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Abstract: This paper presents an effective signal processing scheme of hand gesture recognition
with a superior accuracy rate of judging identical and dissimilar hand gestures. This scheme is
implemented with the air sonar possessing a pair of cost-effective ultrasonic emitter and receiver
along with signal processing circuitry. Through the circuitry, the Doppler signals of hand gestures are
obtained and processed with the developed algorithm for recognition. Four different hand gestures
of push motion, wrist motion from flexion to extension, pinch out, and hand rotation are investigated.
To judge the starting time of hand gesture occurrence, the technique based on continuous short-
period analysis is proposed. It could identify the starting time of the hand gesture with small-scale
motion and avoid faulty judgment while no hand in front of the sonar. Fusing the short-time Fourier
transform spectrogram of hand gesture to the image processing techniques of corner feature detection,
feature descriptors, and Hamming-distance matching are the first-time, to our knowledge, employed
to recognize hand gestures. The results show that the number of matching points is an effective
parameter for classifying hand gestures. Based on the experimental data, the proposed scheme could
achieve an accuracy rate of 99.8% for the hand gesture recognition.

Keywords: ultrasound; hand gesture; image processing; short-time Fourier transform; air sonar

1. Introduction

Nowadays, ultrasound is broadly applied in several fields, and the major areas include
medical and structural diagnoses and range-finding-related applications. For example,
Doppler radar can be used in aviation, meteorology, speed gun, motion detection, intruder
warning, and light control. In particular, Doppler radar has been used for posture and
gesture recognition in motion sensing [1–5].

Posture or gesture recognition commonly uses mechanical or light stimulation sensors,
such as cameras, infrared sensors, and wearable devices. Although their installation
may not be difficult and the obtained results could be intuitively analyzed, these devices
have inherent limitations [6]. Cameras can infringe on users’ privacy; infrared sensors
are susceptible to misjudgment; securing wearable sensors is necessary for functional
operation [7]. In contrast, acoustic stimulus sensing, such as sonar, possesses several
unique advantages, particularly for the monitoring of the home environment and can be
fully operated in the dark [8]. In addition, visuals need not be recorded so that the privacy
of users will not be affected [9]. These characteristics make sonar a superior sensing system
for gesture recognition applications.

The hand gesture detection system possesses several advantages. The contactless
interaction mode allows the users not to touch the control panel. This avoids the po-
tential cross-contamination of multiple users via the touch panel/screen and the likely
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damage/fatigue of the physical control device due to inappropriate/intensified operation.
In addition, the proposed hand gestures in the study are aimed at robot manipulation.
The hand gestures intuitively correspond to the motion of the robot. This facilitates
the users not only to operate the robot but to collaborate with the robot to execute a task.

Liu et al. used a single speaker and microphone in a smartphone with the Doppler
effect to study gesture recognition via ultrasound. The vectors containing +1 and −1 can
be used to indicate the direction of gesture movement in each time period [10]. The Sound-
Wave team also used a microphone and speaker in a mobile device. The gestures inves-
tigated by them consisted of scrolling, single or double tapping, forward and backward
hand gestures, and continuous motion. These gestures can be judged from the amplitude
of the reflected signal [11]. Przybyla et al. developed a three-dimensional range-finding
function chip. Its searchable range is up to 1 m in a 45◦ field of view. Low power consump-
tion is the main feature of the chip [12]. Zhou et al. reported the ultrasonic hand gesture
recognition system which is capable of recognizing 3D micro-hand gestures with a high
cross-user recognition rate. This system possesses the potential to develop a practical
low-power human machine interaction system [13].

On the other hand, researchers working in the field of computer vision have broadly
employed image processing methods such as feature detection, description, and matching
for object recognition, image classification, and retrieval. Features, such as points, edges,
or corners, can be considered as the information of interest within the investigated im-
age [14]. A good feature detector can find features possessing strong information changes
that are repeatedly recognized among several images taken with different viewing angles
and lighting conditions [15]. A feature descriptor is an algorithm used to process the image
feature points into meaningful feature vectors. Feature descriptors encode interesting
image features into a series of numbers and act as a type of numerical identifier that can be
employed to differentiate one feature from another.

