Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes
Abstract
:1. Introduction
- -
- Ceramides exert their influence in cellular stress response, inflammatory processes, apoptosis and signaling pathways. They are also accumulated in skeletal muscle, promoting insulin resistance and oxidative stress, contributing to the onset and development of cardiometabolic diseases and renal dysfunction [4]. Several inflammatory cytokines may generate ROS and also induce ceramide formation in several cell types [5].
- -
- Diacylglycerols (DAG) act as second messengers affecting signal transduction from many immune cell receptors and can be produced and metabolized through multiple mechanisms. Moreover, DAG induces the hydrolysis of SM to ceramides.
- -
- Sphingomyelins (SM) are reservoirs for other sphingolipids, influencing cell signaling through their structural role in lipid rafts or through the effects of their catabolic mediators (e.g., ceramides) [6]. Changes in SM concentration directly impact cell membrane physiology by modifying its transmission signal.
- -
- The soluble fractalkine CX3CL1, a potent chemoattractant of T cells and monocytes, which has a recognized role in both immune cell migration and adhesion and is involved in many inflammatory processes and diseases [7].
- -
- Vascular endothelial growth factor (VEGF) is a multifactorial cytokine that derives from endothelial cells and pericytes in response to hypoxia, and is implicated in angiogenesis and microvascular hyperpermeability events [8]
- -
- Interleukin-6 (IL-6), which is generated by different cell types (e.g., macrophages, endothelial cells and T cells). The contraction of skeletal muscle may induce the release of IL-6 into the interstitium as well as into blood in response to an exercise burst. Moreover, IL-6 may modulate the immunological and metabolic reactions to exercise [9].
- -
- Tumor necrosis factor alpha (TNFα), an inflammatory cytokine produced by macrophages/monocytes during acute inflammation, which affects different ranges of signaling pathways, including those leading to necrosis or apoptosis [10].
2. Materials and Methods
2.1. Characteristics of the Participants
2.2. Sample Collection, Preparation and Evaluation of Lipids and Inflammatory Markers
2.3. Statistical Analysis
3. Results
3.1. Demographic and Training Characteristics
3.2. Lipids Levels and Race-Related Trends
3.2.1. Total Ceramides, DAG and SM
3.2.2. Ceramides, DAG and SM Species
3.3. Inflammatory Levels and Race-Related Trends
4. Discussion
4.1. Demographic and Training Characteristics
4.2. Lipids Levels and Race-Related Trends
4.3. Inflammatory Levels and Race-Related Trends
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knechtle, B.; Nikolaidis, P.T.; Zingg, M.A.; Rosemann, T.; Rüst, C.A. Half-marathoners are younger and slower than marathoners. SpringerPlus 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Henson, D.A.; Smith, L.L.; Utter, A.C.; Vinci, D.M.; Davis, J.M.; Kaminsky, D.E.; Shute, M. Cytokine changes after a marathon race. J. Appl. Physiol. 2001, 91, 109–114. [Google Scholar] [CrossRef]
- Nikolova-Karakashian, M.N.; Reid, M.B. Sphingolipid Metabolism, Oxidant Signaling, and Contractile Function of Skeletal Muscle. Antioxidants Redox Signal. 2011, 15, 2501–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients 2019, 11, 1664. [Google Scholar] [CrossRef] [Green Version]
- Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta (BBA) Bioenerg. 2011, 1813, 238–259. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Jiang, X.-C. Sphingomyelin and Its Role in Cellular Signaling. Chem. Biol. Pteridines Folates 2013, 991, 1–14. [Google Scholar] [CrossRef]
