Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials
Abstract
:1. Introduction
2. The Impact of Honey on Bombyx mori Biological and Technological Traits
3. The Impact of Honey on Silk Fibroin-Based Biomaterials
3.1. Honey as a Medicine
3.1.1. Antibacterial Activity
3.1.2. Antioxidant and Anti-Inflammatory Effect
3.2. Silk Fibroin as a Biomaterial
3.3. Honey-Enhanced Silk Fibroin-Based Biomaterials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Ghamdi, A.A.; Ansari, M.J. Biological and Therapeutic Roles of Saudi Arabian Honey: A Comparative Review. J. King Saud Univ. Sci. 2021, 33, 101329. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological Properties and Therapeutic Activities of Honey in Wound Healing: A Narrative Review and Meta-Analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 121–127. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.K.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison with Important Commercial Honeys. Front. Microbiol. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Mărghitaş, L.A.; Fiţ, N.; Chirilă, F.; Gherman, B.; Mărgăoan, R.; Aurori, A.; Bobiş, O. Antibacterial Effect of Heather Honey (Calluna Vulgaris) against Different Microorganisms of Clinical Importance. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Anim. Sci. Biotechnol. 2015, 72. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Li, X.; Pu, Q.; Luo, C.; Xu, L.; Peng, X.; Liu, S. Genetic Manipulation of MicroRNAs in the Silk Gland of Silkworm, Bombyx Mori. Biol. Proced. Online 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Li, F.; Li, M.; Mao, T.; Wang, H.; Chen, J.; Lu, Z.; Qu, J.; Fang, Y.; Gu, Z.; Li, B. Effects of Phoxim Exposure on Gut Microbial Composition in the Silkworm, Bombyx Mori. Ecotoxicol. Environ. Saf. 2020, 189, 110011. [Google Scholar] [CrossRef]
- Ude, A.U.; Eshkoor, R.A.; Zulkifili, R.; Ariffin, A.K.; Dzuraidah, A.W.; Azhari, C.H. Bombyx Mori Silk Fibre and Its Composite: A Review of Contemporary Developments. Mater. Des. 2014, 57, 298–305. [Google Scholar] [CrossRef]
- Chen, S.; Liu, M.; Huang, H.; Cheng, L.; Zhao, H.P. Mechanical Properties of Bombyx Mori Silkworm Silk Fibre and Its Corresponding Silk Fibroin Filament: A Comparative Study. Mater. Des. 2019, 181, 1–11. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.-H.; Le, T.-H.; Huynh, V.Q.N.; Vo, D.-V.N.; Trinh, Q.T.; Kim, S.Y.; Van Le, Q. Silk Fibroin-Based Biomaterials for Biomedical. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Abdelli, N.; Peng, L.; Keping, C. Silkworm, Bombyx Mori, as an Alternative Model Organism in Toxicological Research. Environ. Sci. Pollut. Res. 2018, 25, 35048–35054. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Chowdhury, S.K.; Dey, S.; Moses, J.C.; Mandal, B.B. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J. Indian Inst. Sci. 2019, 99, 445–487. [Google Scholar] [CrossRef]
- Tsioris, K.; Raja, W.K.; Pritchard, E.M.; Panilaitis, B.; Kaplan, D.L.; Omenetto, F.G. Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Adv. Funct. Mater. 2012, 22, 330–335. [Google Scholar] [CrossRef]
- Lee, O.J.; Kim, J.H.; Moon, B.M.; Chao, J.R.; Yoon, J.; Ju, H.W.; Lee, J.M.; Park, H.J.; Kim, D.W.; Kim, S.J.; et al. Fabrication and Characterization of Hydrocolloid Dressing with Silk Fibroin Nanoparticles for Wound Healing. Tissue Eng. Regen. Med. 2016, 13, 218–226. [Google Scholar] [CrossRef]
