The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analytical Material Preparation
2.2.1. Preparation of Test Material—Lyophilization
2.2.2. Freeze-Drying
2.3. Chemical Analyses
2.3.1. Dry Matter Analysis
2.3.2. Polyphenols Analysis
2.3.3. Anthocyanins Analysis
2.3.4. Vitamin C Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter
3.2. Phenolic Compound
3.3. Anthocyanins Content
3.4. Vitamin C Content
3.5. The Practical Applications and Future Research Perspectives and Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, H.M.; Hipwell, M.; Wilkinson, J.M. Antibacterial activity of berry fruits used for culinary purposes. J. Med. Food 2003, 6, 57–61. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef]
- Tomisawa, T.; Nanashima, N.; Kitajima, M.; Mikami, K.; Takamagi, S.; Maeda, H.; Horie, K.; Lai, F.; Osanai, T. Efects of Blackcurrant Anthocyanin on Endothelial Function and Peripheral Temperature in Young Smokers. Molecules 2019, 24, 4295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djordjević, B.; Rakonjac, V.; Fotirić-Akšić, M.; Šavikin, K.; Vulić, T. Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 2014, 65, 156–162. [Google Scholar] [CrossRef]
- Durazzo, A. Study approach of antioxidant properties in foods: Update and considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef]
- Mattila, P.H.; Hellström, J.; Karhu, S.; Pihlava, J.M.; Veteläinen, M. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 2016, 204, 14–20. [Google Scholar] [CrossRef]
- European Commission, European Green Deal: Commission Presents Actions To Boost Organic Production. 25.03.2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_1275 (accessed on 19 May 2021).
- Polish Norm PN-R-04013:1988. The Estimation of Dry Matter in Fruits and Vegetables; Polish Standard Committee: Warsaw, Poland, 1988. [Google Scholar]
- Ponder, A.; Hallmann, E. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars. Food Chem. 2019, 302, 125295. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 1–14. [Google Scholar] [CrossRef]
- Sasnauskas, A.; Trajkovski, V.; Strautina, S.; Tikhonova, O.; Šikšnianas, T.; Rubinskiene, M.; Viškelis, P.; Lanauskas, P.; Valiuškaitė, A.; Rugienius, R.; et al. Evaluation of blackcurrant cultivars and perspective hybrids in Lithuania. Agron. Res. 2009, 7, 737–743. [Google Scholar]
- Wojdyło, A.; Oszmiański, J.; Milczarek, M.; Wietrzyk, J. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci. Technol. 2013, 48, 715–726. [Google Scholar]
- Chen, X.-Y.; Huang, I.-M.; Hwang, L.S.; Ho, C.-T.; Li, S.; Lo, C.-Y. Antocyanins in Blackcurrant effectively prevent the formation of advanced glycation and products by trapping methylglyoxal. J. Funct. Foods 2014, 8, 259–268. [Google Scholar] [CrossRef]
- Šavikin, K.; Mikulič-Petkovšek, M.; Djordjević, B.; Zdunić, G.; Jankowić, T.; Djurović, D.; Veberič, R. Influence of shading net on polyphenol profile and radical scavenging activity in different varieties of black currant berries. Sci. Hortic. 2013, 160, 20–28. [Google Scholar] [CrossRef]
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) Cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 101–126. [Google Scholar]
