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Abstract: This work proposes a novel region-estimation (RE) algorithm using the quantification of
colon-cancer (HCT-8) and fibroblasts (NIH3T3) cells to estimate the densest region of colon-cancer
cells in in vitro 3D co-cultured spheroids. Cells were labelled with different cell tracker dyes to track
the cells. The technique involves staining cells with cell trackers The quantification of HCT-8 and
NIH3T3 cells by the RE algorithm leads to distribution pattern analysis of cells from the core to the
periphery, which ultimately estimates the densest region of HCT-8 cells in an in vitro 3D cell spheroid.
Cell quantification by the RE algorithm was compared with the results of cell quantification by ImageJ
software. Results demonstrated the distribution patterns of cells from the core to the peripheral region
of the in vitro 3D cell spheroid. The overall experimentation showed that the proposed methodology
outperformed state-of-the-art approaches in terms of segmentation, quantification, and reducing
biasing error.

Keywords: distribution patterns; fibroblast cells; HCT-8 colon-cancer cells; nature-inspired tech-
niques; quantification; segmentation

1. Introduction

In mimicking the structural and natural complexity of living tissue, current technology
such as in vitro 3D spheroid cell culture models is evolving compared to the 2D cell culture
model. In vivo cell growth and cell signaling are highly dependent on the extracellular
matrix (ECM) and the interaction produced by different kinds of cells. In vitro 3D cell culture
models aid in the study of molecular level tissue function by employing co-culture models
and developing drugs for the cancer model in mitigating animal usage for drug testing. In
oxygen and nutrients, the gradient can be closely mimicked by 3D cell culture techniques
compared to 2D cell culture techniques [1]. However, 3D in vitro spheroid models seriously
suffer from image acquisition and standalone image processing algorithms. As a result,
user intervention during analysis might lead to heavier biases, thereby leading to erroneous
results.

Such issues can be overcome by different automated computer-aided design (CAD)
tasks such as segmentation, i.e., the extraction of the region of interest from the images.
In the literature, several studies showed multiple usages of automatic segmentation ap-
proaches for variable cellular types [2,3]. Al-Kofahi et al. [4] stated that the segmentation
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of cells through automation is an essential step in image cytometry and histometry. M.
Sharma et al. [5] proposed a novel non-linear segmentation model to discriminate and
quantify living or dead cells. Xing and Yang [6] focused on digital pathology and mi-
croscopy image analysis, and extensively reviewed the techniques. Considerable progress
was achieved in the past, but algorithms still suffer from biasing and need to boost their
accuracy and robustness, consume less time, and self act against the upcoming applications.
Color-based segmentation using traditional clustering algorithms, on the other hand, is
relatively easy, and complexity is lesser when compared to that of segmentation techniques
[7]. It is likewise more relevant for biomedical image segmentation, as the count of clusters
is known beforehand. However, traditional clustering techniques suffer from various issues
such as being trapped in local optima, and having sensitivity to initial cluster centers and
boundary-level constraints [8]. In recent advances, many nature-inspired algorithms arose
to solve these clustering problems. The hybridization of nature-inspired algorithms with
each other and with traditional clustering techniques was described by Krisna et al. [9],
Rana et al. [10], and Chowdhury et al. [11] to resolve clustering issues. However, all of
these clustering algorithms need much parameter initialization (Table S1), increasing their
complexity and manual intervention. Moreover, incorrect parameter initialization affects
the end outcome. To skip the overhead of parameter settings, a nature-inspired algorithm
called the teacher learning-based optimization (TLBO) algorithm [12] was proposed.

2. Material Preparations

In this study, a poly-di-methyl-siloxane (PDMS) based microwell array chip was
utilized to co-culture NIH3T3 and HCT-8 cells in in vitro. A PDMS based microwell
array chip was used to construct the tumor spheroids. The well known soft lithography
process was used to fabricate the microwells, and fabrication steps were followed as
given by Patra et al. [13]. Images were obtained by scanning a horizontal cross-sectional
view using fluorescence based confocal microscopy. To make the cells visible under
confocal microscopy, NIH3T3 cells were labeled with CellTracker™ Green CMFDA (5-
chloromethylfluorescein diacetate) dye (Thermo Fisher Scientific, China). HCT-8 cells
were labeled with CellTracker™ Blue CMHC (4-chloromethyl-7-hydroxycoumarin) dye
(Thermo Fisher Scientific, China). Dyes were functionalized as per the manufacturer’s
instructions. Briefly, both cell types were incubated with the respective cell tracker dye
(50 µL) for 30 min at 37 ◦C. Cells were further washed 3 times with PBS, mixed, and seeded
on the microwell array chip for spheroid formation.