Researchers have conducted a considerable number of studies on image feature
extraction and description and proposed several classic feature description and extraction
methods, such as scale invariant feature transform (SIFT), speeded up robust features
(SURF), features from accelerated segment test (FAST), and binary robust independent
elementary feature (BRIEF) [16–19]. These methods obtain image feature points and their
descriptors by finding the local extremum in the image and describing the features using
the luminance information of their neighborhood.

Feature matching is obtained by calculating the distances between feature points
in different images. For example, the SIFT feature descriptor uses the Euclidean distance as
the judgment standard between descriptors, whereas the BRIEF descriptor [20] is a type of
binary descriptor that uses the Hamming distance as the judgment standard to describe
the correspondence between two feature points [21,22].

As described above, existing air sonar applied to hand gesture recognition by time-
domain reflected signal by decoding its signal level or amplitude, the likely environmental
noise and the distance between the users and speaker/microphone could decrease the accu-
racy rate of hand gesture recognition. Moreover, most of the image recognition techniques
deals with the images directly obtained via camera. The large amount data points of
images accompanying with the frame change not only requires the higher cost hardware
but more computational effort compared to our proposed air sonar approach. In this study,
we constructed an air sonar with a pair of ultrasonic emitters and receiver to investigate
the hand gesture recognition. Through the cost-effective circuity, the acquired Doppler
signals were processed for the study of hand gesture recognition. Two algorithms were de-
veloped with the one to judge the starting time of hand gestures by continuous short-time
Fourier transform and the other to recognize the hand gesture by image processing with
spectrogram. The Superior recognition results were obtained using the proposed scheme.
Further details are described below.
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2. Linear and Rotational Doppler Effect on Hand Gesture Motion

The common hand gestures include translational and rotational motion of the hand.
The signals from air sonar with linear and rotational Doppler effect will be applied to our
hand gesture recognition. Consider the constructed ultrasonic transmitter and receiver
pair as an air sonar system fixed and located at the origin Q of the radar coordinate
system (U, V, W) (Figure 1). The hand is described in the local coordinate (x, y, z) and
has a translation and rotation with respect to the radar coordinate. A reference coordinate
system (X, Y, Z) is introduced, which has the same translation as coordinate (x, y, z) but has
no rotation with respect to the (U, V, W) coordinate.
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Figure 1. The coordinate of an air sonar and a target for micro Doppler analysis.

Suppose the hand has a translation velocity v with respect to the radar and an angular
rotation velocity ω represented in the reference coordinate as ω = (ωX, ωY, ωZ)T. A point
scatterer M on the hand, located at r0 = (X0, Y0, Z0)T, at time t = 0 will move to M′ at time
t. This movement can be considered as a translation from M to M′′ with velocity v and
a rotation from M′′ to M′ with an angular velocity ω. At time t, the range vector from
the radar to the scatterer at M′ becomes

⇀

OM′ =
⇀

QO +
⇀

OO′ +
⇀

O′M′ =
⇀
R0 +

⇀
v t +

⇀
r .

The scalar range of
⇀

OM′ can be expressed as

Rt =‖
⇀
R0 +

⇀
v t +

⇀
r ‖ .

When the air sonar emits a continuous sinusoidal wave with a carrier frequency
f 0, the echo signal s(t) received from the scatterer on the hand at the position (x, y, z) is
expressed as a function of Rt.

s(t) = ρ(x, y, z) exp
{

j
(

2π f
2Rt

c

)}
, (1)

where ρ(x, y, z) is the reflectivity function of the point scatterer M described in the target
local coordinates (x, y, z), c is the speed of sound, and the phase of the signal is 2π f (2Rt/c).
The Doppler frequency shift by hand motion can be obtained by taking the time derivative
of the phase as [23]

fD =
1

2π

d(2π f ( 2Rt
c ))

dt
=

2 f
c

dRt

dt
=

2 f
c
(
⇀
v +

⇀
ω ×⇀

r )
T ⇀

nm, (2)

where
⇀
nm = (

⇀
R0 +

⇀
v t +

⇀
r )/Rt.
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Thus, the Doppler frequency shift included the effect of translation and rotation as
well as the direction from the radar to the scatterer on the hand. Four hand gestures, namely,
“push”, “wrist motion from flexion to extension”, “pinch out”, and “hand rotation”, were
performed with the right hand for this study.