- Reis, J.F.; Monteiro, V.V.; de Souza Gomes, R.; do Carmo, M.M.; da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. J. Transl. Med. 2016, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Woźnicki, T.L.; Heide, O.M.; Sønsteby, A.; Wold, A.-B.; Remberg, S.F. Effects of controlled post-flowering temperaturę and daylength on chemical composition of four black currant (Ribes nigrum L.) cultivars of contrasting origin. Sci. Hortic. 2015, 19, 627–636. [Google Scholar] [CrossRef]
- Tian, Y.; Laaksonen, O.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.; Karhu, S.; Yang, B. Compositional Diversity among Blackcurrant (Ribes nigrum) Cultivars Originating from European Countries. J. Agric. Food Chem. 2019, 67, 5621–5633. [Google Scholar] [CrossRef] [Green Version]
- Kikas, A.; Rätsep, R.; Kaldmäe, H.; Aluvee, A.; Libek, A.-V. Comparison of Polyphenols and Anthocyanin Content of Different Blackcurrant (Ribes nigrum L.) Cultivars at the Polli Horticultural Research Centre in Estonia. Agron. Res. 2020, 18, 2715–2726. [Google Scholar] [CrossRef]
- Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Viskeliene, R.; Bobinas, C. Impact of various factors on the composition and stability of black currant anthocyanins. Food Res. Int. 2005, 38, 867–871. [Google Scholar] [CrossRef]
- Allwood, J.W.; Woznicki, T.L.; Xu, Y.; Foito, A.; Aaby, K.; Sungurtas, J.; Freitag, S.; Goodacre, R.; Stewart, D.; Remberg, S.F.; et al. Application of HPLC-PDA-MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metab. Off. J. Metab. Soc. 2019, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Vagiri, M.; Ekholm, A.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Major phenolic compounds in black currant (Ribes nigrum L.) buds: Variation due to genotype, ontogenetic stage and location. Food Sci. Technol. 2015, 63, 1274–1280. [Google Scholar] [CrossRef]
- Krüger, E.; Dietrich, H.; Hey, M.; Patz, C.D. Effects of cultivar, yield, berry weight, temperature, and ripening stage on bioactive compounds of black currants. J. Appl. Bot. Food Qual. 2011, 84, 40–46. [Google Scholar]
- Sheraz, M.; Khan, M.; Ahmed, S.; Kazi, S.; Ahmad, I. Stability and Stabilization of Ascorbic Acid. Househ. Pers. Care Today 2015, 10, 20–25. [Google Scholar]
- Milivojević, J.; Bogdanovic, J.; Maksimović, V. Phenolic compounds and vitamin C as sources of antioxidant activity in black currant fruit (Ribes nigrum L.). Acta Agric. Serbica 2010, 29, 3–10. [Google Scholar]
- Woznicki, T.L.; Heide, O.M.; Sønsteby, A.; Wold, A.-B.; Remberg, S.F. Yield and fruit quality of black currant (Ribes nigrum L.) are favoured by precipitation and cool summer conditions. Acta Agric. Scand. 2015, 65, 702–712. [Google Scholar] [CrossRef]
- Blackcurrant Foundation. Available online: https://www.blackcurrant-iba.com/wp-content/uploads/2019/10/Global-BC-Production-2009-2018.pdf (accessed on 19 May 2021).
- Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily Consumption of an Anthocyanin-Rich Extract Made from New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front. Nutr. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Agronomic System—Organic | Agronomic System—Conventional | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivation Year | 2014 | |||||||||||||
Month | IV | V | VI | VII | VIII | IX | X | IV | V | VI | VII | VIII | IX | X |
maximum temperature (°C) | 23 | 28 | 32 | 32 | 34 | 28 | 25 | 23 | 29 | 32 | 32 | 33 | 28 | 25 |