HCT-8 and NIH3T3 cells (blue and green stained cells) were co-cultured in different
ratios of 2:0.5; 2:1; 2:2; and 2:4, as shown in Figure 1; While preparing the in vitro 3D
cell spheroid, the spheroid shaping capabilities expanded and became quicker by includ-
ing more NIH3T3 cells with the HCT-8 cells. To analyze the cellular distribution in the
spheroids, 3D images were captured by using confocal microscopy. Z-direction images
were captured (using 10x objective) from the bottom of each spheroid with 6 µm step
sizes of 50 slices, i.e., a total of 300 µm, which was equal to the spheroid size, as shown in
Figure 2.

This study compares the different intra and inter-domain clustering techniques in the
clustering of colored cells. The outcome of the best performing algorithms was used to
quantify the cells and estimate the densest region of the colon-cancer cells over an in vitro
3D cell spheroid using a novel region estimation algorithm based on a distance transform
(DT) technique.
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(a)

(b)

(c)

(d)

Figure 1. Sample images of each ratio for horizontal cross-section of 3D cell spheroid: (a) 2:0.5; (b)
2:1; (c) 2:2; (d) 2:4.

Figure 2. Partitioning of in vitro 3D cell spheroid into regions.

3. Problem Formulation

The spheroid was divided into 50 slices (z0−−49) for each ratio (Figure 2). The width
of the whole spheroid was 300 µm, which means that each slice had 6 µm thickness.
Therefore, the whole in vitro 3D cell spheroid was partitioned into two regions: (1) the core
region (from approx. slice nos. z16−−32) and (2) the peripheral region (from approx. slice
nos. z0−−15and33−−49). The densest region was where the concentrations of the HCT-8
cells in the in vitro 3D cell spheroid were the maximum between the two regions. The
estimation of the densest region of the colon-cancer cells in the in vitro 3D cell spheroid was



Appl. Sci. 2021, 11, 4636 4 of 18

required for further analysis and treatment planning. With this, the technology of ultralow
attachment surfaces of in vitro techniques is of the recent trend [14,15] recently became
popular [16,17] in reducing the burden animal model. These microwell technologies have
been used for the past few decades [18], and several cancer tumor models were constructed
in vitro, which may provide a better environment to build in vitro 3D culturing of patient
derived xenografts (PDX). Further improving image processing techniques may advance
our understanding of stromal cell distribution in real tumor tissue in vitro, which helps
in personalized medicine. Cells have different proliferation rates, but the environment
depends on initial cell seeding density in the spheroid. We are currently experimenting on
the aspect of the proliferation rate and monitoring them at different time points.

In order to understand the regional distribution of in vitro 3D cell spheroids, the total
number Nb of HCT-8 cells and Ng NIH3T3 cells present in the in vitro 3D cell spheroid was
considered. The cells were considered to be circular. The counts of HCT-8 and NIH3T3 cells
were evaluated for horizontal cross sectional images of the in vitro 3D cell spheroid for each
slice (slice nos. z0−−49). The identification of the densest region depends on the maximal
concentrations of the HCT-8 cells in two different regions i.e., core (Bc) and periphery (Bp).
Therefore, it was formulated as

Rdense =


CR , i f Count(Bc) > Count(Gp)
|| Count(Bc) > Count(Bp)
PR , i f Count(Bp) > Count(Gc)
|| Count(Bp) > Count(Bc))

(1)

where Gc and Gp are the count of NIH3T3 cells for the core and peripheral regions, re-
spectively; Bc and Bp are the count of HCT-8 cells for the core and peripheral regions,
respectively. The proposed region estimation algorithm finds the densest region Rdense of
the HCT-8 cells and gives the distribution patterns of the HCT-8 and NIH3T3 cells from the
core to the peripheral region over the in vitro 3D cell spheroid.

