was set to 0.02.
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Table A1 details the worst-case time complexity of the main loop of I-NOSGA. The
analysis considers the variables S, N, and P as the size of the population, the number of
criteria, and the number of candidate projects, respectively.
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Table A1. I-NOSGA time complexity analysis.

Complexity

01: RT = PopT ∪ QT O(S)
02: F = sort-by-preferences (RT, |PopT|, PM) O(N2S2) *
03: PopT+1 = ∅ O(1)
04: i = 0 O(1)
05: while |PopT+1|+|Fi|≤ N do O(S)
06: PopT+1 = PopT+1 ∪ Fi O(S)
07: i = i + 1 O(1)
08: end
09: FS = strength-assignment(Fi, PM, NSF) O(S)
10: F’i = SORT(Fi, FS) O(S2)
11: PopT+1 = PopT+1 ∪ F’i[1:N-|PopT+1|] O(S)
12: QT+1 = make-new-pop(PopT+1) O(NPS)
13: T = T + 1 O(1)

* Using the fast non-dominated sort proposed by Deb.

Let’s point out that, based on the analysis shown in Table A1, the complexity of
I-NOSGA linearly scales w.r.t. to the number of candidate projects P, i.e., its complexity
is O(P). This complexity plays a vital role because there might be thousands of candidate
projects in some realistic scenarios.

Appendix B. Updated Budget Requirements

Table A2. Parameters values of the model: (a) weight, (b) veto thresholds and (c) credibility and majority thresholds.

(a)

DM O1 O2 O3 O4 O5 O6 O7 O8 O9

1 0.066 0.142 0.108 0.16 0.064 0.134 0.096 0.162 0.05 0.083 0.092 0.162 0.078 0.128 0.053 0.081 0.138 0.211
2 0.065 0.14 0.109 0.163 0.078 0.135 0.095 0.165 0.054 0.08 0.106 0.169 0.066 0.143 0.054 0.082 0.145 0.25
3 0.064 0.126 0.104 0.178 0.064 0.13 0.084 0.14 0.053 0.082 0.089 0.17 0.078 0.12 0.055 0.085 0.15 0.231
4 0.064 0.141 0.096 0.163 0.065 0.128 0.094 0.168 0.053 0.092 0.092 0.175 0.08 0.138 0.055 0.09 0.145 0.222
5 0.08 0.136 0.09 0.18 0.077 0.14 0.085 0.155 0.051 0.083 0.102 0.155 0.075 0.14 0.06 0.096 0.146 0.216
6 0.073 0.121 0.098 0.153 0.071 0.13 0.1 0.151 0.059 0.085 0.096 0.173 0.073 0.135 0.048 0.093 0.12 0.219
7 0.077 0.123 0.096 0.158 0.077 0.138 0.097 0.159 0.053 0.09 0.092 0.16 0.078 0.123 0.048 0.083 0.142 0.245
8 0.068 0.143 0.107 0.17 0.067 0.139 0.086 0.158 0.059 0.089 0.109 0.169 0.076 0.13 0.05 0.086 0.13 0.243
9 0.07 0.135 0.093 0.177 0.068 0.137 0.09 0.148 0.053 0.082 0.103 0.169 0.079 0.127 0.052 0.084 0.15 0.223
10 0.076 0.13 0.09 0.154 0.069 0.136 0.087 0.147 0.052 0.095 0.099 0.176 0.08 0.128 0.053 0.091 0.132 0.234

(b)

