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Abstract: The application of microneedles (MNs) for minimally invasive biological fluid sampling
is rapidly emerging, offering a user-friendly approach with decreased insertion pain and less harm
to the tissues compared to conventional needles. Here, a finger-powered microneedle array (MNA)
integrated with a microfluidic chip was conceptualized to extract body fluid samples. Actuated by
finger pressure, the microfluidic device enables an efficient approach for the user to collect their
own body fluids in a simple and fast manner without the requirement for a healthcare worker.
The processes for extracting human blood and interstitial fluid (ISF) from the body and the flow
across the device, estimating the amount of the extracted fluid, were simulated. The design in this
work can be utilized for the minimally invasive personalized medical equipment offering a simple
usage procedure.

Keywords: microneedles; microfluidics; finite-element method; fluid mechanics; wearables

1. Introduction

Since their inception in 1976 as a drug delivery device [1] until 2020 where they were
regarded as one of the top 10 emerging technologies [2], microneedles (MNs) have pre-
sented many advantages in injection processes, including minimizing insertion pain and
reducing tissue damage and controlled drug delivery as compared to the conventional
needle technologies. With different geometries and designs [3,4], such as solid, hollow,
coated, or biodegradable [5] needle types in the scale of micrometers and nanometers [6],
microneedle arrays (MNAs) can be fabricated with numerous methods such as 3D print-
ing [7,8]. MNAs can be inserted into a target area, even within the depth of skin epidermis
and thus they have emerging biomedical applications in drug delivery systems [9–12] with
the capability of programmed deliveries of drug doses for multiple-injection therapies such
as vaccination [13], sampling interstitial fluid (ISF) [14,15] biomarker detection [16], en-
hanced wound healing [17], fertility control [18], point-of-care (POC) setups and diagnostic
tests [19,20], DNA extraction [21,22], cancer therapy [23], and force sensing [24].

Computational methods that allow for simulation of the experiment or setup con-
ditions for prognosticating their behaviors with conceivable problems or using artificial
intelligence techniques for post analysis of data [25] have also emerged in MNs. Finite
element analysis was used for simulating the transdermal drug delivery process of MNs
into the skin in order to study the effect of penetration depth and number of MNs on each
patch, demonstrating increasing proportionality of delivered drugs with both factors [26].
To study the Von Mises stress, an index of yield or fracture in materials, in a design of
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MNAs with triangular-shaped bases, researchers demonstrated that the MNs in the middle
part of the array were under more stress and displacement [27]. In addition, in a microflu-
idic system with MNs including a drug reservoir, displacement of MNs was modeled and
simulated [28]. Structural analysis of MNs was also reported [29]. In another study using
finite element analysis (FEM), the bending procedure and the distribution of the loaded
stress on the MNs during their insertion into the skin were simulated [30]. A circular flange
was introduced to the base of each MN as the results of the simulation demonstrated that
MNs were most likely to fail in the area between the needle body and the supporting
array because of stress concentration in this spot. Furthermore, finite element analysis was
used to study modeling the surface concentration profiles of the delivered drug in a MN
design with hemispherical convexities on the needle for the aim of increasing drug delivery
flux [31].

In this study, a microneedle array (MNA) integrated with a microfluidic channel chip
was designed to extract and sample body fluids powered by finger press, featuring an
easy procedure that can be applied by the user without need for the presence of healthcare
workers. This design contains an array of 100 MNs with co-centric circular holes for fluid
transport. The target fluid, for example blood or interstitial fluid (ISF), can be extracted
by the power created by pressing with fingers followed by flowing in the microfluidics
and finally being collected in a reservoir. The process of fluid flow and its transport across
the device and its collection was modeled and simulated with a finite element model. The
amount of the extracted fluid was studied with the simulation along with the generation of
the curves for mass flow rate at the reservoir.

2. Methods
2.1. Design of the Device

The microneedle array (MNA) with a microfluidic chip was designed to be powered
by pressing with finger (Figure 1a). The device was designed with Dassault Systèmes
(3DS) SolidWorks computer-aided design (CAD) and computer-aided engineering (CAE).
The microfluidic chip was designed as a box with the dimensions of length (L = 40 mm),
width (W = 20 mm), and height (H = 9.3 mm) (the final height of the device with the
MNA integrated is 10 mm). The design of the microfluidic system (Figure 1b) included a
deformable dome-shaped chamber for mechanical pressure input by pressing with finger
to provide a force to guide the fluid from the MNA inlet to the reservoir outlet. The MNA
was connected to a duct that guided the extracted fluid to the reservoir via the channels
with a diameter of 2 mm. The designed MNs and their geometry are shown in Figure 1c.