4. Proposed Methodology

The overall proposed methodology comprises two main steps: (1) foreground cell
clustering, and (2) region estimation and quantification, as shown in Figure 3. The original
images of the in vitro 3D cell spheroid were first converted from the RGB color space to the
L∗a∗b∗ color space. Unlike the RGB color model, the L∗a∗b∗ color model is approximately
close to human vision. This color model provides uniformity in the range of perception [19].
Extracted a ∗ b∗ components from the RGB images were given as input to the TLBO
clustering algorithm. The approach has two resultant phases, the teaching phase and the
learner phase, as described in [12]. Initially, a K number of clusters were taken, each cluster
datum or pixel datum was defined as a learner, and centroids that were selected randomly
for each cluster are called teachers. After that, each learner’s Euclidean distance with the
centroid for all k clusters and fitness value was evaluated. Using the learner-phase steps
given in [12], each learner was modified. Likewise, the centroids or the best learners and
the existing solution are modified. After reaching maximal iterations Imax, the foreground
cells were separately clustered. The HCT-8 and NIH3T3 cluster cell images were then
converted into a binary image using Ostu’s global thresholding technique [20].
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Figure 3. Resultant view of proposed methodology.

Binary images BbandBr were then given as input in Algorithm 1 to estimate the densest
HCT-8 cell region by finding the cell count. The nearest feature voxel NFvi of the Bb and Br
were calculated as follows:

NFvi =

{
0 vi ∈ Bvi

min
(∥∥vi, vj

∥∥) (vi, vj) ∈ Fvi
(2)

where,
∥∥vi, vj

∥∥ =
∥∥vi − vi0 , vj − vj0

∥∥, ∀(vi0 , vi0) ∈ Bvi is any distance metric.
The outcome of DT depends on the selection of distance metrics, which varies from

application to application. However, among all other metrics, the Euclidean distance metric
was the most generalized because its measurement corresponds to the way in which objects
are measured in the real world, and is rotation-invariant. The metric uses the L2 norm
and is defined as

∥∥vi, vj
∥∥

2 =
√

v2
i + v2

j . After obtaining the nearest feature voxel matrix,
maxima propagation is applied using the inverted mask matrix of NFvi and by limiting the
propagation using some fraction (c1 = 0.5) of the maximal distance of the nearest feature
voxel matrix NFvi . To control the extent of propagation of MPi, MPi is dilated with the
3 × 3 matrix of all ones. This operation transforms the finer distance image into coarser
segments. After that, the different numbers of segments or levels as Lvli are found using
the “unique” function of MATLAB. Then, background voxels were removed from the Lvli
matrix. The area threshold value was calculated to impose the minimal area constraints for
segments. After that, the 8-connected component (or blobs or cells) area and pixel indices
were found using the “region props()” inbuilt function of MATLAB, which simply sums
the pixels of a particular region (area) by using their assigned labels. Then, the area is
thresholded by using the extracted areas and finding the count of blobs or cells encountered
within that area region. This gave the count of HCT-8 and NIH3T3 cells in different regions
of the in vitro 3D cell spheroid. On the basis of these counts, i.e., Bc, Bp, GcandGp the densest
HCT-8 cell region (Rdense) using Equation (1) was estimated.
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Algorithm 1 Region-estimation algorithm.
Input: Binary images (Bb and Br) of HCT-8 cluster and NIH3T3 cluster images, respectively.
Output: Count of cells (Bc, Bp, GcandGp) and region of drug delivery (Rdense)

1: Count = 0, [m, n] = size(Bb), where m belongs to num-
ber of rows, and n belongs to number of columns of
Bb.

2: Calculate nearest feature voxel NFvi of the Bb and Br
using Equation (2).

3: Calculate mask as:
4: for i=1 to n do
5: mask = (1− NFvi )
6: end for
7: maxd = d∑n

i=1 max(NFvi )e × c1, where c1 is the con-
stant.

8: Apply the maxima propagation on the distance-
transformed image as:

9: for r=1 to maxd do
10: MPi = MPi

⊕
[1]3×3

11: MPi = MPi ×mask
12: end for
13: Extract unique values from the MPi matrix and save it

as a Lvli matrix in sorted order
14: Removes Bvi from Lvli
15: Evaluate minimal area threshold as:
16: THa = π × (maxd)

2 × c2, where c2 is the constant.
17: for k=1 to length(Lvli) do
18: Li = MPi == Lvli, ∀i = 1, 2, ..., n
19: Calculate area and pixel indices for each 8-

connected component (object) in the binary image Li as:

20: Pr = regionprops(Li,′ Area′,′ Pixel IdxList′), where
Pr is the structure containing the specified properties
values.