minimum temperature (°C) | 0 | −2 | 6 | 9 | 6 | 4 | −2 | 0 | −2 | 6 | 8 | 4 | 5 | −2 |
average temperature (°C) | 12.1 | 14.9 | 16.5 | 20.4 | 19.1 | 16.7 | 12.3 | 11.8 | 14.5 | 16.8 | 20.1 | 18.6 | 15.5 | 11.0 |
rainfall (mm/month) | 1.08 | 3.05 | 1.73 | 3.65 | 2.98 | 0.52 | 2.05 | 1.62 | 3.69 | 1.60 | 3.47 | 3.23 | 0.45 | 1.97 |
sunshine (h/day) | 6 | 7 | 8 | 7 | 8 | 6 | 5 | 6 | 9 | 7 | 8 | 7 | 6 | 5 |
Cultivation Year | 2015 | |||||||||||||
Month | IV | V | VI | VII | VIII | IX | X | IV | V | VI | VII | VIII | IX | X |
maximum temperature (°C) | 25 | 29 | 33 | 41 | 38 | 38 | 25 | 25 | 28 | 32 | 35 | 36 | 39 | 25 |
minimum temperature (°C) | −2 | −2 | 5 | 6 | 6 | 5 | −3 | −2 | 1 | 5 | 5 | 6 | 5 | −2 |
average temperature (°C) | 9.5 | 13.7 | 17.7 | 21.0 | 22.2 | 17.6 | 9.9 | 9.5 | 13.8 | 17.5 | 20.4 | 21.9 | 17.9 | 9.5 |
rainfall (mm/month) | 0.73 | 3.28 | 0.64 | 2.46 | 0.12 | 2.64 | 1.54 | 0.80 | 3.20 | 0.73 | 2.37 | 0.13 | 2.62 | 1.36 |
sunshine (h/day) | 6 | 8 | 8 | 8 | 8 | 6 | 4 | 6 | 8 | 9 | 7 | 8 | 6 | 5 |
Production System | Dry Matter 1 | DHA 2 | L-ASC 2 | Vitamin C 1 | Polyphenols (Sum) 1 | Phenolic Acids (Sum) 1 | Flavonoids (Sum) 1 | Flavonols (Sum) 1 | Anthocyanin (Sum) 1 |
---|---|---|---|---|---|---|---|---|---|
Cultivation Year (CY) | |||||||||
2014 | 20.62 ± 0.60 a 3 | 9.82 ± 0.28 a | 137.62 ± 4.59 a | 147.43 ± 4.79 a | 183.07 ± 6.034 b | 10.45 ± 0.26 a | 172.62 ± 5.81 b | 9.94 ± 0.54 a | 162.67 ± 5.38 b |
2015 | 19.76 ± 0.53 b | 9.11 ± 0.29 b | 125.95 ± 3.89 b | 135.05 ± 4.09 b | 190.53 ± 6.40 a | 10.50 ± 0.28 a | 180.03 ± 6.16 a | 9.67 ± 0.54 b | 170.36 ± 5.77 a |
Cultivar (CL) | |||||||||
Ben Adler | 20.72 ± 0.33 a | 9.16 ± 0.17 c | 146.73 ± 3.02 a | 155.89 ± 3.19 a | 195.84 ± 4.76 b | 10.65 ± 0.98 b | 185.19 ± 4.71 c | 10.78 ± 0.41 a | 174.41 ± 4.32 b |
Tiben | 19.52 ± 1.18 c | 9.26 ± 0.55 b | 113.13 ± 5.79 a | 122.38 ± 6.34 c | 166.10 ± 9.25 c | 10.12 ± 0.48 a | 155.98 ± 8.78 b | 9.85 ± 0.88 b | 146.13 ± 7.91 c |
Titania | 20.34 ± 0.30 b | 9.97 ± 0.19 a | 135.19 ± 2.87 b | 145.46 ± 3.05 b | 198.45 ± 5.39 a | 10.65 ± 0.29 a | 187.80 ± 5.16 a | 8.80 ± 2.11 c | 179.00 ± 18.92 a |
Agronomic System (AS) | |||||||||
organic | 22.06 ± 0.33 a | 9.44 ± 0.18 a | 129.42 ± 2.33 a | 138.85 ± 2.31 a | 189.15 ± 2.71 a | 10.33 ± 0.12 a | 178.84 ± 2.70 a | 10.89 ± 0.24 a | 167.96 ± 2.72 a |
conventional | 18.32 ± 0.49 b | 8.46 ± 0.22 b | 120.21 ± 4.69 b | 128.68 ± 4.89 b | 163.75 ± 4.99 b | 9.50 ± 0.22 b | 154.25 ± 4.81 b | 7.53 ± 0.53 b | 146.72 ± 4.73 b |
ANOVA p-Values | |||||||||
CY | <0.001 | <0.001 | NS | <0.001 | NS | NS | NS | NS | NS |
CL | NS 4 | <0.001 | <0.001 | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 |
AS | NS | <0.001 | NS | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CY × CL | NS | <0.001 | 0.007 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CY × AS | NS | <0.001 | NS | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CL × AS | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CY × CL × AS | NS | <0.001 | NS | <0.001 | NS | 0.002 | <0.001 | 0.002 | NS |
Production System | Chlorogenic Acid 1 | Caffeic Acid 1 | Quercetin-3-O-Rutinoside 1 | Quercetin-3-O-Glycoside 1 | Ferulic Acid 1 | Kaempferol-3-O-Glucoside 1 | Myricetin 1 | Kaempferol 1 |
---|---|---|---|---|---|---|---|---|
Cultivation Year (CY) | ||||||||