(1) Push: As shown in Figure 2a, the push gesture involves only a translational
motion of the palm. While the hand moved forward from an initial position to a stop
position, the normal direction of the palm was toward the radar and the palm underwent
the acceleration, near-constant velocity, and deceleration stages. The maximum Doppler
frequency shift was contributed by the center of the palm because the velocity direction
was normal to the direction of the radar to the center of the palm. The minimum Doppler
frequency shift resulted from the corner of the moving palm.
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(d) Hand rotation motion. (e) Used ultrasonic emitter and receiver.

(2) Wrist motion from flexion to extension: As shown in Figure 2b, the hand moved
from the position with the palm away from the radar to that with the palm toward the radar.
Initially, the wrist was flexed. Then, regarding the angular displacement, the hand un-
derwent acceleration, constant speed, and then deceleration stages. Finally, the wrist
was extended. The pivot region, which can be considered as the wrist joint, possesses
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zero velocity during the entire motion, thus resulting in a zero Doppler frequency shift.
The largest Doppler frequency shift was contributed by the largest value of the hand
velocity at a certain scatterer point on the hand multiplying the unit direction vector from
that scatterer to the radar.

(3) Pinch out: This motion is mainly performed by the thumb and index finger. In the
initial state, the front ends of the index finger and thumb contacted each other. The remain-
ing fingers were clenched. The motion is illustrated in Figure 2c. The front ends of the two
fingers gradually opened up along with the forward movement of the hand. The thumb
and index finger underwent acceleration from the initial position and then decelerated
to a stop position, thus completing this motion. The index finger rotated in a clockwise
direction, and the thumb rotated in a counterclockwise direction. These two motions pro-
vide a negative Doppler frequency shift with the magnitude gradually increasing, reaching
the maximum, and then decreasing to zero. Meanwhile, the remaining fingers formed
a partial fist and underwent acceleration and deceleration phases. This caused a similar
Doppler frequency shift as the push motion, but covered a smaller scattering area compared
with the push motion.

(4) Hand rotation: The motion of hand rotation is similar to the wrist motion from
flexion to extension, with the major difference being the axis of rotation. Regarding hand
rotation, the hand was aligned with the lower arm, and all the fingers closed to form
a plane with the palm (Figure 2d). The axis of rotation was the centerline of the lower arm.
The rotation motion started from the palm toward the radar and rotated to make the palm
face away from the radar. The hand motion underwent two phases of acceleration and
deceleration. The axis of rotation had zero velocity, and thus contributed zero frequency
shift. During the motion, the part of the hand from the axis of rotation to the little finger
edge provided a positive Doppler frequency shift, followed by a negative Doppler fre-
quency shift. Meanwhile, the rest of the hand produced a negative Doppler frequency shift,
followed by a small positive Doppler frequency shift.

Hand gesture can be served as an important tool for human interaction. Compared
to existing interfaces, hand gestures have the advantages of being intuitive and easy to
use. The investigated four different kinds of hand gestures which could be applied to
human-robot interaction. The importance of the characterization of these hand gestures are
as following: the push motion commands the robot arm to move forward, the wrist motion
from flexion to extension asks the robot grip to make a right turn, the pinch out motion
instructs the gripper of robot to open, and the hand rotation motion requests the robot
body/platform to turn left (Figure 3).
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3. Hardware Setup of Air Sonar
3.1. Ultrasonic Emitter and Receiver

We employed MA40S4S as the emitter and MA40S4R as the receiver (Murata Co.,
Nagaokakyo, Japan) with an operating frequency of approximately 40 kHz in the air sonar
system. The sinusoidal signal was sent using a function generator to actuate the ultrasonic
emitter, and an NI-USB6351 data acquisition card was used to acquire the electrical signal
from the ultrasonic receiver. To avoid the sinusoidal wave generated due to distortion,
we set the sampling frequency to 250 kHz, which is five times higher than the operating
frequency, to examine the performance of the selected pair of ultrasonic transducers.