DM O1 O2 O3 O4 O5 O6 O7 O8 O9

1 195,989 195,989 234,398 234,398 169,919 169,919 169,919 169,919 169,919 169,919 169,919 169,919 169,919 169,919 169,919 169,919 301,255 301,255
2 256,187 256,187 245,076 245,076 298,408 298,408 298,408 298,408 298,408 298,408 298,408 298,408 298,408 298,408 298,408 298,408 329,296 329,296
3 195,544 195,544 132,601 132,601 205,307 205,307 205,307 205,307 205,307 205,307 205,307 205,307 205,307 205,307 205,307 205,307 378,402 378,402
4 126,797 126,797 141,914 141,914 199,808 199,808 199,808 199,808 199,808 199,808 199,808 199,808 199,808 199,808 199,808 199,808 226,441 226,441
5 222,376 222,376 173,008 173,008 207,355 207,355 207,355 207,355 207,355 207,355 207,355 207,355 207,355 207,355 207,355 207,355 254,049 254,049
6 276,395 276,395 231,282 231,282 173,649 173,649 173,649 173,649 173,649 173,649 173,649 173,649 173,649 173,649 173,649 173,649 262,777 262,777
7 184,680 184,680 161,316 161,316 159,873 159,873 159,873 159,873 159,873 159,873 159,873 159,873 159,873 159,873 159,873 159,873 189,960 189,960
8 129,004 129,004 194,205 194,205 224,768 224,768 224,768 224,768 224,768 224,768 224,768 224,768 224,768 224,768 224,768 224,768 284,196 284,196
9 265,641 265,641 140,995 140,995 249,798 249,798 249,798 249,798 249,798 249,798 249,798 249,798 249,798 249,798 249,798 249,798 375,703 375,703
10 150,909 150,909 194,222 194,222 185,065 185,065 185,065 185,065 185,065 185,065 185,065 185,065 185,065 185,065 185,065 185,065 275,222 275,222

(c)

DM α ξ Λ B

1 0.75 0.75 0.51 0.67 0.66 0.77
2 0.67 0.67 0.51 0.67 0.60 0.70
3 0.65 0.67 0.51 0.67 0.60 0.67
4 0.66 0.67 0.51 0.67 0.60 0.67
5 0.68 0.70 0.51 0.67 0.60 0.70
6 0.74 0.75 0.51 0.67 0.66 0.76
7 0.75 0.75 0.51 0.67 0.66 0.77
8 0.77 0.78 0.51 0.67 0.66 0.78
9 0.78 0.80 0.51 0.67 0.67 0.80
10 0.73 0.75 0.51 0.67 0.65 0.75
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In Table A2c the notation is the following.

α: credibility threshold for dominance
ξ: credibility threshold for sufficiency of resources
λ: interval majority threshold
β: credibility threshold for the crisp interval outranking.

Table A3. Limiting boundaries.

Frontiers B

O1 O2 O3 O4 O5 O6 O7 O8 O9

DM1 b1 1,234,925 1,036,475 1,417,065 968,685 1,570,565 1,211,330 1,925,345 1,365,315 1,658,795
b2 1,251,926 1,036,475 1,417,065 968,685 1,570,565 1,211,330 1,891,403 1,365,315 1,658,795
b3 1,234,925 1,036,475 1,342,175 968,685 1,570,565 1,234,373 1,925,345 1,365,315 1,658,795

DM2 b1 1,259,905 975,365 1,474,745 999,450 1,542,150 1,279,330 1,983,810 1,486,095 1,633,700
b2 1,296,052 975,365 1,474,745 999,450 1,542,150 1,230,224 1,983,810 1,486,095 1,633,700
b3 1,259,905 975,365 1,475,379 999,450 1,542,150 1,279,330 1,983,810 1,374,761 1,633,700

DM3 b1 1,291,140 1,024,090 1,509,600 924,815 1,712,030 1,255,190 2,009,685 1,358,450 1,661,035
b2 1,291,140 1,024,090 1,509,600 924,815 1,712,030 1,278,324 2,009,685 1,276,835 1,661,035
b3 1,291,140 9,725,56 1,509,600 924,815 1,712,030 1,255,190 2,106,229 1,358,450 1,661,035

DM4 b1 1,189,995 1,060,215 1425755 977,190 1,667,295 1,312,095 2,067,265 1,370,165 1,610,035
b2 1,189,995 982,445 1441611 977,190 1,667,295 1,312,095 2,067,265 1,370,165 1,610,035
b3 1,212,503 1,060,215 1425755 977,190 1,667,295 1,266,805 2,067,265 1,370,165 1,610,035

DM5 b1 1,215,945 1,010,400 1,488,700 927,465 1,702,140 1,234,430 1,992,975 1,383,445 1,715,605
b2 1,230,005 1,010,400 1,488,700 927,465 1,702,140 1,234,430 1,936,667 1,383,445 1,715,605
b3 1,215,945 1,033,867 1,488,700 927,465 1,702,140 1,234,430 1,992,975 1,268,806 1,715,605