For designing the MNs, experimentally reported MNs with applications in sampling
or extraction of body fluids such as ISF, blood, and glucose detection were reviewed, and
the geometrical properties of the MNs, which included the height of the needle, its base
diameter, the needle tip diameter, and the distance between the MNs in the case of MNAs,
along with the efficiency of the reported investigation, are shown in Table 1. To choose a
convenient design for the MNs, we used the reported data to create chart boxes of the data
(Table 2). The table shows the box chart for the reported MN height in micrometers with
most of the reported heights of MN to be in the range of 400 to 800 µm. Commercial MN
vaccine delivery systems mostly have a height of 600 µm [32]. As a result, it is appropriate
to design a MN with a height in this domain. The MNs in this work have a needle height
of HMN = 700 µm. According to the data of the base diameter of the previously reported
MNs (Table 1), the diameter of the needle base was designed as B = 300 µm. The diameter
of the needle tip was designed to be D = 80 µm. The box charts for the number of the MNs
in an array and the interspacing between the MNs are demonstrated in Table MNA in the
present work was designed in an area of 6 × 6 mm, consisting of 100 microneedles (MNs)
with interspacing of 600 µm MNs’ center-to-center distance.
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approach that the user can sample easily without need for healthcare workers, as shown schematically. The dimensions 
of the designed device are as follows: length, L = 40 mm; width, W = 20 mm; and height, H = 9.3 mm. (b) The design of the 
channels of the chip, in which the array of 100 microneedles (MNs) is connected to a duct that guides the extracted fluid 
to the reservoir via the channels by means of pressing with a finger. (c) The geometry of each MN, consisting of a hollow 
design with the following dimensions: height, HMN = 700 µm; diameter of the needle tip, D = 80 µm; and the diameter of 
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skin can be easily provided by the user. Precise measurements of the required insertion 
force for MNs were previously reported, showing that an amount in the range of 0.03 to 
0.4 N per MN is sufficient for piercing the stratum corneum (SC) and insertion into the 
skin [16,33,34], which is low enough to allow insertion by hand [34]. In addition, according 
to the experimental literature presented in the Table 1, MNs with similar design to that of 
the present work adequately penetrated human skin, demonstrating potency of proposed 
MNs for penetration. 

  

Figure 1. Concept of finger-powered microneedle array (MNA) integrated with a microfluidic chip for the aim of extracting
body fluid samples. (a) The device is designed to be powered by pressing with a finger, hence enabling a simple approach
that the user can sample easily without need for healthcare workers, as shown schematically. The dimensions of the
designed device are as follows: length, L = 40 mm; width, W = 20 mm; and height, H = 9.3 mm. (b) The design of the
channels of the chip, in which the array of 100 microneedles (MNs) is connected to a duct that guides the extracted fluid
to the reservoir via the channels by means of pressing with a finger. (c) The geometry of each MN, consisting of a hollow
design with the following dimensions: height, HMN = 700 µm; diameter of the needle tip, D = 80 µm; and the diameter of
the needle base, B = 300 µm.

On the other hand, the required force for penetration of the microneedles into the
skin can be easily provided by the user. Precise measurements of the required insertion
force for MNs were previously reported, showing that an amount in the range of 0.03 to
0.4 N per MN is sufficient for piercing the stratum corneum (SC) and insertion into the
skin [16,33,34], which is low enough to allow insertion by hand [34]. In addition, according
to the experimental literature presented in the Table 2, MNs with similar design to that of
the present work adequately penetrated human skin, demonstrating potency of proposed
MNs for penetration.
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Table 1. Geometrical properties of experimentally reported microneedle arrays (MNAs) with applications in sampling or
extraction of body fluids.

# Aim of the Work MN Height MN Base
Diameter

MN Tip
Diameter

Number of
MNs in

the Array

Interspacing
between

MNs

Extraction or
Sampling Amount of

Each MN
Ref.