2014 | 4.66 ± 0.22 a 2 | 1.08 ± 0.07 a | 4.22 ± 0.26 a | 2.79 ± 0.23 a | 4.71 ± 0.11 b | 1.80 ± 0.19 a | 0.77 ± 0.02 a | 0.36 ± 0.01 a |
2015 | 4.36 ± 0.21 b | 1.05 ± 0.07 a | 3.89 ± 0.29 b | 2.85 ± 0.21 a | 5.08 ± 0.13 a | 1.83 ± 0.13 a | 0.75 ± 0.02 b | 0.35 ± 0.01 b |
Cultivar (CL) | ||||||||
Ben Adler | 5.25 ± 0.15 a | 0.70 ± 0.04 a | 4.16 ± 0.17 b | 3.35 ± 0.15 a | 4.70 ± 0.16 b | 2.12 ± 0.10 a | 0.80 ± 0.01 a | 0.35 ± 0.01 b |
Tiben | 4.43 ± 0.33 b | 1.05 ± 0.04 b | 4.82 ± 0.39 a | 1.89 ± 0.26 b | 4.73 ± 0.13 b | 2.07 ± 0.19 b | 0.71 ± 0.04 b | 0.35 ± 0.02 b |
Titania | 3.95 ± 0.15 c | 1.45 ± 0.04 c | 3.18 ± 0.30 b | 3.22 ± 0.21 a | 5.25 ± 0.14 a | 1.26 ± 0.02 c | 0.77 ± 0.22 ab | 0.36 ± 0.01 a |
Agronomic System (AS) | ||||||||
organic | 4.89 ± 0.12 a | 1.18 ± 0.06 a | 5.06 ± 0.21 a | 3.60 ± 0.12 a | 5.38 ± 0.08 a | 2.19 ± 0.14 a | 0.83 ± 0.01 a | 0.39 ± 0.01 a |
conventional | 4.19 ± 0.26 b | 0.95 ± 0.07 b | 3.04 ± 0.16 b | 2.04 ± 0.18 b | 4.41 ± 0.07 b | 1.45 ± 0.04 b | 0.69 ± 0.02 b | 0.32 ± 0.01 b |
ANOVA p-Values | ||||||||
CY | NS 3 | NS | NS | NS | NS | NS | NS | NS |
CL | <0.001 | NS | <0.001 | <0.001 | NS | <0.001 | <0.001 | <0.001 |
AS | <0.001 | NS | 0.022 | 0.015 | NS | <0.001 | <0.001 | NS |
CY × CL | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CY × AS | <0.001 | NS | NS | NS | <0.001 | <0.001 | <0.001 | NS |
CL × AS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CY × CL × AS | <0.001 | <0.001 | 0.090 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 |
Production System | Cyanidin-3-O-Rutinoside 1 | Delphinidin-3-O-Rutinoside 1 | Cyanidin-3-O-Glucoside 1 | Delphinidin-3-O-Glucoside 1 |
---|---|---|---|---|
Cultivation Year (CY) | ||||
2014 | 19.57 ± 0.56 a 2 | 91.93 ± 3.92 b | 8.01 ± 0.24 a | 43.17 ± 0.93 a |
2015 | 18.48 ± 0.49 b | 99.91 ± 4.38 a | 7.58 ± 0.21 b | 38.39 ± 1.04 b |
Cultivar (CL) | ||||
Ben Adler | 19.90 ± 0.34 a | 101.38 ± 2.95 b | 7.98 ± 0.15 b | 42.66 ± 1.39 a |
Tiben | 18.51 ± 1.02 b | 78.64 ± 5.10 c | 7.29 ± 0.42 c | 38.70 ± 1.73 c |
Titania | 18.66 ± 0.31 b | 107.74 ± 4.08 a | 8.12 ± 0.13 a | 40.98 ± 0.43 b |
Agronomic System (AS) | ||||
organic | 20.78 ± 0.33 a | 109.93 ± 2.63 a | 8.52 ± 0.11 a | 44.33 ± 0.71 a |
conventional | 17.26 ± 0.44 b | 81.91 ± 3.46 b | 7.07 ± 0.22 b | 37.23 ± 0.91 b |
ANOVA p-values | ||||
CY | NS 3 | NS | NS | NS |
CL | <0.001 | <0.001 | <0.001 | <0.001 |
AS | 0.010 | 0.023 | <0.001 | NS |
CY × CL | <0.001 | <0.001 | <0.001 | <0.001 |
CY × AS | 0.029 | <0.001 | <0.001 | 0.002 |
CL × AS | <0.001 | <0.001 | <0.001 | <0.001 |
CY × CL × AS | 0.002 | 0.018 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species. Appl. Sci. 2021, 11, 5113. https://doi.org/10.3390/app11115113
Rachtan-Janicka J, Ponder A, Hallmann E. The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species. Applied Sciences. 2021; 11(11):5113. https://doi.org/10.3390/app11115113
Chicago/Turabian StyleRachtan-Janicka, Joanna, Alicja Ponder, and Ewelina Hallmann. 2021. "The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species" Applied Sciences 11, no. 11: 5113. https://doi.org/10.3390/app11115113
APA StyleRachtan-Janicka, J., Ponder, A., & Hallmann, E. (2021). The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species. Applied Sciences, 11(11), 5113. https://doi.org/10.3390/app11115113