DM6 b1 1,169,800 1,057,620 1,502,780 962,570 1,652,975 1,211,310 2,012,250 1,445,540 1,576,135
b2 1,169,800 1,057,620 1,502,780 962,570 1,652,975 1,211,310 1,821,482 1,448,256 1,576,135
b3 1,170,982 1,057,620 1,502,780 962,570 1,652,975 1,211,310 2,012,250 1,445,540 1,420,488

DM7 b1 1,211,085 1,026,425 1,394,220 910,105 1,588,335 1,266,775 2,029,310 1,414,960 1,663,015
b2 1,153,127 1,026,425 1,394,220 921,731 1,588,335 1,266,775 2,029,310 1,414,960 1,663,015
b3 1,211,085 1,037,823 1,394,220 910,105 1,576,124 1,266,775 2,029,310 1,414,960 1,663,015

DM8 b1 1,297,695 1,009,480 1,471,245 946,720 1,538,740 1,231,455 1,820,550 1,489,320 1,596,360
b2 1,297,695 1,009,480 1,358,643 946,720 1,538,740 1,231,455 1,820,550 1,489,320 1,598,868
b3 1,297,695 1,009,480 1,471,245 933,477 1,541,083 1,231,455 1,820,550 1,489,320 1,596,360

DM9 b1 1,139,045 1,077,665 1,377,385 925,280 1,570,825 1,215,730 1,982,670 1,429,490 1,584,005
b2 1,139,045 1,077,665 1,377,385 925,280 1,570,825 1,154,986 1,982,670 1,429,490 1,606,499
b3 1,142,960 1,077,665 1,377,385 925,280 1,570,825 1,215,730 1,982,670 1,358,901 1,584,005

DM10 b2 1,262,100 1,030,870 1,442,840 931,350 1,629,665 1,251,900 1,932,615 1,450,675 1,628,245
b3 1,262,100 1,030,870 1,442,840 931,350 1,629,665 1,251,900 1,959,614 1,450,675 1,540,127
b1 1,262,100 975,097 1,442,840 953,011 1,629,665 1,251,900 1,932,615 1,450,675 1,628,245

Table A4. The updated (a) weights after the consensus round, (b) veto thresholds after the consensus round, and (c)
credibility thresholds after the consensus round.

(a)

DM O1 O2 O3 O4 O5 O6 O7 O8 O9

1 0.068 0.100 0.105 0.143 0.072 0.108 0.098 0.133 0.057 0.077 0.098 0.135 0.082 0.114 0.057 0.078 0.142 0.189
2 0.068 0.099 0.105 0.144 0.079 0.115 0.097 0.133 0.059 0.079 0.104 0.142 0.076 0.108 0.058 0.078 0.145 0.192
3 0.067 0.099 0.105 0.141 0.072 0.108 0.092 0.127 0.058 0.078 0.097 0.134 0.082 0.114 0.058 0.079 0.144 0.195
4 0.067 0.099 0.101 0.137 0.073 0.109 0.097 0.132 0.058 0.078 0.098 0.135 0.083 0.115 0.058 0.079 0.145 0.192
5 0.065 0.107 0.098 0.134 0.079 0.115 0.092 0.128 0.057 0.077 0.103 0.140 0.081 0.112 0.061 0.081 0.146 0.193
6 0.069 0.103 0.102 0.138 0.076 0.112 0.099 0.135 0.061 0.081 0.100 0.137 0.080 0.111 0.055 0.075 0.133 0.180
7 0.067 0.105 0.101 0.137 0.079 0.115 0.098 0.134 0.058 0.078 0.098 0.135 0.082 0.114 0.055 0.075 0.144 0.191
8 0.069 0.101 0.106 0.143 0.074 0.110 0.093 0.128 0.061 0.081 0.102 0.144 0.081 0.113 0.056 0.076 0.138 0.185
9 0.070 0.102 0.100 0.136 0.074 0.110 0.095 0.130 0.058 0.078 0.104 0.141 0.083 0.114 0.057 0.077 0.144 0.195
10 0.067 0.105 0.098 0.134 0.075 0.111 0.093 0.129 0.058 0.078 0.102 0.139 0.083 0.115 0.057 0.078 0.139 0.186