Two tests were performed under a sinusoidal voltage input of 20 Vpp: (1) the emitter
was fixed, and the receiver was placed 3, 18, and 38 cm away such that it was facing the emit-
ter. The amplitudes of the acquired sinusoidal signals were 6.52, 0.736, and 0.188 Vpp,
respectively. (2) The emitter and receiver were soldered on a circuit board 1 cm away
from each other. A large glass plate was held parallel to the circuit board 7 and 40 cm
away from the ultrasonic transducers as a reflector of the ultrasonic wave. The resulting
amplitudes of the acquired signals were 2.3 and 0.424 Vpp, respectively. These two sim-
ple tests verify the capability of the selected transducer pair to obtain a sufficiently large
signal compared with the environmental noise level during the subsequent hand gesture
experiment performed approximately 10 to 30 cm away from the transducer pair.

3.2. Circuit for Air Sonar Operation

The air sonar was designed with a transmitted frequency of 40 kHz. The minimum
sampling rate should be greater than 80 kHz to acquire the reflected signal directly. It can be
even higher than 200 kHz to obtain a better waveform of the reflected signal. The sampling
rate and data amount for algorithm processing should be reduced to make the hand gesture
recognition technology easily implementable online.

As we utilized the Doppler effect of the received signal for our hand gesture recog-
nition, the sampling frequency is much lower than that required to acquire the signal
emitted from the ultrasonic emitter. This could be realized through a frequency-mixing
technique. Consider f 1 as the frequency of the received ultrasonic wave, which is given
by the frequency of the transmitted ultrasonic wave plus the Doppler frequency shift.
Consider f 2 as the frequency of the mixed signal, as specified. When signals of frequencies
f 1 and f 2 enter the mixer, the mixed signals of frequencies f 1 + f 2 and f 1 − f 2 emerge at
the output terminals. We employed the signal with the frequency (f 1− f 2) for investigating
the Doppler effect.

Based on the preliminary experiment, the magnitude of the Doppler frequency shift of
interest is less than 500 Hz. We constructed the mixed signal with the frequency f 1 − f 2 =
f 1 (40.8 kHz + Doppler frequency shift) − f 2(37.6 kHz) = 3.2 kHz. The frequency of 3.2 kHz
was selected, as it was five times higher than the Doppler frequency shift in this study.

The oscillators, mixer, and filters were employed to construct the circuitry for reducing
the carrier frequency [24]. Figure 4 shows the circuit implementation. Two oscillators
were realized using a Wien bridge sine-wave oscillator. One oscillator was operated at
40.8 kHz (f 1) to drive the ultrasonic emitter, and the other oscillator was operated at
37.6 kHz (f 2), as the mixed signal. The analog multiplier AD633 served as the mixing
function. A bandpass filter was applied to remove unwanted noises and obtain a reasonable
frequency bandwidth signal. A low-pass filter was employed to remove the signal with
a carrier frequency of f 1 + f 2. In addition, a voltage follower was added to avoid the loading
effect of the voltage signal from the ultrasonic receiver to the bandpass filter. After bandpass
filtering, a voltage amplifier was used to adjust the gain so that the signal sent to the mixer
had a proper amplitude during the hand gesture operation.
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4. Detecting the Occurrence of the Hand Gesture Event
4.1. Ultrasonic Emitter and Receiver

To detect the occurrence of hand gesture event, we utilized the continuous short-
period analysis. Each short-period was set as 0.02 s, which corresponded to 1000 data
points based on a sampling rate of 50 kHz. The time resolution for detecting the occurrence
of a hand gesture would be one-fiftieth of a second. The spectrum was analyzed by fast
Fourier transform (FFT).

