Path Following and Obstacle Avoidance for Unmanned Aerial Vehicles Using a Virtual-Force-Based Guidance Law
Abstract
:1. Introduction
2. Problem Formulation
2.1. Vehicle Model
2.2. Problem Definition
3. The Virtual-Force-Based Guidance Law
3.1. Spring Mass System: The Source of the Idea
- When , the spring mass system is a second-order weakly damped control system. Then, there will be oscillation before convergence.
- When , the system is a second-order critical damped control system. In this case, d converges to 0 without overshoot.
- When , the system is a second-order over damped system. d converges to 0 without overshoot, and the convergence rate is slower with a larger c.
3.2. The Virtual Forces for Straight-Line Following
3.3. Virtual Centripetal Force for Curve Following
3.4. Virtual Repulsive Force for Obstacle Avoidance
3.5. Driven of the Virtual-Force-Based Guidance Law
- Step 1: Obtain the state of the UAV.
- Step 2: Determine the reference point and calculate the reference center O. The reference center is determined by the reference point and the reference radius at point .
- Step 4: Obtain the resultant virtual force in the forward and lateral direction by decomposing the virtual forces in the two directions
- Step 5: Obtain the input command of the VFGL by
4. Evaluation
4.1. Numerical Simulation
4.1.1. Path Following with Different Parameters
4.1.2. Comparison of the VFGL with Other Methods
4.2. Hardware-in-the-Loop Simulation
4.2.1. System Setup
4.2.2. Results of the HIL Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Yao, X.; Zhang, L. Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances. J. Intell. Robot. Syst. 2020, 99, 891–908. [Google Scholar] [CrossRef]
- Massimiliano, I.; Antonio, S. Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton. Syst. 2018, 106, 38–46. [Google Scholar]
- Radmanesh, M.; Kumar, M.; Guentert, P.H.; Sarim, M. Overview of path planning and obstacle avoidance algorithms for UAVs: A comparative study. Unmanned Syst. 2018, 6, 2301–3850. [Google Scholar] [CrossRef]
- Carrio, A.; Lin, Y.; Saripalli, S.; Campoy, P. Obstacle detection system for small UAVs using ADS-B and thermal imaging. J. Intell. Robot. Syst. 2017, 88, 583–595. [Google Scholar] [CrossRef]
- Rodríguez-Seda, E.J.; Tang, C.; Spong, M.W.; Stipanović, D.M. Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 2014, 33, 1569–1592. [Google Scholar] [CrossRef]
- Kumon, M.; Nagata, M.; Kohzawa, R.; Mizumoto, I.; Iwai, Z. Flight Path Control of Small Unmanned Air Vehicle. J. Field Robot. 2006, 23, 223–244. [Google Scholar] [CrossRef]
- Alessandretti, A.; Aguiar, A.P.; Jones, C. Trajectory-tracking and path-following controllers for constrained underactuated vehicles using Model Predictive Control. In Proceedings of the 2013 European Control Conference, Zurich, Switzerland, 17–19 July 2013; pp. 1371–1376. [Google Scholar]
- Castillo, C.; Moreno, W.; Valavanis, K. Unmanned helicopter waypoint trajectory tracking using model predictive control. In Proceedings of the Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 June 2007; pp. 1–8. [Google Scholar]
- Künhe, F.; Gomes, J.; Fetter, W. Mobile robot trajectory tracking using model predictive control. In II IEEE Latin-American Robotics Symposium; IEEE: Washington, DC, USA, 2005. [Google Scholar]
- Brezoescu, A.; Espinoza, T.; Castillo, P.; Lozano, R. Adaptive trajectory following for a fixed-wing UAV in presence of crosswind. J. Intell. Robot. Syst. 2013, 69, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces. IEEE Trans. Control. Syst. Technol. 2015, 23, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Poznyak, A.S.; Yu, W.; Sanchez, E.N.; Perez, J.P. Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Netw. 1999, 10, 1402–1411. [Google Scholar] [CrossRef]