- Conroy, M.J.; Maher, S.G.; Melo, A.M.; Doyle, S.L.; Foley, E.; Reynolds, J.V.; Long, A.; Lysaght, J. Identifying a Novel Role for Fractalkine (CX3CL1) in Memory CD8+ T Cell Accumulation in the Omentum of Obesity-Associated Cancer Patients. Front. Immunol. 2018, 9, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunga, H.-C.; Kirsch, K.; Behn, C.; Koralewski, E.; Davila, E.H.; Estrada, M.I.; Johannes, B.; Wittels, P.; Jelkmann, W. Vascular endothelial growth factor in exercising humans under different environmental conditions. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999, 79, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev. 2006, 12, 41. [Google Scholar]
- Idriss, H.T.; Naismith, J.H. TNFα and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Hackl, M.T.; Fürnsinn, C.; Schuh, C.M.; Krssak, M.; Carli, F.; Guerra, S.; Freudenthaler, A.; Baumgartner-Parzer, S.; Helbich, T.H.; Luger, A.; et al. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.D.; Farrell, L.; Wood, M.J.; Martinovic, M.; Arany, Z.; Rowe, G.C.; Souza, A.; Cheng, S.; McCabe, E.L.; Yang, E.; et al. Metabolic Signatures of Exercise in Human Plasma. Sci. Transl. Med. 2010, 2, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, D. The association of cardiorespiratory fitness with endothelial or smooth muscle vasodilator function. Eur. J. Prev. Cardiol. 2015, 22, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; DeFronzo, R.A.; Kirwan, J.P. Plasma Ceramides Are Elevated in Obese Subjects With Type 2 Diabetes and Correlate With the Severity of Insulin Resistance. Diabetes 2008, 58, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Ichi, I.; Nakahara, K.; Miyashita, Y.; Hidaka, A.; Kutsukake, S.; Inoue, K.; Maruyama, T.; Miwa, Y.; Harada-Shiba, M.; Tsushima, M.; et al. Association of ceramides in human plasma with risk factors of atherosclerosis. Lipids 2006, 41, 859–863. [Google Scholar] [CrossRef]
- Bismuth, J.; Lin, P.; Yao, Q.; Chen, C. Ceramide: A common pathway for atherosclerosis? Atherosclerosis 2008, 196, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.-C.; Paultre, F.; Pearson, T.A.; Reed, R.G.; Francis, C.K.; Lin, M.; Berglund, L.; Tall, A.R. Plasma Sphingomyelin Level as a Risk Factor for Coronary Artery Disease. Arter. Thromb. Vasc. Biol. 2000, 20, 2614–2618. [Google Scholar] [CrossRef] [Green Version]
- Anroedh, S.S.; Hilvo, M.; Akkerhuis, K.M.; Kauhanen, D.; Koistinen, K.; Oemrawsingh, R.; Serruys, P.; van Geuns, R.-J.; Boersma, E.; Laaksonen, R.; et al. Plasma concentrations of molecular lipid species predict long-term clinical outcome in coronary artery disease patients. J. Lipid Res. 2018, 59, 1729–1737. [Google Scholar] [CrossRef]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Herrmann, N.; Dinoff, A.; Marzolini, S.; Mielke, M.M.; Andreazza, A.; I Oh, P.; Venkata, S.L.V.; Haughey, N.J.; Lanctôt, K.L. Association Between Sphingolipids and Cardiopulmonary Fitness in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Bruce, C.R.; Thrush, A.B.; Mertz, V.A.; Bezaire, V.; Chabowski, A.; Heigenhauser, G.J.F.; Dyck, D.J. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am. J. Physiol. Metab. 2006, 291, E99–E107. [Google Scholar] [CrossRef] [Green Version]
- Dobrzyń, A.; Zendzian-Piotrowska, M.; Górski, J. Effect of endurance training on the sphingomyelin-signalling pathway activity in the skeletal muscles of the rat. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2004, 55, 305–313. [Google Scholar]