- Arboleda-Carvajal, A.; González, J.; Franco-Arias, M.H.; Valladares-Torres, L. Comparación de La Citocompatibilidad in Vitro Entre Los Biomateriales, Fibroína y Polipropileno. Rev. Fac. Ing. 2017, 26, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Yan, X. Bioelectronics With Enhanced Cell Affinity. Proc. Natl. Acad. Sci. USA 2017, 2017. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, F.; Chen, K. Silkworm: A Promising Model Organism in Life Science. J. Insect Sci. 2017, 17. [Google Scholar] [CrossRef]
- Tabunoki, H.; Bono, H.; Ito, K.; Yokoyama, T. Can the Silkworm (Bombyx Mori) Be Used as a Human Disease Model? Drug Discov. Ther. 2016, 10, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xue, R.; Cao, G.; Pan, Z.; Zheng, X.; Gong, C. Silkworms Can Be Used as an Animal Model to Screen and Evaluate Gouty Therapeutic Drugs. J. Insect Sci. 2012, 12, 1–9. [Google Scholar] [CrossRef]
- Tamilselvi, V.; Murugesh, K.A.; Mangammal, P.; Krishnamoorthy, S.V. Effect of Different Honey and Protein Sources on Economic Characters of Silkworm Bombyx Mori L. Int. J. Chem. Stud. 2020, 8, 328–331. [Google Scholar] [CrossRef]
- Kadakia, P.U.; Growney Kalaf, E.A.; Dunn, A.J.; Shornick, L.P.; Sell, S.A. Comparison of Silk Fibroin Electrospun Scaffolds with Poloxamer and Honey Additives for Burn Wound Applications. J. Bioact. Compat. Polym. 2018, 33, 79–94. [Google Scholar] [CrossRef]
- Samami, R.; Seidavi, A.; Eila, N.; Moarrefi, M.; Ziaja, D.J.; Lis, J.A.; Rubiu, N.G.; Cappai, M.G. Production Performance and Economic Traits of Silkworms (Bombyx Mori L., 1758) Fed with Mulberry Tree Leaves (Morus Alba, Var. Ichinose) Significantly Differ According to Hybrid Lines. Livest. Sci. 2019, 226, 133–137. [Google Scholar] [CrossRef]
- Saviane, A.; Toso, L.; Righi, C.; Pavanello, C.; Crivellaro, V.; Cappellozza, S. Rearing of Monovoltine Strains of Bombyx Mori by Alternating Artificial Diet and Mulberry Leaf Accelerates Selection for Higher Food Conversion Efficiency and Silk Productivity. Bull. Insectol. 2014, 67, 167–174. [Google Scholar]
- Dong, H.L.; Zhang, S.X.; Tao, H.; Chen, Z.H.; Li, X.; Qiu, J.F.; Cui, W.Z.; Sima, Y.H.; Cui, W.Z.; Xu, S.Q. Metabolomics Differences between Silkworms (Bombyx Mori) Reared on Fresh Mulberry (Morus) Leaves or Artificial Diets. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Villacrés-Granda, I.; Coello, D.; Proaño, A.; Ballesteros, I.; Roubik, D.W.; Jijón, G.; Granda-Albuja, G.; Granda-Albuja, S.; Abreu-Naranjo, R.; Maza, F.; et al. Honey Quality Parameters, Chemical Composition and Antimicrobial Activity in Twelve Ecuadorian Stingless Bees (Apidae: Apinae: Meliponini) Tested against Multiresistant Human Pathogens. LWT 2021, 140. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composición y Propiedades de La Miel de Apis Mellifera: Una Revisión. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical Characteristics and Antiproliferative and Antioxidant Activities of Moroccan Zantaz Honey Rich in Methyl Syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M. (Ed.) Bee Products—Chemical and Biological Properties; Springer International Publishing: Basel, Switzerland, 2017; pp. 1–306. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Bhatti, M.F.; Azizullah; Shahzadi, N.; Tahir, H.M.; Ali, S.; Zahid, M.T.; Khurshid, R. Effect of Honey (Apis Dorsata [Hymenoptera: Apidae]) on Larval Growth and Silk Cocoon Yield of Bombyx Mori (Lepidoptera: Bombycidae). J. Insect Sci. 2019, 19, 1–5. [Google Scholar] [CrossRef]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical Values of Natural Honey and Its Contribution to Human Health and Wealth. Nutr. Metab. 2012, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017. [Google Scholar] [CrossRef]