(b)

DM O1 O2 O3 O4 O5 O6 O7 O8 O9

1 198,171 198,171 190,206 190,206 198,904 198,904 200,051 200,051 200,166 200,166 200,178 200,178 200,179 200,179 200,179 200,179 306,014 306,014
2 172,435 172,435 184,867 184,867 192,629 192,629 196,072 196,072 196,416 196,416 196,451 196,451 196,454 196,454 196,454 196,454 301,513 301,513
3 197,948 197,948 168,769 168,769 216,598 216,598 217,745 217,745 217,860 217,860 217,872 217,872 217,873 217,873 217,873 217,873 276,960 276,960
4 163,575 163,575 173,425 173,425 213,848 213,848 214,996 214,996 215,111 215,111 215,122 215,122 215,123 215,123 215,123 215,123 268,607 268,607
5 189,340 189,340 188,972 188,972 217,622 217,622 218,769 218,769 218,884 218,884 218,896 218,896 218,897 218,897 218,897 218,897 282,411 282,411
6 162,331 162,331 191,764 191,764 200,769 200,769 201,916 201,916 202,031 202,031 202,043 202,043 202,044 202,044 202,044 202,044 286,775 286,775
7 192,516 192,516 183,126 183,126 193,881 193,881 195,028 195,028 195,143 195,143 195,155 195,155 195,156 195,156 195,156 195,156 250,367 250,367
8 164,678 164,678 199,571 199,571 226,328 226,328 227,476 227,476 227,591 227,591 227,602 227,602 227,603 227,603 227,603 227,603 297,485 297,485
9 167,708 167,708 172,966 172,966 216,934 216,934 220,377 220,377 220,721 220,721 220,756 220,756 220,759 220,759 220,759 220,759 278,309 278,309
10 175,631 175,631 199,579 199,579 206,477 206,477 207,624 207,624 207,739 207,739 207,751 207,751 207,752 207,752 207,752 207,752 292,998 292,998

(c)

DM A ξ β

1 0.70 0.72 0.62 0.70
2 0.69 0.70 0.62 0.67
3 0.68 0.70 0.62 0.67
4 0.69 0.70 0.62 0.67
5 0.70 0.71 0.62 0.67
6 0.71 0.72 0.62 0.70
7 0.70 0.72 0.62 0.70
8 0.69 0.70 0.62 0.70
9 0.69 0.69 0.62 0.70
10 0.71 0.72 0.63 0.69
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Table A5. Updated budget requirements after the consensus round.

Project Cost Project Cost Project Cost Project Cost

1 9260 9640 26 9522 9908 51 8197 8533 76 5472 5698
2 6235 6485 27 9697 10,093 52 5962 6208 77 9657 10,053
3 5772 6008 28 9535 9925 53 7450 7750 78 7450 7750
4 7665 7975 29 8222 8558 54 7327 7623 79 5072 5278
5 9362 9748 30 9012 9378 55 6542 6808 80 8260 8600
6 7410 7710 31 5972 6218 56 9727 10,123 81 6592 6858
7 7675 7985 32 9065 9435 57 5490 5710 82 7422 7728
8 9512 9898 33 5370 5590 58 8780 9140 83 6962 7248
9 7360 7660 34 9085 9455 59 7855 8175 84 8495 8845