- Kasumov, T.; Solomon, T.P.; Hwang, C.; Huang, H.; Haus, J.M.; Zhang, R.; Kirwan, J.P. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity 2015, 23, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Dubé, J.J.; Amati, F.; Toledo, F.G.S.; Stefanovic-Racic, M.; Rossi, A.; Coen, P.; Goodpaster, B.H. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011, 54, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Scherer, P.E.; Hill, J.A. Obesity, Diabetes, and Cardiovascular Diseases. Circ. Res. 2016, 118, 1703–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukkonen, P.K.; Zhou, Y.; Sädevirta, S.; Leivonen, M.; Arola, J.; Orešič, M.; Hyötyläinen, T.; Yki-Järvinen, H. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1167–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubé, J.J.; Amati, F.; Stefanovic-Racic, M.; Toledo, F.G.S.; Sauers, S.E.; Goodpaster, B.H. Exercise-induced alterations in intramyocellular lipids and insulin resistance: The athlete’s paradox revisited. Am. J. Physiol. Metab. 2008, 294, E882–E888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, B.C.; Brozinick, J.T.; Strauss, A.; Bacon, S.; Kerege, A.; Bui, H.H.; Sanders, P.; Siddall, P.; Kuo, M.S.; Perreault, L. Serum sphingolipids: Relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Metab. 2015, 309, E398–E408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardare, C.; Krüger, K.; Liebisch, G.; Seimetz, M.; Couturier, A.; Ringseis, R.; Wilhelm, J.; Weissmann, N.; Eder, K.; Mooren, F.-C. Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice. J. Diabetes Res. 2015, 2016, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, D.; Lucks, J.; Fuchs, S.; Schiffmann, S.; Schreiber, Y.; Ferreirós, N.; Merkens, J.; Marschalek, R.; Geisslinger, G.; Grösch, S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol. 2012, 44, 620–628. [Google Scholar] [CrossRef]
- Cappuccilli, M.; Mosconi, G.; Roi, G.; De Fabritiis, M.; Totti, V.; Merni, F.; Trerotola, M.; Marchetti, A.; La Manna, G.; Costa, A.N. Inflammatory and Adipose Response in Solid Organ Transplant Recipients After a Marathon Cycling Race. Transplant. Proc. 2016, 48, 408–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.K.; Teixeira, A.; Rama, L.; Prestes, J.; Rosado, F.; Hankey, J.; Scheer, V.; Hemmings, K.; Ansley-Robson, P.; Costa, R.J.S. Circulatory endotoxin concentration and cytokine profile in response to exertional-heat stress during a multi-stage ultra-marathon competition. Exerc. Immunol. Rev. 2015, 21, 114–128. [Google Scholar]
- Pedersen, B.K.; Åkerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515, 287–291. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Pedersen, B.K. Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef]
- Chapman, G.A.; Moores, K.E.; Gohil, J.; Berkhout, T.A.; Patel, L.; Green, P.; Macphee, C.H.; Stewart, B.R. The role of fractalkine in the recruitment of monocytes to the endothelium. Eur. J. Pharmacol. 2000, 392, 189–195. [Google Scholar] [CrossRef]
- Goda, S.; Imai, T.; Yoshie, O.; Yoneda, O.; Inoue, H.; Nagano, Y.; Okazaki, T.; Imai, H.; Bloom, E.T.; Domae, N.; et al. CX3C-Chemokine, Fractalkine-Enhanced Adhesion of THP-1 Cells to Endothelial Cells Through Integrin-Dependent and -Independent Mechanisms. J. Immunol. 2000, 164, 4313–4320. [Google Scholar] [CrossRef] [Green Version]
- Catoire, M.; Mensink, M.; Kalkhoven, E.; Schrauwen, P.; Kersten, S. Identification of human exercise-induced myokines using secretome analysis. Physiol. Genom. 2014, 46, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Bilan, P.J.; Fink, L.N.; Klip, A. Cross-talk between skeletal muscle and immune cells: Muscle-derived mediators and metabolic implications. Am. J. Physiol. Metab. 2013, 304, E453–E465. [Google Scholar] [CrossRef] [PubMed]