- Chwa, D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control. Syst. Technol. 2004, 12, 637–644. [Google Scholar] [CrossRef]
- Yang, J.M.; Kim, J.H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 1999, 15, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Divelbiss, A.W.; Wen, J.T. Trajectory tracking control of a car-trailer system. IEEE Trans. Control. Syst. Technol. 1997, 5, 269–278. [Google Scholar] [CrossRef]
- Ratnoo, A.; Sujit, P.; Kothari, M. Adaptive optimal path following for high wind flights. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011. Volume 2. [Google Scholar]
- Schoellig, A.P.; Mueller, F.L.; D’Andrea, R. Optimization-based iterative learning for precise quadrocopter trajectory tracking. Auton. Robot. 2012, 33, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Fossen, T.I.; Breivik, M.; Skjetne, R. Line-of-sight path following of underactuated marine craft. In Proceedings of the 6th IFAC MCMC, Girona, Spain, 17–19 September 2003; pp. 244–249. [Google Scholar]
- Conte, G.; Duranti, S.; Merz, T. Dynamic 3D path following for an autonomous helicopter. IFAC Proc. Vol. 2004, 37, 472–477. [Google Scholar] [CrossRef]
- Park, S.; Deyst, J.; How, J.P. A new nonlinear guidance logic for trajectory tracking. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Providence, RI, USA, 16–19 August 2004; pp. 1–16. [Google Scholar]
- Jung, W.; Lim, S.; Lee, D.; Bang, H. Unmanned Aircraft Vector Field Path Following with Arrival Angle Control. J. Intell. Robot. Syst. 2016, 1–15. [Google Scholar] [CrossRef]
- Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W. Vector field path following for miniature air vehicles. IEEE Trans. Robot. 2007, 23, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Kothari, M.; Postlethwaite, I.; Gu, D.W. UAV path following in windy urban environments. J. Intell. Robot. Syst. 2014, 74, 1013–1028. [Google Scholar] [CrossRef]
- Sujit, P.B.; Saripalli, S.; Sousa, J.B. Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE Control Syst. 2014, 34, 42–59. [Google Scholar]
- Park, S.; Deyst, J.; How, J.P. Performance and Lyapunov stability of a nonlinear path following guidance method. J. Guid. Control Dyn. 2007, 30, 1718–1728. [Google Scholar] [CrossRef]
- Howard, T.M.; Green, C.J.; Kelly, A. Receding horizon model-predictive control for mobile robot navigation of intricate paths. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 69–78. [Google Scholar]
- Hwang, C.L.; Chang, L.J. Trajectory tracking and obstacle avoidance of car-like mobile robots in an intelligent space using mixed H2/H∞ decentralized control. IEEE/ASME Trans. Mechatron. 2007, 12, 345–352. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 396–404. [Google Scholar] [CrossRef]
- Borenstein, J.; Koren, Y. Real-Time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 572–577. [Google Scholar]
- Borenstein, J.; Koren, Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. Robot. Autom. 1991, 7, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Nakai, K.; Uchiyama, K. Vector Fields for UAV Guidance Using Potential Function Method for Formation Flight. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, USA, 19–22 August 2013; pp. 278–288. [Google Scholar]
- Goncalves, V.; Pimenta, L.C.; Maia, C.A.; Dutra, B.C.; Pereira, G.A. Vector Fields for Robot Navigation Along Time-Varying Curves in n-Dimensions. IEEE Trans. Robot. 2010, 26, 647–659. [Google Scholar] [CrossRef]
- Wilhelm, J.; Clem, G. Vector field uav guidance for path following and obstacle avoidance with minimal deviation. J. Guid. Dyn. 2019, 42, 1848–1856. [Google Scholar] [CrossRef]