- Madhavi, R.; Siva Prasad, S. Impact of Honey-Enriched Mulberry Diet on the Energy Metabolism of the Silkworm, Bombyx Mori. J. Appl. Nat. Sci. 2020, 12, 133–145. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Thulasi, N. Determination of Minimum Effective Concentration of Honey for Optimal Growth, Metabolism and Silk Production in The Silkworm, Bombyx Mori. Ind. J. Appl. Res. 2014, 4, 542–545. [Google Scholar]
- Thulasi, N.; Sivaprasad, S. Larval Growth, Silk Production and Economic Traits of Bombyx Mori under the Influence of Honey-Enriched Mulberry Diet. J. Appl. Nat. Sci. 2015, 7, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Alagumanikumaran, N.; Prema, P. Studies on Evaluation and Improvements of Growth and Economic Parameters of Bombyx Mori (L) Influence under Mr2 Leaves Fortified with Natural Honey. Int. J. Curr. Sci. Res. 2016, 2, 757–765. [Google Scholar]
- Gad, A.A. Biological and Physiological Effects of Some Honey Bee Products and Its Mixtures as Nutritional Additives on Two Strains of The Mulberry Silkworm Bombyx Mori. Alex. J. Agric. Res. 2013, 58, 47–52. [Google Scholar]
- Mesbah, H.A.; Seehy, M.A.E.; Omaima, M.M. Effect of Food Additives on the Productivity of Silk Worm Bombyx Mori L. Alex. Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 2013, 34, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.M.; Mesbah, H.A.; El Sayed, N.A.A. Evaluation of Certain Types of Honey, Essential Botanical Oils and Their Mixtures on the Productivity of the Mulberry Silkworm Bombyx Mori L. Alex. Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 2012, 33, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Saad, M.; Hassan, E.; Saad, I. Comparative Study Of The Effect Of Camphor Honey Bee And Camphor Oil On Some Biological And Productivity Characters Of Mulberry Silkworm, Bombyx Mori L. J. Plant. Prot. Pathol. 2014, 5, 651–658. [Google Scholar] [CrossRef]
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut Bacterial and Fungal Communities of the Domesticated Silkworm (Bombyx Mori) and Wild Mulberry-Feeding Relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut Bacteria of the Silkworm Bombyx Mori Facilitate Host Resistance against the Toxic Effects of Organophosphate Insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef] [PubMed]
- El-Arab, A.M.E.; Girgis, S.M.; Hegazy, E.M.; El-Khalek, A.B.A. Effect of Dietary Honey on Intestinal Microflora and Toxicity of Mycotoxins in Mice. BMC Complement. Altern. Med. 2006, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Marrazzo, P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef]
- Mama, M.; Teshome, T.; Detamo, J. Antibacterial Activity of Honey against Methicillin-Resistant Staphylococcus Aureus: A Laboratory-Based Experimental Study. Int. J. Microbiol. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Almasaudi, S. The Antibacterial Activities of Honey. Saudi J. Biol. Sci. 2020. [Google Scholar] [CrossRef]
- Israili, Z.H. Antimicrobial Properties of Honey. Am. J. Ther. 2014, 21, 304–323. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial Potency of Honey. Int. J. Microbiol. 2019, 2019. [Google Scholar] [CrossRef]