1 Glucose
detection 400 µm - - 1 - 4 to 7 mM [35]

2 Skin penetration
of MNs 600 µm 300 µm - 4, 9, 16 30 to 600 µm - [33]

3 Blood extraction 1800 µm - 120 µm 1 - 20 µL [36]

4
Skin interstitial

fluid (ISF)
extraction

600 µm 300 µm - 121 100 µm ≈0.02 mg [37]

5

Rhodamine B
(RhB), a tracer

dye, absorption
using hydrogel

MNs

700 µm - - 6 - ≈4.2 mg/L [38]

6 ISF extraction
1000 µm

and
1500 µm

- - 16, 32 -

Flat profile geometry:
0.028 ± 0.021 µL/min

Concave profile
geometry:

0.053 ± 0.040 µL/min
Convex profile

geometry:
0.020 ± 0.013 µL/min
Bevel profile geometry:
0.028 ± 0.029 µL/min

[39]

7

Collecting
phosphate-

buffered saline
(PBS), a liquid
model for ISF

1000 µm 1000 µm - 21 3000 µm ≈7.15 mg [40]

8 Skin ISF
extraction

250 µm,
450 µm,

and
650 µm

200 µm 10 µm 5 - 0.46 ± 0.52 µL [15]

9 Dermal ISF
extraction

1000 µm,
1500 µm,

and
2000 µm

- - 5 - 4 µL (Humans)
12 µL (Rats) [41]

10
Detection of
drugs and

glucose
600 µm 300 µm - 361 50 µm

Caffeine detection:
≈0.25 µg/mL

Glucose detection:
≈0.022 nmol/L

Glucose extraction:
≈0.011 nmol/L

[42]

11 PBS absorption 550 µm 200 µm - 225 500 µm ≈200% weight gain [43]

12 ISF extraction 900 µm 280 µm - 100 -

Extraction from
pig skin:
≈0.079 µL

Extraction from
rat skin:

≈0.0382 µL

[14]

13

Detection of
nucleic acid

biomarkers from
skin ISF

550 µm 250 µm - 49 340 and 400
µm ≈0.133 µL [44]

14 ISF extraction 680 µm 380 µm - 144 - 0.0250 ± 0.0042 mg [45]
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Table 1. Cont.

# Aim of the Work MN Height MN Base
Diameter

MN Tip
Diameter

Number of
MNs in

the Array

Interspacing
between

MNs

Extraction or
Sampling Amount of

Each MN
Ref.

15 Dermal ISF
extraction

750 µm
and

650 µm

100 µm ×
70 µm and
50 µm ×
150 µm

<1 µm 5, 9 - 8 to 97 nL [46]

16 Skin ISF
extraction 520 µm - - 100 - 0.01 to 1 µL [47]

17 ISF extraction 1500 µm - - 5 - 8 to 12 µL [48]

18 Skin ISF
extraction 800 µm 250 µm - 100 450 µm 0.023 ± 0.004 µL [49]

19

Transdermal
detection of

methyl paraoxon
(MPOx)

1500 µm - - 9 1000 µm 20 to 180 µM [50]

20 Detection of skin
ISF biomarkers 800 µm 150 µm - 16 - - [51]

21 Skin ISF
extraction

1266 ± 91
µm 500 ± 31 µm - 100 - 0.0125 to 0.075 mg [52]

22 Blood extraction 1800 µm - 130 µm 1 - 31.3 µL [53,54]

Table 2. Box charts of geometrical properties of MNAs reported in Table 1.
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2.2. Boundary Conditions (BCs) and Simulation

The design in this work consists of two inlets and one outlet, which are (i) the input for
the mechanical pressure via finger, (ii) the inlet for the target fluid, and (iii) the outlet to the
reservoir. For simulating the process of human finger pressing, we used experimental data
of a previously designed finger-powered microfluidics device [55]. The average pressure
created by human finger pressing is ≈4500 Pa. For pressing with a time interval of every
5 s, the following pressure-time function can be developed:

P(t) = 2250 × cos
(

2π

5
× t

)
+ 2250 (1)

where “t” is time in seconds and “P” is pressure in Pascals. Equation (1) was the base
function for the pressure boundary condition (BC) at the finger pressure input. To study the
effect of the force input by pressing with fingers, we modified the function of Equation (1)
into a version where it defines pressing 5 times faster:

P(t) = 2250 × cos(2π × t) + 2250 (2)

Equation (2) means that the user is pressing the dome-shaped chamber every second.
In this equation, “t” is time in seconds and “P” is pressure in Pascals. Human blood was
chosen as the first target fluid, aimed to be collected with the designed device. Blood
is a non-Newtonian fluid in which the viscosity has been reported to be modeled with
several mathematical equations [56]. The power-law model (Equation (3)) was used for the
viscosity equation in the simulation:

µ = k
.
γ

n−1 (3)

where “µ” is the viscosity of the blood and “
.
γ” is the shear rate. The coefficients of “k”

and “n” for blood are 0.42 and 0.61, respectively [56,57]. In addition, the blood density was
defined as an amount equal to 1060 kg.m−1. High-resolution blood flow velocity in the
human finger was reported [58] with measurement of arterial blood flow velocities ranging
from 0.049 to 0.19 m.s−1, and venous blood flow velocity in the range of 0.015 to 0.071 m.s−1.
Moreover, the blood flow rate in the arm at rest was reported to be 0.21 ± 0.04 L.min−1 [59].
In addition, the amounts of blood pressure in the human arms in sitting and supine
position were reported [60], with systolic blood pressure (SBP) 135.5 ± 24.0 mmHg and
diastolic blood pressure (DBP) 79.2 ± 9.7 mmHg for sitting position and amounts of
SBP = 145.0 ± 23.2 mmHg and DBP = 84.1 ± 9.0 mmHg for supine position. On the other
hand, the normal human heart rate at rest is in the range of 60 to 100 beats per minute [61,62].
Taking 80 beats per minute with SBP of 135.5 mmHg (≈18,000 Pa) and DBP of 79.2 mmHg
(≈10,000 Pa) as the average amounts, we were able to derive an equation of blood pressure
in the vessels:

P(t) = 4000 × cos
(

13π

5
× t

)
+ 14000 (4)

where “t” is time in seconds and “P” is pressure in Pascals. Equation (4) and alternatively a
simplified constant pressure value were used as the BC for the blood input. A second series
of simulations were performed for ISF collection. The viscosity of the ISF in the literature
was reported to be in the range between 1.2–1.5 ×10−3 Pa.s [63] and 3.5 ×10−3 Pa.s [64]. In
this work, an average amount of 2.5 ×10−3 Pa.s was used. In addition, the density of ISF
was reported to be 1000 kg.m−3 [64]. The input BC for ISF was defined with ISF pressure,
which is in the range of −0.5 to −8.0 mmHg [63], with the negative sign attributing to the
action of lymphatics [65]. An average value of 4 mmHg was utilized in the simulation.
Additionally, the BC for the reservoir for all the cases was set to be pressure of zero. The
simulation of the fluid transport across the designed device was performed via finite
element analysis, generating the flow curves at the reservoir outlet along with pressure and
velocity gradients across the device. The physical time of 5 s was used as the study time in
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all simulation cases, as the highest amount of period time among the utilized trigonometric
equations was 5 s. In total, 6 different cases were studied with the simulation (Table 3).

Table 3. The simulated cases of the present study for two different fluids and various boundary conditions (BCs).

Case Target Fluid BC 1
(Pressure Input by Finger)

BC 2
(Reservoir)

BC 3
(Fluid Inlet from MNs)

1 Human
blood P(t) = 2250 × cos

(
2π
5 × t

)
+ 2250 [Pa] P = 0 P = 135 mmHg

2 Human
blood P(t) = 2250 × cos(2π × t) + 2250 [Pa] P = 0 P = 135 mmHg

3 Human
blood P(t) = 2250 × cos

(
2π
5 × t

)
+ 2250 [Pa] P = 0 P(t) = 4000 × cos

(
13π

5 × t
)
+ 14000 [Pa]

4 Human
blood P(t) = 2250 × cos(2π × t) + 2250 [Pa] P = 0 P(t) = 4000 × cos

(
13π

5 × t
)
+ 14000 [Pa]