Two signal processing techniques were applied in this study: bandpass and notch
filtering. The bandpass filter was employed to process the signal to remove the frequency
bands other than that from 2.7 to 3.7 kHz. We chose a Butterworth filter of order 7 with
the cutoff frequencies of 2.7 and 3.7 kHz to design the bandpass filter. The filtered time
signals can be easily used to distinguish between no hand gesture and the occurrence of
a hand gesture through an amplitude change.

Moreover, considering the critical moment at which the hand gesture started, we ob-
served that the frequency peaks split into two major frequencies, with one at a carrier
frequency of ~3200 Hz and the other deviating from the carrier frequency. The strength of
the latter peak had a varied amplitude, which was related to the hand gesture executed.
Once the algorithm for detecting the hand gesture starting time was to select the charac-
teristic frequency as the peak frequency with the maximum amplitude for FFT results of
each short-period (1000 sample points), the carrier frequency was possible to be selected
as the characteristic frequency. Practically, the carrier frequency should have a narrower
bandwidth compared to that of the Doppler frequency because the carrier frequency was
synthesized by the constructed circuit. The Doppler frequency could easily cover a wider
frequency range because performing the hand gesture was hard to maintain a constant ve-
locity at all points of hand to reflect the ultrasonic waves. Thus, a proper notch filter design
to effectively reduce the amplitude of carrier frequency peak and still allow the Doppler
frequency peak to be selected as the characteristic frequency during hand gesture operation
was needed.

By closely examining the amplitude of the main lobe for the case of no hand gesture,
we considered a value of 0.007 as a reference for the notch filter design. The notch filter
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was set a center frequency as the carrier frequency. The bandwidth and the maximum
attenuation gain of the notch filter were 5 Hz and 0.01, respectively.

Figure 5 shows the processed results of the time-domain signals and their frequency
spectrum without any hand gesture and with a hand gesture (push motion) occurring
approximately at 5 s. The spectrum results were overlaid by fast Fourier transform analysis
through a continuous short-period analysis.
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Figure 5. The acquired signal after bandpass and notch filtering: (a) time-domain signal and (b) its
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(push motion) condition. The spectrum results were overlaid by fast Fourier transform analysis
through a continuous short-period analysis.

4.2. Scheme of Judging the Start Time of Hand Gesture

Two parameters were investigated to determine the start time of the hand gesture
operation for each short-time signal processed with the aforementioned bandwidth and
notch filters: the frequency shifts and the amplitudes of the frequency peaks.

Figure 6a shows the frequency values of the frequency peaks obtained with each time
frame of 0.02 s. These frequency values were first at a near constant level, and then showed
a rapid increase and subsequent drop from a maximum. The time interval of the evident
upsurge and decrease region was approximately 1 s, which indicated that the hand gesture
started from an acceleration state, then changed to a deceleration one, and then stopped.

Although checking the maximum peak frequencies could determine the start time for
most of the studied hand gestures, a likely situation is that the maximum peaks occurred
around the designed cut-off frequencies of the bandpass filter without hand gesture motion.
This was because the amplitude of the carrier frequency after processing with the notch
filter could be less than the amplitudes of the peaks around the frequency region close to
the cut-off frequency of the Butterworth filter. This would produce the peak-frequency
curve jump from the carrier frequency to the frequency near the cut-off frequency of
the bandpass filter and thus cause a mistake in judging the start time of the hand gesture.