- Lee, H.; Churey, J.J.; Worobo, R.W. Antimicrobial Activity of Bacterial Isolates from Different Floral Sources of Honey. Int. J. Food Microbiol. 2008, 126, 240–244. [Google Scholar] [CrossRef]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Significance of Nonaromatic Organic Acids in Honey. J. Food Prot. 2003, 66, 2371–2376. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation Study of Honey Regarding Their Physicochemical Properties and Sugars and Cyclitols Content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [Green Version]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Brudzynski, K. A Current Perspective on Hydrogen Peroxide Production in Honey. A Review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef]
- Brudzynski, K.; Abubaker, K.; St-Martin, L.; Castle, A. Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey. Front. Microbiol. 2011, 2. [Google Scholar] [CrossRef] [Green Version]
- Poli, J.P.; Guinoiseau, E.; Luciani, A.; Yang, Y.; Battesti, M.J.; Paolini, J.; Costa, J.; Quilichini, Y.; Berti, L.; Lorenzi, V. Key Role of Hydrogen Peroxide in Antimicrobial Activity of Spring, Honeydew Maquis and Chestnut Grove Corsican Honeys on Pseudomonas Aeruginosa DNA. Lett. Appl. Microbiol. 2018, 66, 427–433. [Google Scholar] [CrossRef]
- Lehmann, D.M.; Krishnakumar, K.; Batres, M.A.; Hakola-Parry, A.; Cokcetin, N.; Harry, E.; Carter, D.A. A Cost-Effective Colourimetric Assay for Quantifying Hydrogen Peroxide in Honey. Access Microbiol. 2019, 1. [Google Scholar] [CrossRef]
- Majtan, J.; Bohova, J.; Prochazka, E.; Klaudiny, J. Methylglyoxal May Affect Hydrogen Peroxide Accumulation in Manuka Honey through the Inhibition of Glucose Oxidase. J. Med. Food 2014, 17, 290–293. [Google Scholar] [CrossRef]
- Bucekova, M.; Bugarova, V.; Godocikova, J.; Majtan, J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods 2020, 9, 1263. [Google Scholar] [CrossRef]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The Role of Hydrogen Peroxide in the Antibacterial Activity of Different Floral Honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar] [CrossRef]
- Brudzynski, K. Effect of Hydrogen Peroxide on Antibacterial Activities of Canadian Honeys. Can. J. Microbiol. 2006, 52, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-Mediated Production of Hydrogen Peroxide Is Crucial for High Antibacterial Activity of Honeydew Honey. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olas, B. Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of Antioxidant Activity and Total Phenolics of Selected Czech Honeys. LWT Food Sci. Technol. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Valachová, I.; Bučeková, M.; Majtán, J. Quantification of Bee-Derived Peptide. Czech J. Food Sci. 2016, 34, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Danihlík, J.; Aronstein, K.; Petřivalský, M. Antimicrobial Peptides: A Key Component of Honey Bee Innate Immunity. J. Apic. Res. 2015, 54, 123–136. [Google Scholar] [CrossRef]
- Sojka, M.; Valachova, I.; Bucekova, M.; Majtan, J. Antibiofilm Efficacy of Honey and Bee-Derived Defensin-1 on Multispecies Wound Biofilm. J. Med. Microbiol. 2016, 65, 337–344. [Google Scholar] [CrossRef]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-Derived Antibacterial Peptide, Defensin-1, Promotes Wound Re-Epithelialisation In Vitro and In Vivo. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Reiss, M.; Han, Y.; Garcia, E.; Goldberg, M.; Yu, H.; Garner, W. Matrix Metalloproteinase-9 Delays Wound Healing in a Murine Wound Model. Surgery 2010, 147, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and Quantification of Methylglyoxal as the Dominant Antibacterial Constituent of Manuka (Leptospermum Scoparium) Honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar] [CrossRef]