5 Interstitial
fluid (ISF) P(t) = 2250 × cos

(
2π
5 × t

)
+ 2250 [Pa] P = 0 P = 4 mmHg

6 Interstitial
fluid (ISF) P(t) = 2250 × cos(2π × t) + 2250 [Pa] P = 0 P = 4 mmHg

3. Results and Discussion

The simulation was run for six different cases of Table 3, which included four cases
for human blood with various BCs and two cases for ISF with various BCs. Figure 2
shows the created mesh used for the studies. For study case 3 in Table 3 (input function
of the heartbeat imitation for the incoming human blood and pressing the mechanical
pressure input button every 5 s), the field of the velocity in the direction perpendicular to
the cross-section of the reservoir channel was visualized in every second (Figure 2a), along
with a magnified view for one of the MNs (Figure 2b). The velocity-time graph for the
MNs is shown in Figure 2c. In the fifth second, the velocity reached its maximum amount
of around 0.25 m.s−1, or equivalently 2.436 µL.s−1 of human blood output at the reservoir
per needle. An experimental setup of an MN device for collecting mouse blood sample
reported an extraction rate of 0.8 µL.s−1 per needle [36]. Hence, the present device has the
potential to collect samples three times faster.

Figure 3 illustrates the pressure distribution results of the simulation. For ISF and
pressing the mechanical pressure input button every 5 s (study case 5 in Table 3), the
pressure distribution in the fifth second is presented in Figure 3a. Figure 3b shows the
magnified view of the MNA area. For human blood, the pressure distribution in the device,
with input function of the heartbeat imitation and pressing the mechanical pressure input
button every 5 s (study case 3 in Table 3), is demonstrated in Figure 3c for every second
along with the magnified view of one MN in Figure 3d.

Figure 4a shows the schematics of the designed device wh referrals to the BCs. For
case study 1 in Table 3, which utilized Equation (1) as the BC for the finger pressing dome
and average blood pressure of 135 mmHg as the BC for the coming blood from the MNs,
the simulation results in mass flow-time curve in the reservoir as shown with red color in
Figure 4b. In the second running of the simulation, the BC for the finger pressure input
was changed from Equation (1) to the function given at Equation (2), resulting in the mass
flow-time curve in the reservoir, as shown with red color in Figure 4c. Since at least one
of the BCs was trigonometric, as expected, both curves that resulted from the simulation
were also trigonometric.
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is represented here. In the highlighted area in yellow, the velocity field results in the direction perpendicular to the cross
section of the channels are shown, with the function of the heartbeat imitation for the incoming human blood and pressing
the mechanical pressure input button every 5 s (study case 3 in Table 3). In the fifth second, the velocity reached its
maximum amount of around 0.25 m.s−1. (b) The velocity field for one of the MNs in the patch from time = 0 to 5 s and
(c) its corresponding velocity-time curve. The color bar shows velocity in m/s.

The function in Equation (4) was also simulated. Cases 3 and 4 in Table 3 used this
equation for the incoming human blood along with slow finger pressure input (Equation (1))
and fast finger pressure input (Equation (2)), respectively. The mass flow-time curves at
the reservoir for these two cases are presented in Figures S1 and S2, respectively. Among
two states of using a constant pressure for the human blood inlet and heartbeat imitation
function of Equation (4), a small amount of difference in the mass flow rate was detected.
While the pressure function imitated the heartbeat action and offered a more realistic study
condition, the resulting mass flow rate, and hence the amount of the extracted blood,
was smaller.
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Figure 3. Pressure distribution results. (a) For interstitial fluid (ISF) and pressing the mechanical pressure input button
every 5 s (study case 5 in Table 3), the pressure distribution in the fifth second is represented here along with (b), the
magnified view of the microneedle array (MNA) area. (c) Pressure distribution in the device for human blood with input
function of the heartbeat imitation and pressing the mechanical pressure input button every 5 s (study case 3 in Table 3),
and (d) the magnified view of one microneedle (MN). All color bars show the amount of pressure in Pascals (Pa).