In contrast, a more reliable method could be the use of the amplitudes of the maximum
peaks to judge the start time of the hand gestures. Figure 6b shows the amplitudes of
the maximum peak obtained with each time frame of 0.02 s. The amplitudes of the maxi-
mum peaks resulted in a larger variation during a hand gesture compared with the cases
of a hand gesture at a standby position or no hand gesture. We first attempted to utilize
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the amplitude difference of the maximum peaks between neighboring time frames to judge
the start time of the hand gestures. This method is considered as the amplitude differentia-
tion of continuously maximum peaks. The result displayed more sharp peaks compared
with the case without differentiation. For other hand gestures, this differentiation value
was not sufficiently large to be selected as the representative start time of hand gestures,
such as hand rotation motion. Consequently, we then performed the second differentiation
of the result. The results of the second derivative were even sharper than those of the first
derivative for all the hand gestures (Figure 6c).
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Figure 6. (a) The frequencies of the maximum peaks under a push hand gesture motion. (b) The
amplitudes of the maximum peaks analyzed with the signal as (a). (c) The signal in (b) after 2nd
differentiation. (d) The result of Tpick [n] used to judge the start time of hand gesture.

Finally, we selected the start time Tpick [n] of the hand gesture based on the second
derivative of the strength at the peak frequency with the maximum strength by defining
the following parameter:

Tpick[n] =
∣∣∣∣ A[n + 2]

A[n + 1]− A[n]

∣∣∣∣, (3)

where A[n] is the second derivative of the amplitudes of the maximum peaks at time n.
If we consider that the amplitude of the maximum peak as a function of the hand

position, A[n] indicates the acceleration of the hand and the difference A[n + 1] − A[n]
indicates the jerk of the hand. Therefore, in terms of physical meaning, we determine
the moment of occurrence of minimum jerk and a high acceleration as the start time of
the hand gesture. A threshold value could be determined to find the appropriate Tpick [n]
so that the time step n could be evaluated as the start time of the hand gesture (Figure 6d).

5. Scheme of Hand Gesture Recognition
5.1. Convert Motion Signal to Time-Frequency Response

After judging the start time of the hand gesture, we need to evaluate the acquired
signal further for hand gesture recognition. We proposed a method of utilizing the time–
frequency response to evaluate gestures. Figure 7 shows the block diagram of the proposed
method. As the common gesture motions were performed for approximately 1 s, we could
pick only the signal data in this time interval for performing the analysis of the time–
frequency response once the start of the hand gesture was judged. This effectively reduced
the electrical power of the microprocessor required for implementing this technique on
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a portable device. In this investigation, we took 150,000 sample points, which corresponded
to a signal of a duration of 3 s, for spectrogram analysis while monitoring the occurrence
of hand gestures. More specifically, once we detected the data point (=i) representing
the start time of the hand gesture, the data points ranging from (i − 69,999) to (i + 80,000)
were extracted for the spectrogram analysis. Considering the data length of 150,000
was a conservative choice to analyze a hand gesture motion fully because the resulting
spectrogram, which is described in the following section, indicated that an effective hand
gesture pattern only occupied approximately one half of the spectrogram in the x direction
(time axis). The data length for judging one gesture could be significantly reduced by
employing this technique in future real-time applications.
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The analysis of the time–frequency response utilized the short-time Fourier transform
(STFT). The two STFT parameters important for our analysis are the window and overlap
sizes. The window size affected the resolution in the time-domain variation. Although
a small window size yielded a better time resolution, the frequency-domain resolution was
poor. The overlap size was also critical for the resolution in both the time and frequency
domains. A smaller overlapping resulted in a worse resolution, which indicated that
the pixelated image appeared in the spectrogram. However, a smoother spectrogram
with a larger overlapping required a considerable calculation effort. A Hamming window
with a window size of 20,000 and an overlap size of 19,000 was selected in this study.
This indicates that the spectrogram derived for our hand gesture recognition had a time
resolution of 0.02 s and a frequency resolution of 2.5 Hz.