10 5602 5828 35 8085 8415 60 6360 6620 85 5790 6030
11 7647 7963 36 5380 5600 61 6217 6473 86 7855 8175
12 4990 5190 37 7677 7993 62 5880 6120 87 8345 8685
13 5747 5983 38 9372 9758 63 5612 5838 88 6002 6248
14 8590 8940 39 7470 7770 64 9565 9955 89 7740 8060
15 7930 8250 40 6922 7208 65 8657 9013 90 9707 10,103
16 8045 8375 41 9012 9378 66 7890 8210 91 6000 6240
17 8410 8750 42 9412 9798 67 6565 6835 92 7392 7698
18 5387 5603 43 5032 5238 68 9767 10,163 93 5592 5818
19 6340 6600 44 7982 8308 69 8165 8495 94 9605 9995
20 7850 8170 45 6052 6298 70 6065 6315 95 6572 6838
21 9360 9740 46 9087 9463 71 8320 8660 96 5012 5218
22 8195 8525 47 7850 8170 72 6380 6640 97 8830 9190
23 5910 6150 48 6787 7063 73 9207 9583 98 5685 5915
24 5787 6023 49 6217 6473 74 9797 10,193 99 5377 5593
25 5237 5453 50 7760 8080 75 6052 6298 100 5695 5925

Table A6. Values of σi(ZGki, Bi, λi) for the solutions in Table 4.

Sol. DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10

1 0.9816 0.8796 0.8958 0.8364 0.8345 0.8422 0.8814 1.0000 0.9921 0.9386
2 0.8643 0.9764 0.8479 0.8068 0.8626 0.8161 1.0000 1.0000 1.0000 0.8892
3 0.9030 0.8196 0.8526 0.9027 0.8418 0.8129 0.9427 0.8529 0.9630 0.7984
4 0.8808 0.9054 0.7975 0.8904 0.7910 0.9399 0.8485 1.0000 0.9977 1.0000
5 1.0000 0.9025 0.8559 0.7986 0.7880 0.8374 0.8435 1.0000 1.0000 0.9423
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Table A7. Limiting boundaries (three limiting solution for each DM).