In another series of simulations, ISF was used as the target fluid. First, Equation (1)
was used as the BC for the finger pressing dome (case 5 in Table 3), followed by a second run
with Equation (2) (case 6 in Table 3) to study the effect of the force input speed by pressing
with fingers. The mass flow curve results at the reservoir are shown with the yellow color
in Figure 4b,c for the state of slow (case 5, Table 3) and fast (case 6, Table 3), respectively.
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Figure 4. Mass flow-time curves at the reservoir and fluid extraction efficiency results. Two different fluids, human blood
and interstitial fluid (ISF), with various boundary conditions (BCs) were used for simulation, which created a total of
6 different cases (organized in Table 3). (a) Representation of the device, and the referrals to the defined BCs. (b) The mass
flow curve result at the reservoir for case 1 and case 5, presented in red and yellow, respectively. (c) The mass flow curve
result at the reservoir for case 2 and case 6, presented in red and yellow, respectively. The curves at (b,c) show the mass flow
rate in kg.s−1 for time in seconds for a duration of 5 s. (d) Amounts of human blood extraction (cases 1 to 4), with the left
vertical axis representing the total amount of the extracted human blood in grams, over a duration of 5 s, and the right
vertical axis representing the average amount of human blood extraction for each needle in microliters (µL) over a duration
of 5 s. (e) Amounts of ISF extraction (cases 5 and 6), with the left vertical axis representing the total amount of the extracted
ISF in grams over a duration of 5 s, and the right vertical axis representing the average amount of ISF extraction for each
needle in microliters (µL) over a duration of 5 s.

By integrating the area under the curves, we calculated the amount of the extracted
fluid. Figure 4d in the left vertical axis shows the total amount of the extracted blood
in grams in 5 s, with each line representing one of the four different criteria that were
used for blood in the simulation (cases 1 to 4 in Table 3). The heartbeat-representing
function simulations resulted in a lower amount of blood extraction, and pressing the
button resulted in a subtle increase in the blood extraction amount. The device design
included an MNA patch of 100 MNs, with each MN extracting the amounts in microliters
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(µL) in 5 s, as shown in the right vertical axis of Figure 4d. Among experimental setups of
the MN devices for collecting blood samples, a study reported extraction of 4 µL of mouse
blood in vivo in 5 s per one needle [36]. Another study reported extraction of around 39 µL
rabbit blood in vivo per one needle in 5 s with a pre-vacuum system [53]. The results in
the present work, with an average extraction of 12.24 µL human blood in 5 s per needle,
fall in the range of the experimentally reported cases.

For ISF extraction in two states of slow (case 5, Table 3) and fast (case 6, Table 3),
the extraction amount slightly increased in fast mode (Figure 4e), with the left vertical
axis for the total extracted ISF in grams in 5 s. The MN patch included 100 needles. The
average amount that each needle extracted in microliters in both states of slow and fast are
represented in the right vertical axis of Figure 4e. The simulation resulted in an average
extraction of 64.5 µL ISF in 5 s per needle.

The simulation results for the amounts of ISF extraction, which was higher than
previous reports, could be partially attributed to the mechanism of the extraction and
the dissimilarities between the properties of the ISF of humans and animals. While the
mechanism of ISF extraction in the majority of reports is on the basis of swellable materials,
our design offers a high volume for fluid extraction rather than a limited volume of
swellable needles. On the other hand, diffusion plays the main role in swelling, which is
a slow procedure, requiring long durations of administration time such as a full day [66]
or in some cases three weeks [49] to reach a meaningful result. In contrast, the device
reported in this work is powered by finger pressure input, which not only offers a greater
force for extraction in comparison with the naturally occurring diffusion, but also can be
controlled very conveniently by pressing faster, enabling the extraction of ISF in higher
volumes. Furthermore, as higher extraction rates are projected for human ISF compared to
animal ISF [49], the dissimilarity between the properties of human and animal ISFs can be
another reason for the extraction discrepancy. A previous research study on the extraction
of ISF from mice has also stated that they anticipate a greater result in humans [49].

In addition, the extraction of ISF resulted in a higher efficiency when compared to the
human blood (Figure 4). Since both the density and viscosity of ISF are lower than that of
blood, the same finger pressure results in a greater extracted amount of ISF at the reservoir
with less effort.

The simulation results for the presented cases in this work showed a successful
extraction of the target fluid. One of the widely used components in microfluidic platforms
is diode due to their capability of changing fluid direction on demand. Microfluidic diodes
are a category of membranes that deform to an open shape in contact with the forward
pressure of the flow, allowing the fluid to pass through the channel. Conversely, the diode
closes when there is a backward fluid pressure, hence offering a great way for rectifying the
flow [67,68]. Further studies on finger-powered microneedle research can benefit from the
integration of diodes. For example, the utilization of microfluidic diodes was reported for
a successful manipulation of the flow direction in a finger-powered microfluidic setup [55].