- Wojdasiewicz, P.; Turczyn, P.; Dobies-Krzesniak, B.; Frasunska, J.; Tarnacka, B. Role of CX3CL1/CX3CR1 Signaling Axis Activity in Osteoporosis. Mediat. Inflamm. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Strömberg, A.; Olsson, K.; Dijksterhuis, J.P.; Rullman, E.; Schulte, G.; Gustafsson, T. CX3CL1—A macrophage chemoattractant induced by a single bout of exercise in human skeletal muscle. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R297–R304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-P. TNF-α is a mitogen in skeletal muscle. Am. J. Physiol. Physiol. 2003, 285, C370–C376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnet, C.; Lafuste, P.; Arnold, L.; Brigitte, M.; Poron, F.; Authier, F.J.; Chrétien, F.; Gherardi, R.K.; Chazaud, B. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J. Cell Sci. 2006, 119, 2497–2507. [Google Scholar] [CrossRef] [Green Version]
- Vassalle, C.; Del Turco, S.; Sabatino, L.; Basta, G.; Maltinti, M.; Sbrana, F.; Ndreu, R.; Mastorci, F.; Pingitore, A. New inflammatory and oxidative stress-based biomarker changes in response to a half-marathon in recreational athletes. J. Sports Med. Phys. Fit. 2020, 60. [Google Scholar] [CrossRef]
Anthropometric Measurement | Runners N (13) |
---|---|
Age (years) | 47 ± 6 |
Gender (M/F) | 7/6 |
Height (cm) | 171.6 ± 2 |
Weight (kg) | 67.5 ± 2.2 |
BMI (kg/m2) | 21.6 ± 0.7 |
WAIST (cm) | 78.2 ± 3.1 |
PAS (mmHg) | 128.3 ± 5.2 |
PAD (mmHg) | 72.16 ± 2.3 |
FFM (kg) | 55.6 ± 3.6 |
FAT% (kg) | 11.54 ± 1.5 |
Physical activity | |
Day/week of training | 4 ± 0.3 |
Km/week | 50.1 ± 4.7 |
Years of training | 6 ± 1 |
Half-marathon race finish time (min) | 105.2 ± 3.7 |
Variables | Mean ± SD | ||
---|---|---|---|
Baseline | Post | 24 h | |
Fractalkine (pg/mL) | 143.4 ± 124.9 | 219.6 ± 126.9 | 107.7 ± 149.4 |
IL-6 (pg/mL) | 0.7 ± 0.6 | 9.1 ± 6.9 | 0.64 ± 0.49 |
TNFα (pg/mL) | 32.4 ± 27.8 | 35.8 ± 29.1 | 20.5 ± 24.1 |
VEGF-A (pg/mL) | 186.1 ± 128.4 | 178.5 ± 161.3 | 147.6 ± 142.8 |
Pre-Exercise | Post Δ Values from Baseline (% Change) | 24 h Δ Values from Baseline (% Change) | |
---|---|---|---|
Fractalkine (pg/mL) | 143.4 ± 124.99 | 76.2 (53.3%) | −35.7 (−24.9%) |
IL-6 (pg/mL) | 0.7 ± 0.649 | −0.1 (−7.6%) | 8.4 (+1208.6%) |
TNFα (pg/mL) | 32.4 ± 27.844 | −11.9 (−36.8%) | 3.4 (+10.5%) |
VEGF-A (pg/mL) | 186.2 ± 128.379 | −38.5 (−20.7%) | −7.6 (−4.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggini, M.; Vassalle, C.; Carli, F.; Maltinti, M.; Sabatino, L.; Buzzigoli, E.; Mastorci, F.; Sbrana, F.; Gastaldelli, A.; Pingitore, A. Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes. Appl. Sci. 2021, 11, 4622. https://doi.org/10.3390/app11104622
Gaggini M, Vassalle C, Carli F, Maltinti M, Sabatino L, Buzzigoli E, Mastorci F, Sbrana F, Gastaldelli A, Pingitore A. Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes. Applied Sciences. 2021; 11(10):4622. https://doi.org/10.3390/app11104622
Chicago/Turabian StyleGaggini, Melania, Cristina Vassalle, Fabrizia Carli, Maristella Maltinti, Laura Sabatino, Emma Buzzigoli, Francesca Mastorci, Francesco Sbrana, Amalia Gastaldelli, and Alessandro Pingitore. 2021. "Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes" Applied Sciences 11, no. 10: 4622. https://doi.org/10.3390/app11104622
APA StyleGaggini, M., Vassalle, C., Carli, F., Maltinti, M., Sabatino, L., Buzzigoli, E., Mastorci, F., Sbrana, F., Gastaldelli, A., & Pingitore, A. (2021). Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes. Applied Sciences, 11(10), 4622. https://doi.org/10.3390/app11104622