- Kwakman, P.H.S.; te Velde, A.A.; de Boer, L.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity. PLoS ONE 2011, 6, e17709. [Google Scholar] [CrossRef] [Green Version]
- Majtan, J.; Klaudiny, J.; Bohova, J.; Kohutova, L.; Dzurova, M.; Sediva, M.; Bartosova, M.; Majtan, V. Methylglyoxal-Induced Modifications of Significant Honeybee Proteinous Components in Manuka Honey: Possible Therapeutic Implications. Fitoterapia 2012, 83, 671–677. [Google Scholar] [CrossRef]
- Adams, C.J.; Manley-Harris, M.; Molan, P.C. The Origin of Methylglyoxal in New Zealand Manuka (Leptospermum Scoparium) Honey. Carbohydr. Res. 2009, 344, 1050–1053. [Google Scholar] [CrossRef]
- Snow, M.J.; Manley-Harris, M. On the Nature of Non-Peroxide Antibacterial Activity in New Zealand Manuka Honey. Food Chem. 2004, 84, 145–147. [Google Scholar] [CrossRef]
- Girma, A.; Seo, W.; SheI, R.C. Antibacterial Activity of Varying UMF-Graded Manuka Honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konde, S.; Beena, J.P.; Sahoo, P.; Raj, N.S.; Kumar, N.C. Manuka Honey: A Potent Cariostatic Agent–An in Vitro Study. Int. J. Clin. Pediatr. Dent. 2018, 11, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Roy, S.; Mandal, M. Exploration of Antibacterial and Antioxidative Property of Two Natural Honey Samples from Malda District, India. Transl. Med. 2016, 6. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Lianda, R.L.P.; Sant’Anna, L.D.; Echevarria, A.; Castro, R.N. Antioxidant Activity and Phenolic Composition of Aqueous Extracts of Honeys and Their Extracts. J. Braz. Chem. Soc. 2008, 23, 55492. [Google Scholar]
- Saha, A.; Mandal, S. In Vitro Assessment of Two Commercial Honey Samples for Antibacterial and Antioxidant Activities. Austin J. Trop. Med. Hyg. 2015, 1, 1–5. [Google Scholar]
- Nweze, A.J.; Olovo, C.V.; Nweze, I.E.; John, O.O.; Paul, C. Therapeutic Properties of Honey. Honey Anal. New Adv. Chall. 2020, 1–21. [Google Scholar] [CrossRef]
- Moise, A.; Liviu, A.M.; Dezmirean, D.; Bobis, O. Nutraceutical Properties of Romanian Heather Honey. Nutr. Food Sci. 2013, 43, 218–227. [Google Scholar] [CrossRef]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In Vitro Anti-Inflammatory Properties of Honey Flavonoids: A Review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef]
- Vallianou, N.G. Honey and Its Anti-Inflammatory, Anti-Bacterial and Anti-Oxidant Properties. Gen. Med. Open Access 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1499. [Google Scholar] [CrossRef]
- Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, H.D.; Zhang, Y.W.; et al. Structures, Mechanical Properties and Applications of Silk Fibroin Materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Lee, O.J.; Sultan, M.T.; Hong, H.; Lee, Y.J.; Lee, J.S.; Lee, H.; Kim, S.H.; Park, C.H. Recent Advances in Fluorescent Silk Fibroin. Front. Mater. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, K.; Zhao, M.; Tao, X.; Hu, X.; Lu, S.; Lu, S. Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism. ACS Appl. Bio. Mater. 2020, 3, 3248–3259. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk Fibroin Biomaterials for Tissue Regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.Z.; Zhang, H.; Gao, R.N. Development of Functionally Graded Porous Titanium/Silk Fibroin Composite Scaffold for Bone Repair. Mater. Lett. 2021, 282, 128670. [Google Scholar] [CrossRef]