21: Extract areas of the objects or cells as:
22: Acellsj

= [Pr.Area]
23: Threshold area as:
24: A′cellsj

= Acells > THa

25: Calculate count of cells that passes imposed area
A′cells as:

26: Count = Count+∑n
j=1 A′cellsj

, where n is the dimen-

sion of matrix A′cells
27: Assign unique IDs to mark segments after area

thresholding to create final segmented image as:
28: for p=1 to length(A′cells) do
29: if 1 == A′cellsp

then
30: idx = Pr(p).Pixel IdxList
31: seg(idx) = random(m ∗ n)
32: end if
33: end for
34: end for

35: Rdense =


CR , i f Count(Bc) > Count(Gp)
|| Count(Bc) > Count(Bp)
PR , i f Count(Bp) > Count(Gc)
|| Count(Bp) > Count(Bc))

, where

CRandPR denote the core and peripheral region of
the in vitro 3D cell spheroid, respectively (refer to
Equation (1)).

5. Experiment Analysis

The proposed methodology was simulated using MATLAB R2017a on a system with
Intel 7th generation 4770 @3.40 GHz, and validated using the dataset as mentioned in
Section 1. The dataset was divided into 4 types of ratio images of NIH3T3 and HCT-8
cells. In the experiment analysis to evaluate the proposed methodology’s performance,
the capability of the foreground cell clustering algorithm (TLBO) was evaluated on the
basis of qualitative and quantitative results as described in Section 5.1. Likewise, the region
estimation algorithm’s ability for cell quantification and in reducing the biasing error was
evaluated by comparing it with ImageJ software as described in Section 5.2. All results are
shown for 2:0.5 ratio images for reference, and the rest of the ratio images figures, graphs,
and tables are provided as supplementary material.

5.1. Comparative Analysis: Qualitative and Quantitative

In this section, the reason is provided for selecting the TLBO nature-inspired clustering
algorithm to extract the foreground cells of the in vitro 3D cell spheroid. However, compar-
ing the ground truth images of colon-cancer cells was not possible due to the unavailability
of segmentation masks to compare them with the TLBO clustering segmentation results.
Therefore, the TLBO clustering algorithm results were compared with other nature-inspired
clustering and traditional clustering approaches: Particle Swarm Optimization (PSO), Ge-
netic Algorithm (GA), Invasive Weed Optimization (IWO), k-means (KM), k-medoids
(KMed), and Fuzzy C-means (FCM). Results were compared on the basis of qualitative and
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quantitative results. On 200 iterations, the value of the fitness metrics (clustering cost as
shown in Equation (3)) converged, as shown in Figure 4. Thus, all clustering experiments
were performed by running the algorithms on 200 iterations. The parameter values used
for each algorithm are shown in Table S1 (provided in the supplementary material).

Costj =
∑nmax

k=1 (dk)

nmax
(3)

dk =
√
(xs − yt)2 + (xs − yt)2

∀s, t ∈ 1, 2, ..., Cn, where nmax is the number of distances dk calculated within the clusters.

Figure 4. Cost of clustering graph of each algorithm to show convergence up to 200 iterations.

A qualitative comparison among clustering algorithms is shown in Tables 1–3 for
the cellular ratio of 2:0.5 using three different images. Different cellular ratios of 2:1, 2:2,
and 2:4 are shown in Tables S2–S4, respectively. The tables’ information contains labeled
images, the three clusters, and the graphical representation of clusters and their centroids.
In the clustering of HCT-8 cells, the TLBO algorithm had greater potential than that of other
algorithms. A similar phenomenon was observed for other cellular ratios, as shown in
Tables S2–S4. In the quantitative comparison, all clustering algorithms were compared on
the basis of quantization error (QE) [21] and best cost (BC) (Equation (3)). The quantization
error of 2:0.5 ratio images is shown in Figure 5a,b, and the best cost is shown in Figure 5c,d.
The different cellular ratios of quantization error and best cost are shown in Figures S5–S10.

Qualitative and quantitative analysis suggested that TLBO clustering performance
was better than that of other nature-inspired clustering approaches (PSO, GA, IWO) and tra-
ditional clustering approaches (k-means, k-medoids, FCM). Therefore, the TLBO clustering
algorithm was selected for foreground cell clustering in the proposed methodology.
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(a) (b)

(c) (d)

Figure 5. Comparative analysis between teacher learning based optimization (TLBO) and other existing nature-inspired
clustering techniques using 2:0.5 ratio slices based on (a,b) quantization error (QE) and (c,d) best cost (BC).