- Stefan, S.; Tobias, N.; Javier, A.M.; Otmar, H. Sample Efficient Learning of Path Following and Obstacle Avoidance Behavior for Quadrotors. IEEE Robot. Autom. Lett. 2018, 3, 3852–3859. [Google Scholar]
- Nguyen, P.D.H.; Recchiuto, C.T.; Sgorbissa, A. Real-Time Path Generation and Obstacle Avoidance for Multirotors: A Novel Approach. J. Intell. Robot. Syst. 2018, 89, 27–49. [Google Scholar] [CrossRef]
- Sgorbissa, A. Integrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicopters. Int. J. Robot. Res. 2019, 38, 853–876. [Google Scholar] [CrossRef]
- Carlos, R.S.; Dominguez, D.; Gonzalo, J.; Escapa, A. Path planner for autonomous exploration of underground mines by aerial vehicles. Sensors 2020, 20, 4259. [Google Scholar]
- Steiner, J.A.; He, X.; Bourne, J.R.; Leang, K.K. Open sector rapid reactive collision avoidance: Application in aerial robot navigation through outdoor unstructured environments. Robot. Auton. Syst. 2019, 112, 211–220. [Google Scholar] [CrossRef]
- Cheein, F.A.; Scaglia, G. Trajectory tracking controller design for unmanned vehicles: A new methodology. J. Field Robot. 2014, 31, 861–887. [Google Scholar] [CrossRef]
- Beard, R.; Ferrin, J.; Humpherys, J. Fixed wing UAV path following in wind with input constraints. IEEE Trans. Control. Syst. Technol. 2014, 22, 2103–2117. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, X.; Lin, Z.; Zhang, D.; Shen, L. Integrating Vector Field Approach and Input-to-State Stability Curved Path Following for Unmanned Aerial Vehicles. IEEE Trans. Syst. Man Cybern. 2020, 50, 2897–2904. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zhang, D.; Shen, L. UAV formation: From numerical simulation to actual flight. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 475–480. [Google Scholar]
- Wang, X.; Zhang, J.; Zhang, D.; Shen, L. Development of an Experiment System for UAV Formation Flight. Robot 2017, 39, 160–166. [Google Scholar]
- Zhang, D.; Wang, X. Autonomous Landing Control of Fixed-wing UAVs: From Theory to Field Experiment. J. Intell. Robot. Syst. 2017, 88, 619–634. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, X.; Zhang, D.; Shen, L. Curved path following control for fixed-wing unmanned aerial vehicles with control constraint. J. Intell. Robot. Syst. 2017, 89, 107–119. [Google Scholar] [CrossRef]
- Wang, X.; Kong, W.; Zhang, D.; Shen, L. Active disturbance rejection controller for small fixed-wing UAVs with model uncertainty. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2299–2304. [Google Scholar]
Label | Parameters |
---|---|
1 | , |
2 | , |
3 | , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cai, L.; Kong, L.; Wang, B.; Huang, S.; Lin, C. Path Following and Obstacle Avoidance for Unmanned Aerial Vehicles Using a Virtual-Force-Based Guidance Law. Appl. Sci. 2021, 11, 4618. https://doi.org/10.3390/app11104618
Wang X, Cai L, Kong L, Wang B, Huang S, Lin C. Path Following and Obstacle Avoidance for Unmanned Aerial Vehicles Using a Virtual-Force-Based Guidance Law. Applied Sciences. 2021; 11(10):4618. https://doi.org/10.3390/app11104618
Chicago/Turabian StyleWang, Xun, Libing Cai, Longxing Kong, Binfeng Wang, Shaohua Huang, and Chengdi Lin. 2021. "Path Following and Obstacle Avoidance for Unmanned Aerial Vehicles Using a Virtual-Force-Based Guidance Law" Applied Sciences 11, no. 10: 4618. https://doi.org/10.3390/app11104618
APA StyleWang, X., Cai, L., Kong, L., Wang, B., Huang, S., & Lin, C. (2021). Path Following and Obstacle Avoidance for Unmanned Aerial Vehicles Using a Virtual-Force-Based Guidance Law. Applied Sciences, 11(10), 4618. https://doi.org/10.3390/app11104618