O1 O2 O3 O4 O5 O6 O7 O8 O9

1,172,035 1,196,440 935,955 955,448 1,293,390 1,320,333 921,260 940,450 1,703,365 1,738,853 1,059,975 1,082,055 1,831,405 1,869,578 1,366,425 1,394,890 1,420,215 1,449,790
1,172,035 1,196,440 936,369 955,870 1,293,390 1,320,333 921,260 940,450 1,703,365 1,738,853 1,059,975 1,082,055 1,831,405 1,869,578 1,366,425 1,394,890 1,341,051 1,368,978
1,172,035 1,196,440 935,955 955,448 1,293,390 1,320,333 840,542 858,050 1,703,365 1,738,853 1,064,999 1,087,184 1,831,405 1,869,578 1,366,425 1,394,890 1,420,215 1,449,790
1,210,295 1,235,513 989,555 1,010,173 1,322,445 1,349,990 899,420 918,158 1,607,385 1,640,873 1,165,840 1,190,123 1,915,940 1,955,865 1,451,480 1,481,713 1,478,550 1,509,343
1,210,295 1,235,513 989,555 1,010,173 1,322,445 1,349,990 820,944 838,047 1,607,385 1,640,873 1,165,840 1,190,123 1,915,940 1,955,865 1,451,480 1,481,713 1,484,672 1,515,592
1,210,295 1,235,513 1,001,082 1,021,940 1,322,445 1,349,990 899,420 918,158 1,607,385 1,640,873 1,090,067 1,112,771 1,915,940 1,955,865 1,451,480 1,481,713 1,478,550 1,509,343
1,169,955 1,194,315 1,012,675 1,033,773 1,366,235 1,394,695 871,970 890,138 1,771,940 1,808,860 1,191,690 1,216,513 1,874,150 1,913,203 1,469,130 1,499,725 1,433,435 1,463,290
1,169,955 1,194,315 1,012,675 1,033,773 1,366,235 1,394,695 871,970 890,138 1,771,940 1,808,860 1,201,862 1,226,897 1,874,150 1,913,203 1,469,130 1,499,725 1,424,088 1,453,749
1,169,955 1,194,315 978,386 998,769 1,366,235 1,394,695 882,140 900,519 1,771,940 1,808,860 1,191,690 1,216,513 1,874,150 1,913,203 1,469,130 1,499,725 1,433,435 1,463,290
1,202,270 1,227,310 1,006,320 1,027,280 1,393,975 1,423,008 897,320 916,015 1,566,755 1,618,775 1,163,860 1,188,108 1,914,190 1,954,078 1,462,680 1,493,143 1,479,985 1,510,815
1,202,270 1,227,310 973,732 994,013 1,393,975 1,423,008 897,320 916,015 1,566,755 1,618,775 1,175,213 1,199,697 1,914,190 1,954,078 1,462,680 1,493,143 1,479,985 1,510,815
1,202,270 1,227,310 1,006,320 1,027,280 1,393,975 1,423,008 863,664 881,658 1,566,755 1,618,775 1,163,860 1,188,108 1,914,190 1,954,078 1,462,680 1,493,143 1,493,835 1,524,954
1,210,395 1,235,598 1,005,315 1,026,260 1,379,125 1,407,855 843,045 860,610 1,668,500 1,703,265 1,184,000 1,208,658 1,869,795 1,908,760 1,465,640 1,496,160 1,392,025 1,421,003
1,210,395 1,235,598 1,013,090 1,034,197 1,379,125 1,407,855 827,099 844,332 1,668,500 1,703,265 1,184,000 1,208,658 1,869,795 1,908,760 1,465,640 1,496,160 1,392,025 1,421,003
1,210,395 1,235,598 1,005,315 1,026,260 1,379,125 1,407,855 843,045 860,610 1,668,500 1,703,265 1,120,592 1,143,929 1,869,795 1,908,760 1,465,640 1,496,160 1,394,685 1,423,718
1,134,520 1,158,138 1,002,865 1,023,758 1,283,820 1,310,563 864,205 882,210 1,667,285 1,702,025 1,098,580 1,121,465 1,872,725 1,911,748 1,356,185 1,384,428 1,448,755 1,478,918
1,134,520 1,158,138 1,002,865 1,023,758 1,283,820 1,310,563 828,005 845,256 1,667,285 1,702,025 1,102,103 1,125,062 1,872,725 1,911,748 1,356,185 1,384,428 1,448,755 1,478,918
1,134,520 1,158,138 958,718 978,691 1,283,820 1,310,563 864,205 882,210 1,667,285 1,702,025 1,098,580 1,121,465 1,872,725 1,911,748 1,356,185 1,384,428 1,454,714 1,485,000
1,172,035 1,196,440 935,955 955,448 1,293,390 1,320,333 921,260 940,450 1,703,365 1,738,853 1,059,975 1,082,055 1,831,405 1,869,578 1,366,425 1,394,890 1,420,215 1,449,790
1,172,035 1,196,440 935,955 955,448 1,293,390 1,320,333 910,799 929,771 1,703,365 1,738,853 1,059,975 1,082,055 1,831,405 1,869,578 1,366,425 1,394,890 1,424,702 1,454,371
1,172,035 1,196,440 939,929 959,504 1,293,390 1,320,333 921,260 940,450 1,703,365 1,738,853 1,027,471 1,048,874 1,831,405 1,869,578 1,366,425 1,394,890 1,420,215 1,449,790
1,142,135 1,165,920 930,485 949,865 1,331435 1,359,165 876,760 895,023 1,619,515 1,671,175 1,147,440 1,171,338 1,905,355 1,945,068 1,465,220 1,495,733 1,451,000 1,481,223
1,142,135 1,165,920 931,023 950,415 1,331435 1,359,165 800,414 817,086 1,619,515 1,671,175 1,147,440 1,171,338 1,905,355 1,945,068 1,465,220 1,495,733 1,451,000 1,481,223
1,142,135 1,165,920 930,485 949,865 1,331435 1,359,165 876,760 895,023 1,619,515 1,671,175 1,111,037 1,134,176 1,905,355 1,945,068 1,465,220 1,495,733 1,453,084 1,483,350
1,157,660 1,181,773 981,860 1,002,313 1,363505 1,391,908 890,910 909,468 1,535,575 1,567,575 1,182,040 1,206,658 1,775,935 1,812,940 1,396,465 1,425,550 1,434,775 1,464,658
1,157,660 1,181,773 982,925 1,003,400 1,363505 1,391,908 809,103 825,956 1,535,575 1,567,575 1,182,040 1,206,658 1,775,935 1,812,940 1,396,465 1,425,550 1,434,775 1,464,658
1,157,660 1,181,773 981,860 1,002,313 1,363505 1,391,908 890,910 909,468 1,535,575 1,567,575 1,107,575 1,130,642 1,775,935 1,812,940 1,396,465 1,425,550 1,437,577 1,467,518
1,164,705 1,188,958 962,750 982,798 1,275670 1,302,250 860,665 878,600 1,605,355 1,638,810 1,141,455 1,165,230 1,822,560 1,860,530 1,452,580 1,482,835 1,411,810 1,441,215
1,164,705 1,188,958 876,601 894,854 1,275,670 1,302,250 860,665 878,600 1,605,355 1,638,810 1,141,455 1,165,230 1,822,560 1,860,530 1,452,580 1,482,835 1,419,115 1,448,672
1,164,705 1,188,958 962,750 982,798 1,275,670 1,302,250 826,801 844,030 1,605,355 1,638,810 1,142,690 1,166,491 1,822,560 1,860,530 1,452,580 1,482,835 1,411,810 1,441,215