- Goudarzi, A.; Sadrnezhaad, S.K.; Johari, N. The Prominent Role of Fully-Controlled Surface Co-Modification Procedure Using Titanium Nanotubes and Silk Fibroin Nanofibers in the Performance Enhancement of Ti6Al4V Implants. Surf. Coat. Technol. 2021, 412, 127001. [Google Scholar] [CrossRef]
- Qian, K.Y.; Song, Y.; Yan, X.; Dong, L.; Xue, J.; Xu, Y.; Wang, B.; Cao, B.; Hou, Q.; Peng, W.; et al. Injectable Ferrimagnetic Silk Fibroin Hydrogel for Magnetic Hyperthermia Ablation of Deep Tumor. Biomaterials 2020, 259, 120299. [Google Scholar] [CrossRef]
- Byram, P.K.; Sunka, K.C.; Barik, A.; Kaushal, M.; Dhara, S.; Chakravorty, N. Biomimetic Silk Fibroin and Xanthan Gum Blended Hydrogels for Connective Tissue Regeneration. Int. J. Biol. Macromol. 2020, 165, 874–882. [Google Scholar] [CrossRef]
- Nakayama, K.; Chinen, S.; Teshima, J.; Tamada, Y.; Hirabayashi, M.; Hochi, S. Silk Fibroin Sheet Multilayer Suitable for Vitrification of in Vitro-Matured Bovine Oocytes. Theriogenology 2020, 145, 109–114. [Google Scholar] [CrossRef]
- Liu, Q.; Ying, G.; Jiang, N.; Yetisen, A.K.; Yao, D.; Xie, X.; Fan, Y.; Liu, H. Three-Dimensional Silk Fibroin Microsphere-Nanofiber Scaffolds for Vascular Tissue Engineering. Med. Nov. Technol. Devices 2021, 9, 100051. [Google Scholar] [CrossRef]
- Zang, M.; Zhang, Q.; Davis, G.; Huang, G.; Jaffari, M.; Ríos, C.N.; Gupta, V.; Yu, P.; Mathur, A.B. Perichondrium Directed Cartilage Formation in Silk Fibroin and Chitosan Blend Scaffolds for Tracheal Transplantation. Acta Biomater. 2011, 7, 3422–3431. [Google Scholar] [CrossRef]
- Han, Q.; Yang, P.; Wu, Y.; Meng, S.; Sui, L.; Zhang, L.; Yu, L.; Tang, Y.; Jiang, H.; Xuan, D.; et al. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Eng. Part A 2015, 21, 2156–2165. [Google Scholar] [CrossRef]
- Arumugam, M.; Murugesan, B.; Pandiyan, N.; Chinnalagu, D.K.; Rangasamy, G.; Mahalingam, S. Electrospinning Cellulose Acetate/Silk Fibroin/Au-Ag Hybrid Composite Nanofiber for Enhanced Biocidal Activity against MCF-7 Breast Cancer Cell. Mater. Sci. Eng. C 2021, 123, 112019. [Google Scholar] [CrossRef]
- Wenk, E.; Wandrey, A.J.; Merkle, H.P.; Meinel, L. Silk Fibroin Spheres as a Platform for Controlled Drug Delivery. J. Control. Release 2008, 132, 26–34. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, X.; Chen, X.; Shao, Z.; Yang, W. Doxorubicin-Loaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrug-Resistant Cancer. Adv. Mater. 2014, 26, 7393–7398. [Google Scholar] [CrossRef] [PubMed]
- Diab, T.; Pritchard, E.M.; Uhrig, B.A.; Boerckel, J.D.; Kaplan, D.L.; Guldberg, R.E. A Silk Hydrogel-Based Delivery System of Bone Morphogenetic Protein for the Treatment of Large Bone Defects. J. Mech. Behav. Biomed. Mater. 2012, 11, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uebersax, L.; Mattotti, M.; Papaloïzos, M.; Merkle, H.P.; Gander, B.; Meinel, L. Silk Fibroin Matrices for the Controlled Release of Nerve Growth Factor (NGF). Biomaterials 2007, 28, 4449–4460. [Google Scholar] [CrossRef] [PubMed]
- Lovett, M.L.; Wang, X.; Yucel, T.; York, L.; Keirstead, M.; Haggerty, L.; Kaplan, D.L. Silk Hydrogels for Sustained Ocular Delivery of Anti-Vascular Endothelial Growth Factor (Anti-VEGF) Therapeutics. Eur. J. Pharm. Biopharm. 2015, 95, 271–278. [Google Scholar] [CrossRef]