Table 1. Comparative Analysis of visual results of TLBO with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM
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Table 2. Comparative analysis of visual TLBO results with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM

Table 3. Comparative analysis of visual TLBO results with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM



Appl. Sci. 2021, 11, 4636 10 of 18

5.2. Quantitative Results of Region-Estimation Algorithm

In cell quantification, a thresholding process was employed. During the start of
processing or in the optimization threshold, images were inspected or visualized manually,
and the best set of images (in this case, 2:1) that were visualized were taken in optimizing the
threshold value. This might be because of variability in laser power excitation during the
acquisition of images, and intensity based image variations had minimal or no effect on the
quantification of cellular analysis. Employing one ratio threshold to other cellular ratios did
not affect the results, as cellular sizes were uniform in all cellular ratios. Fibroblast (NIH3T3)
cell-to-cell interactions are tight and they form tight junctions; therefore, cell boundaries
may not be distinguishable. NIH3T3 cells were clustered, and various thresholding values
were applied to find the optimal threshold values, as shown in Figure 6. Figure 6 indicates
the segmented NIH3T3 cells overlain with binary masks to evaluate the most relevant
threshold value. Values were obtained by multiplying a scalar quantity with maximal
intensity value in the image, and passing the binary thresholding data. It was important
to choose an optimal threshold value because, by choosing a higher threshold value,
intensities start merging into another, and for small threshold values, tiny cells seem to
appear that are oversegmented. By visual inspection, and from Figure 6 and 7, the value of
T = 0.125 corresponded to the best possible results for all image slices.

In this way, clustered NIH3T3 cells were converted into their binary masks using the
optimal threshold. The binarized mask was then fed into the RE algorithm 1 to count the
NIH3T3 cells. The results of the overlain images of HCT-8 and NIH3T3 binary masks on its
original images are shown in Figure 8.

The distribution of NIH3T3 and HCT-8 cells was as shown in Figure 9a,b for horizontal
cross-sectional views. Figure 9a shows the blue (HCT-8) cell count (BCC), and green
(NIH3T3) cell count (GCC); and Figure 9b shows the blue (HCT-8) cell area (BCA) and
green (NIH3T3) cell area (GCA) of the in vitro 3D cell spheroid for 2:0.5 ratio images. For
other cellular ratios, the distribution pattern is shown in Figures S11–S13. Cell-count
distribution gave better observation for HCT-8 cells, whereas the area plot gave better
distribution pattern analysis for NIH3T3 cells. The limitation in NIH3T3 cell count can
be attributed to the high overlap and the staining procedure of the green cell tracker.
After evaluating the count for HCT-8 and NIH3T3 cells (as shown in Figure 9a,b), further
evaluation for the region-estimation algorithm (Algorithm 1) was performed for each ratio
image. The concentration of HCT-8 cells was the maximum in the core region compared to
the whole in vitro 3D cell spheroid. The densest region of HCT-8 cells in the in vitro 3D cell
spheroid estimated by the RE algorithm 1 (Rdense) was the core region (CR), and the width
of the core region was estimated to approximately be 100 µm.
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(a)

(b)

(c)

(d)

Figure 6. Optimal threshold evaluation for NIH3T3 cells using various threshold segmentation results. (a) 2:0.5 (2_05_z12),
(b) 2:1 (2_1_z14), (c) 2:2 (2_2_z17), and (d) 2:4 (2_4_z10) ratio images.
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Figure 7. NIH3T3 cells count for 2:1 ratio of horizontal cross-sectional images for various
threshold values.

Standalone image analysis software (Image J) was used in comparing the cellular
quantification of the results. The procedure to segment and quantify HCT-8 and NIH3T3
cells for all cellular ratio images by ImageJ software was as shown in Figure 10, and the
corresponding quantification data was as shown in Figure 11. The process steps during
quantification using ImageJ introduce manual biasing: segmentation, thresholding, pixel
size, and circularity bias. Briefly, the quantification process was as follows. Slices were
input to the ImageJ software, and images were split into three channels: red, green, and
blue. After splitting the channels, thresholding was adjusted. A watershed algorithm was
then used for segmentation. After segmentation, images were analyzed by providing the
pixel size (30–infinity) and circularity (0.30–1.00). Most biases were eliminated during the
TLBO clustering and quantification approach except for thresholding bias. The ImageJ
software separately clustered the HCT-8 and NIH3T3 cells along with background noise.
Though it was required to perform the segmentation algorithm in both approaches, the
watershed algorithm was applied in the ImageJ software, whereas TLBO clustering was
applied in the proposed methodology. However, the watershed segmentation technique
had the drawback of having excessive oversegmentation [22]. In contrast, TLBO separately
clustered the HCT-8 and NIH3T3 cells without any background pixels.