Table A8. Values of σPi(ZGki,Bi) for the solutions in Table 7.

Sol. DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10

1 0.7583 0.7467 0.7087 0.7391 0.7207 0.7674 0.7454 0.7805 0.7758 0.7963
2 0.7566 0.7453 0.7069 0.7374 0.7191 0.7658 0.7437 0.7789 0.7742 0.7947
3 0.7521 0.7417 0.7026 0.7330 0.7155 0.7615 0.7398 0.7746 0.7701 0.7905
4 0.7516 0.7413 0.7019 0.7324 0.7150 0.7613 0.7393 0.7743 0.7696 0.7902
5 0.7514 0.7404 0.7015 0.7320 0.7139 0.7610 0.7383 0.7740 0.7689 0.7895
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Appendix C. Description of the Variant of MOEA/D Used in Solving Problem 1

Zhang and Li in [59] proposed the decomposition algorithm MOEA/D to solve
multi-objective optimization problems. The strategy decomposes a multi-objective prob-
lem into several scalar functions, which are subject to simultaneous optimization. Al-
gorithm A2 depicts the pseudocode of a variant of MOEA/D, adapted to solving Prob-
lem 1 in the frame of project portfolio optimization. The methods—initialization and
repair and improvement operator—make use of interval arithmetic to handle the ill-
determination and imprecision that is present in parameters’ values of preference mod-
els and constraints. The general idea behind the approach followed in the experiment
used in this manuscript is better detailed in the remaining paragraphs of Appendix C.

Algorithm A2. Variant of MOEA/D

Input:
N: number of scalar functions,
M: number of objectives,
Vector: uniformly distributed set of vectors
T = N/10: size of neighborhood of weight vectors.
Output:
EP: approximatio of Pareto frontier.
01: (x,z,FV,B(i))← Initializacion()
02: For i = 1 to N do
03: (xk,xl)← RandomSelection(B(i),T)
04: y← OnePointCrossover(xk,xl)
05: y′ ← FlipMutation(y)
06: y”← RepairAndImprovementOperator(y′)

07: UpdateSetZ(z,M,y”)
//z: for each j = 1, . . . , m, if zj < fj(y′) then set
zj = fj(y′).

08: UpdateNeighborhood(B(i),FV,y”)
// for each j ∈ B(i), if gte (y’|Vj,z) set xj = y’
and FVj = F(y’)

09: UpdateEP(EP,y”)
//Remove from EP all the vectors dominated
by F(y′), and add F(y′) to EP if no vectors in EP
dominate F(y′)

10: Stopping Criteria: if maxEvaluations is
reach, Otherwise, go to step 2.

The algorithm has as parameter inputs N, M, Vector = {V1, V2, . . . , VN}, and T. These
parameters represent, respectively, the number of scalar functions or sub-problems in which
the MOP has been divided, the number of objectives, a uniformly distributed set of size N
containing weight vectors with two elements each (the weights were Vi =

(
i
N , N−i

N

)
, for

each Vi ∈Vector), and the size of the neighborhood of weight vectors. In addition, MOEA/D
gives as output an approximation of the Pareto frontier (EP) formed by non-dominated
solutions found during the optimization process. For this purpose, the algorithm works in
two phases.