- Meinel, L.; Betz, O.; Fajardo, R.; Hofmann, S.; Nazarian, A.; Cory, E.; Hilbe, M.; McCool, J.; Langer, R.; Vunjak-Novakovic, G.; et al. Silk Based Biomaterials to Heal Critical Sized Femur Defects. Bone 2006, 39, 922–931. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, J.; Wang, S.; Sun, X.; Zhang, X.; Chen, J.; Kaplan, D.L.; Zhang, Z. Mandibular Repair in Rats with Premineralized Silk Scaffolds and BMP-2-Modified BMSCs. Biomaterials 2009, 30, 4522–4532. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.; Waterhouse, A.; Akhavan, B.; Gao, L.; Kim, H.N.; Tang, F.; Whitelock, J.M.; Bilek, M.M.; Lord, M.S.; Rnjak-Kovacina, J. Biomimetic Silk Biomaterials: Perlecan-Functionalized Silk Fibroin for Use in Blood-Contacting Devices. Acta Biomater. 2021. [Google Scholar] [CrossRef]
- Maleki, H.; Gharehaghaji, A.A.; Dijkstra, P.J. A Novel Honey-Based Nanofibrous Scaffold for Wound Dressing Application. J. Appl. Polym. Sci. 2013, 127, 4086–4092. [Google Scholar] [CrossRef]
- Raynaud, A.; Ghezali, L.; Gloaguen, V.; Liagre, B.; Quero, F.; Petit, J.M. Honey-Induced Macrophage Stimulation: AP-1 and NF-ΚB Activation and Cytokine Production Are Unrelated to LPS Content of Honey. Int. Immunopharmacol. 2013, 17, 874–879. [Google Scholar] [CrossRef]
- Yaghoobi, R.; Kazerouni, A.; Kazerouni, O. Evidence for Clinical Use of Honey in Wound Healing as an Anti-Bacterial, Anti-Inflammatory Anti-Oxidant and Anti-Viral Agent: A Review. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Tomblin, V.; Ferguson, L.R.; Han, D.Y.; Murray, P.; Schlothauer, R. Potential Pathway of Anti-Inflammatory Effect by New Zealand Honeys. Int. J. Gen. Med. 2014, 7, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zheng, A.; Liu, Y.; Jiao, D.; Zeng, D.; Wang, X.; Cao, L.; Jiang, X. Enhanced Bone Regeneration of the Silk Fibroin Electrospun Scaffolds through the Modification of the Graphene Oxide Functionalized by BMP-2 Peptide. Int. J. Nanomed. 2019, 14, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.L.; Gao, L.L.; Li, R.; Cheng, W.; Zhang, C.Q.; Zhang, X.Z. Mechanical Property and Biocompatibility of Silk Fibroin–Collagen Type II Composite Membrane. Mater. Sci. Eng. C 2019, 105, 110018. [Google Scholar] [CrossRef]
- Hixon, K.R.; Lu, T.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A Comparison of Tissue Engineering Scaffolds Incorporated with Manuka Honey of Varying UMF. Biomed. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hixon, K.R.; Lu, T.; Carletta, M.N.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A Preliminary in Vitro Evaluation of the Bioactive Potential of Cryogel Scaffolds Incorporated with Manuka Honey for the Treatment of Chronic Bone Infections. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1918–1933. [Google Scholar] [CrossRef]
- Rajput, M.; Bhandaru, N.; Anura, A.; Pal, M.; Pal, B.; Paul, R.R.; Chatterjee, J.; Mukherjee, R. Differential Behavior of Normal and Fibrotic Fibroblasts under the Synergistic Influence of Micropillar Topography and the Rigidity of Honey/Silk-Fibroin Substrates. ACS Biomater. Sci. Eng. 2016, 2, 1528–1539. [Google Scholar] [CrossRef]
- Rajput, M.; Bhandaru, N.; Barui, A.; Chaudhary, A.; Paul, R.R.; Mukherjee, R.; Chatterjee, J. Nano-Patterned Honey Incorporated Silk Fibroin Membranes for Improving Cellular Compatibility. RSC Adv. 2014, 4, 44674–44688. [Google Scholar] [CrossRef]
- Yang, X.; Fan, L.; Ma, L.; Wang, Y.; Lin, S.; Yu, F.; Pan, X.; Luo, G.; Zhang, D.; Wang, H. Green Electrospun Manuka Honey/Silk Fibroin Fibrous Matrices as Potential Wound Dressing. Mater. Des. 2017, 119, 76–84. [Google Scholar] [CrossRef]
- Rajput, M.; Mandal, M.; Anura, A.; Mukhopadhyay, A.; Subramanian, B.; Paul, R.R.; Chatterjee, J. Honey Loaded Silk Fibroin 3D Porous Scaffold Facilitates Homeostatic Full-Thickness Wound Healing. Materialia 2020, 12. [Google Scholar] [CrossRef]