4. Future Perspective and Conclusions

Administration of new proactive healthcare procedures and technologies in medicine
not only requires effective adoption by the society, but also well-informed framework to
address any potential insecurity or anxiety concerns in patients, preventing any negative
psychological effects [69,70]. Causing discomfort/pain or trypanophobia/needle phobia in
patients, injection using traditional needles requires a trained healthcare worker, confining
applicability of conventional needles in deprived regions or in-home treatments. One of
the advantages that MNs and MNA-based devices offer in comparison to the conventional
needle technologies is their solution for the fear of needles. A statistical study reported
that 7 out of 10 children and 5 out of 10 adults are needle-phobic [71], which demonstrates
the need for substituting devices offering painless injection procedures. On the other hand,
MNs can be administrated by patients in the point-of-care settings (no need for healthcare
workers) with minimal pain. An additional ability offered by MNs is the gradual release of
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substances for controlled drug delivery [72], promoting the potential applications of MNs
for longer term treatments. Furthermore, microneedles can be integrated with biosignal
acquisition techniques [7]. Therefore, MNs not only enable a minimally invasive injection
experience, but they also can facilitate the development of wearable sensors [73] (with
adherable MN patches) for continuous health monitoring, resulting in early diagnosis of
disease, enhancing the success rate of therapies, decreasing healthcare costs, and ultimately
promoting the wellbeing of the society. Hence, the acceptance and commercialization of
MNs can be accelerated. In addition, in the last decade, many patents have been filed in
MNs [74], indicating the high interest in this domain and their potential for a variety of
drug delivery applications.

MNs, as an emerging technology, need to be translated from laboratory bench to
commercial products. Fabrication methods that are used for manufacturing microfluidic
devices and MNs are rapidly advancing to more cost-efficient procedures [75,76], leading
to techniques that no longer require high-cost cleanroom facilities [77]. On the other hand,
employment of mass producible manufacturing techniques (e.g., replica molding [78]) can
reduce the overall production cost of MNs to have a competitive price with the conven-
tional needles. In addition, in comparison to conventional needles that are usually made of
stainless steel, MNs can be fabricated with low-cost materials such as polymers [74], lower-
ing the final cost of the product, making MNs a more economical solution in biomedical
applications [74]. For example, a cost-effectiveness analysis compared the utilization of
MNs to conventional needles, reporting an estimation of USD 0.95 for MNs and USD 1.65
for conventional needles for the first dose of a vaccine delivery [79].

The process of sterilization of MNs prior to applying them into the skin requires high
attention, especially in the presented setup, which is aimed to be used by the user or patient
rather than a healthcare worker. Sterilization allows for preventing the transmission of
bloodborne pathogens such as hepatitis B (HBV), hepatitis C (HCV), human immunodefi-
ciency virus infection and acquired immunodeficiency syndrome (HIV/AIDS), malaria,
and brucellosis. The materials for the fabrication of the MNs should be biocompatible to
prevent any unwanted inflammations or allergies. Furthermore, for the case of blood col-
lection, the extracted blood in the reservoir of the device is subject to undergo coagulation
or erythrocyte aggregation if there is a long delay before analysis.

The concept of a finger-actuated device with integration of microneedle array (MNA)
and a microfluidic chip was designed for extracting body fluid samples such as blood and
ISF in a simple and fast manner. We simulated the process of extracting human blood
from the body in different conditions. The simulation results demonstrated that our device
was capable of extracting around 15.5 g of human blood in 1 min. In addition, a second
series of simulations demonstrated extraction of 77.4 × 103 µL of ISF in 1 min. 3D printing
technologies, which are well known for printing both MNs and microfluidics chips, can
also be utilized for fabrication of our device in a cost-efficient way. The ability to use a
biocompatible material in 3D printing is another potential advantage for the fabrication of
the device. With integration of personalized analysis tests and data processing, this device
can be utilized in minimally invasive personalized medical equipment offering a simple
usage procedure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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