The first phase is the initialization phase (indicated in Line 0 of the Algorithm A2).
Here the algorithm initializes properly the data structures required for the construction
of the final set of solutions. These structures are: (1) the set EP, which will become the
Pareto frontier approximation, and which initially is empty; (2) the neighborhood sets B(i)
of each vector Vi that contain the T closes weight vectors to Vi by Euclidean distance; (3)
the initial set of solutions X = {x1, x2, . . . , xN} where each solution xj, 1 ≤ j ≤ Number of
group members, corresponds to the j-th DM best compromise in the decision variable space,
and the remaining ones are randomly generated; (4) the set of fitness values FV = {FV1,
FV2, . . . , FVN}, where each FVi is composed by the M objective values of each solution
xi; and 5) the set z = {z1, . . . ., zm} formed by values zj corresponding to the best objective
value among all the solutions built during the initialization process.

The second phase is an update process based on evolution. In this process, for each
solution in the population, two solutions of the population are randomly selected and
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used to generate a new solution by applying genetic operators. The operators used are the
following ones:

One-point crossover: the two randomly chosen parents combine its chromosomes by
designating a point in the bit string that represents them. The operator swaps between
the two parents the bits in their encoding to the right of that point. The results are a new
offspring of two children.

Flip mutation: This mutation process generates a random value for each allele in the
bit string encoding the solution; every time that the generated value lies under a given
probability (e.g., the probability of 0.02 used in this work), the bit value in the encoding
is inverted.

After the application of the genetic operators, the created solution is subject to a repair
and improvement phase, which is performed by the repair and improvement operator
(RIO). The RIO combines the processes that might repair and improve a portfolio; in detail,
it turns an infeasible solution into a quasi-feasible solution that is feasible with respect
to the used budget but may not be feasible with respect to in the satisfaction degree of
the DMs, i.e., it might not warranty that Nsat ≥ Ndis. The RIO sorts the projects in the
portfolio by the fitness ratio FR, and from the lowest FR to the highest, it eliminates projects
one by one until the budget becomes feasible. After that, using a threshold parameter
(set to 0.50) it also eliminates a proportion of the remaining projects. Then, from the
highest FR to the lowest, the improvement algorithm adds projects into the portfolio while
keeping the budget feasible. The fitness ratio FR is a generalized measure of the fitness of a
solution based on its objectives; first, for the i-th project, the procedure computes the ratio
fcij = fitness/cost for each objective j; then, it computes fci which is the median among the m
values fcij previously computed. The value fcij becomes the value of FR.

The final step is to check the stopping condition; if it is satisfied, the algorithm finishes
and reports the EP as its output; otherwise, the algorithm returns to the second step. The
stop criterion is fulfilled when a maximum number of evaluations of the objective function
vector (100,000) is reached. During each iteration, the algorithm conveniently updates B,
EP, z, and in the end, it returns the non-dominated set found in EP.

Lines 1 to 8 in Algorithm A2 describe the main loop of MOEA/D, and Table A9 details
its time complexity based on a worst-case scenario. The analysis considers the variables S,
N, P, and ng as the size of the population, the number of criteria on the project portfolio
optimization, the number of candidate projects, and the number of DMs, respectively. The
construction of the set EP was left outside the main loop.

Table A9. MOEA/D time complexity analysis.

Complexity

0. (x,z,FV,B(i))← Initialization()
1. For i = 1 to S do O(S)
2. (xk, xl)← RandomSelection(B(i),T) O(1)
3. y← OnePointCrossover(xk, xl) O(P)
4. y′ ← FlipMutation(y) O(1)
5. y”← RepairAndImprovementOperator (y’) O(P)
6. UpdateSetZ(z,M,y”) O(N2ng)
7. UpdateNeighborhood(B(i),FV,y”) O(S)
8. UpdateEP(EP,y”)
9. Stopping criteria: If maxEvaluations is reach,
otherwise, go to Step 1.

Note that, based on the analysis shown in Table A9, the complexity of MOEA/D
linearly scales w.r.t. to the number of candidate projects P and the number of DMs ng in the
decision group. The linear growth in the number of members of a decision group favors
this approach in scenarios with large groups of decision-makers.
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