- Sukumar, N.; Ramachandran, T.; Lakshmikantha, C.B. Silk Based Scaffolds in Combination with Honey and RhEGF for Diabetic Wound Healing. Indian Silk 2017, 55, 22–24. [Google Scholar]
Synthetic Polymer | Homologous Silk Based Biomaterial | Advantages of Silk Based Biomaterials | Reference |
---|---|---|---|
Metal-based microneedle | Silk microneedles | Controlled drug release | [13] |
Gauze | Silk fibroin nanoparticles hydrocolloid dressings | Accelerated wound healing | [14] |
Polypropylene | Fibroin | Increased cell adhesion and viability | [15] |
Su8 | Photo-cross-linkable silk fibroin | Higher-level affinity towards neurons | [16] |
5th Instar Day | Control Group | Experiment Group |
---|---|---|
Silk Gland Weight (g) | ||
1 | 0.018 | 0.018 |
3 | 0.092 | 0.105 |
5 | 0.182 | 0.280 |
7 | 0.350 | 0.430 |
Honey Sources | Larval Weight (g) | Cocoon Weight (g) | Filament Length (m) | Shell Weight (g) |
---|---|---|---|---|
Apis cerana | 2.98 | 1.34 | 1214.35 | 0.284 |
Apis florea | 3.07 | 1.42 | 1235.13 | 0.296 |
Apis mellifera | 3.22 | 1.45 | 1273.4 | 0.308 |
Apis dorsata | 3.32 | 1.47 | 1278.38 | 0.33 |
Trigona iridipennis | 3.44 | 1.59 | 1312.15 | 0.372 |
Control | 2.89 | 1.34 | 1198.75 | 0.257 |
Type of Honey (mL) | Number of Eggs |
---|---|
Carob honey 1 | 122.67 |
Carob honey 3 | 178.33 |
Carob honey 5 | 263 |
Citrus honey 1 | 286 |
Citrus honey 3 | 365 |
Citrus honey 5 | 429.67 |
Control | 417.33 |
Type of Honey | Number of Eggs |
---|---|
Carob honey | 558.6 |
Seder honey | 563.8 |
Black cumin honey | 494.6 |
Black cumin honey/Seder honey | 459 |
Control | 393 |
Biomaterial | Applicability | References |
---|---|---|
Titanium/Silk fibroin scaffolds | Bone repair | [99] |
Silk fibroin nanofibers | Drug delivery system | [100] |
Silk fibroin hydrogel | Cancer therapy | [101] |
Silk fibroin/xanthan hydrogels | Connective tissue regeneration | [102] |
Silk fibroin sheet | Vitrification of oocytes | [103] |
Silk fibroin microsphere-nanofiber | Vascular tissue engineering | [104] |
Silk fibroin and chitosan scaffolds | Tracheal transplantation | [105] |
Silk scaffolds | Craniofacial bone repair | [106] |
Silk fibroin/cellulose acetate/gold-silver nanoparticles | Cancer therapy | [107] |
Silk fibroin spheres | Controlled drug delivery | [108] |
Silk fibroin nanoparticles | Target therapy | [109] |
Silk fibroin hydrogel | Drug delivery system for bone defects | [110] |
Silk fibroin matrices | Drug delivery and controlled release | [111] |
Silk hydrogels | Drug delivery for sustained release | [112] |
Silk fibroin scaffolds | Femur defects | [113] |
Silk fibroin scaffolds | Mandibular repair | [114] |
Silk biofilms | Blood contacting devices | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baci, G.-M.; Cucu, A.-A.; Moise, A.R.; Dezmirean, D.S. Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials. Appl. Sci. 2021, 11, 4613. https://doi.org/10.3390/app11104613
Baci G-M, Cucu A-A, Moise AR, Dezmirean DS. Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials. Applied Sciences. 2021; 11(10):4613. https://doi.org/10.3390/app11104613
Chicago/Turabian StyleBaci, Gabriela-Maria, Alexandra-Antonia Cucu, Adela Ramona Moise, and Daniel Severus Dezmirean. 2021. "Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials" Applied Sciences 11, no. 10: 4613. https://doi.org/10.3390/app11104613
APA StyleBaci, G. -M., Cucu, A. -A., Moise, A. R., & Dezmirean, D. S. (2021). Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials. Applied Sciences, 11(10), 4613. https://doi.org/10.3390/app11104613