Comparative analysis of GCC and BCC using the proposed methodology with the
counts of both types of cells obtained from ImageJ software [14] from the peripheral to the
core region (slice no. z0−−49) for 2:0.5 ratio images is shown in Figure 12. Other cellular
ratios are presented in Figures S14–S16. Because of circularity and pixel-size bias, there
was much observable difference between the BCC and GCC of ImageJ software, and the
BCC and GCC obtained after applying the proposed methodology. The counting of cells
by the proposed methodology showed that most HCT-8 cells were concentrated towards
the core region, whereas NIH3T3 cells were more concentrated towards the peripheral
region. The difference between manual cell counting and the proposed methodology was
approximately 35%, 40%, 60%, and 80% for 2:05, 2:01, 2:2, and 2:4, respectively. Moreover,
the proposed methodology accurately measured the physiological approximation of the
cell count for all cell-ratio processes [15]. The difference percentage of the counting results
of each ratio was variate, from 35% to 80%. This may be due to two reasons:

1. Figure 11 shows that the segmentation results of the ImageJ software for the HCT-8
and NIH3T3 cell clusters also included background pixels (noise). This happened for
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each ratio image, which were further processed and detected (or counted) as blobs
(or cells) by the software.

2. Moreover, the ImageJ software needed some parameter adjustment (threshold value,
circularity, and size) for segmenting and counting the cells. Biasing error affected the
final results.

(a)

(b)

(c)

(d)

Figure 8. Overlain cluster and original images for HCT-8 and NIH3T3 cells: (a) 2:0.5 (2_05_z12), (b) 2:1 (2_1_z14), (c) 2:2
(2_2_z17), and (d) 2:4 (2_4_z10) ratio images.
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(a) (b)

Figure 9. (a) Blue cell count (BCC) and green cell count (GCC) plots. (b) Blue cell area (BCA) and
green cell area (GCA) from periphery to core of in vitro 3D cell spheroid of 2:0.5 ratio slices.

Figure 10. Schematic diagram of procedure followed by ImageJ software for segmentation and
quantification of HCT-8 and NIH3T3 cells.

The equation used to evaluate the percentage difference between manual cell counting
and proposed-methodology counting is as follows:

Di f f (%) =
∑N

i=1 Mi −∑N
i=1 Pi

Tc
× 100 (4)

where ∑N
i=1 Mi is the sum of the manual cell count ∀i = 1 to N, and N is the number of

slices. Similarly, ∑N
i=1 Pi is the sum of the proposed methodology cell count ∀i = 1 to N. Tc

is the total number of cells present in the in vitro 3D cell spheroid; N = 50.
Preliminary data derived from the current nature-inspired clustering algorithm (TLBO)

help to understand 3D in vitro systems by the spectrometric location of the extracellular
matrix generating protein. Thus, it aids biological scientists in further targeted molecular
studies such as polymerase chain reaction (PCR) and Western blot techniques, which are
highly selected for treatment planning and diagnostic procedures [23]. Hence, the proposed
methodology offers better distribution analysis of HCT-8 and NIH3T3 cells compared to
the ImageJ software.
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Original Image Proposed-Approach Results ImageJ Results

Figure 11. Comparison of TLBO algorithm and ImageJ software based on segmentation of HCT-8 and NIH3T3 cell results.
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Figure 12. BCC and GCC comparison between ImageJ software and proposed methodology from
periphery to core of 3D cell spheroid for 2:0.5 ratio images.

6. Conclusions

The overall proposed methodology analyzes colon-cancer cells’ distribution patterns
and fibroblast cells in in vitro 3D cell spheroids. On the basis of comparative analysis,
the TLBO clustering algorithm was best suited for the cells’ color-based segmentation.
The region estimation algorithm estimates the densest region of HCT-8 cells in in vitro 3D
cell spheroids on the basis of cell quantification. Compared to manual segmentation and
quantification by ImageJ software, the proposed methodology reduced the biasing error for
cell quantification. The current acquisition methodology was based on and majorly limited
by fluorescent trackers and confocal characterization techniques. The possibility of findings
can be improved by employing transfecting cells using fluorescent proteins rather than
mere cell trackers, and advanced microscopy techniques such as light-sheet microscopy.
So, this results in a fast acquisition process and preserves cellular 3D co-cultural spheroids’
dynamic nature. This enhances the efficient utilization of the distance transform technique
and the nature-inspired clustering algorithm. Therefore, one can extend the work by
removing the biasing problem of the proposed methodology in quantifying NIH3T3 cells
and thresholding the biasing effect.
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