5.2. Processing Spectrogram Result of the Image for Hand Gesture Recognition

As previously mentioned, STFT was applied to obtain the spectrogram for the signal
of interest. The Hamming window size was set as 20,000, and the overlap length was set as
19,000 for analyzing the 150,000 data points. The image obtained from the surf function
with the spectrogram computed results using the MATLAB software was directly used to
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obtain the plot with the frequency in the range of 2.7 to 3.7 kHz, as shown in Figure 8a.
This image has two major characteristics: (1) the calculated power spectrum is in a double-
precision float-point format; (2) the edge of the signal pattern appears insufficiently smooth.
The former characteristic could make our proposed method of image pattern recognition
more complicated and time-consuming. The latter characteristic could be an issue while
finding the feature points.
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Figure 8. (a) The image of push-motion spectrogram obtained by the MATLAB surf function. (b) The
image (a) was converted into uint8 format. (c) The image (b) processed with contrast adjustment.

Instead of using the default image output with surf function for the STFT result,
we processed the output data of the image as follows. We converted the calculated power
spectrum from the STFT format into the uint8 format, that is, all the values of the power
spectrum were shown as integers from 0 to 255, and then displayed the resulting values
as a grayscale image. During this conversion, only the frequency range of the STFT data
was processed, which ranges from 2.7 to 3.3 kHz. This reduced the processing time of
the calculation compared with dealing with the entire frequency range of the STFT results
from 0 to 25 kHz. Figure 8b shows the resulting image of the push motion.

However, the contrast of the image was not sufficient to differentiate the motion part
from the background. An image processing technique for histogram equalization was
employed to enhance the contrast. Based on the histogram analysis of the image derived
from the STFT, all the pixels were at a higher gray level, which indicates that the image
had an over-exposure trait. We utilized the following equations so that the pixel values
could be mapped in the range from 0 to 255:

s =

{
0, if r < r1

255r
255−r1

− 255r1
255−r1

, (4)

where r is the gray level of the original image and s is the gray level of the adjusted image.
r1 is the threshold value used in this study, which is 170.

Figure 8c shows the contrast-adjusted image. Its histogram shows that the pixel values
occupy the full range of gray level. The processed contrast-adjusted images of varied
gestures, which are referred to as featured images hereinafter, will be investigated below.

5.3. Image Recognition of Featured Gesture Spectrogram

Four gestures were investigated to demonstrate gesture identification with our pro-
posed featured image method. We used the detector offered in OpenCV (Open Source
Computer Vision Library) to find the corners of the featured images (keypoint estimation)
and then computed a descriptor for the detected keypoints. Subsequently, the feature
match function provided by MATLAB was employed to determine the number of matched
pairs. A threshold value could be determined to judge a test gesture for the best fitting of
candidate gestures.
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5.3.1. Monitor Features Using the GFTT Detector

The corners are critical characteristics of an image. The corners could be considered
keypoints with the maximal values of the first-order derivative along all the directions.
We first employed the Harris corner detection method [25]. For an image represented by
the pixels in the x and y directions, an autocorrelation function E(u, v) that determines
the intensity variation at the center point (x, y) with its neighborhood window Q is given by

E(u, v) = ∑x,y w(x, y)[I(x + u, y + v)− I(x, y)]2, (5)

where w(x, y) is a window function, (u, v) represents the shifts in the x and y directions,
respectively, and I(x + u, y + v) is the intensity at the position (x + u, y + v). E(u, v) allows
us to find the window Q with a large variation in both the x and y directions. However,
this calculation is relatively time-consuming. Alternatively, Taylor’s expansion could be
utilized to obtain the approximated result:

I(x + u, y + v) ≈ I(x, y) +
∂I(x, y)

∂x
u +

∂I(x, y)
∂y

v.

Therefore, we could simplify E(u, v) as follows:

E(u, v) = ∑x,y w(x, y)
(

Ixu + Iyv
)2. (6)

Furthermore, we can rewrite the above equation as

E(u, v) = [u v](∑ w(x, y)
[

I2
x Ix Iy

Ix Iy I2
y

]
)

[
u
v

]
. (7)

The matrix characterizes the structure of the gray levels at a given point. Considering
the eigenvalues of the matrix as λ1 and λ2, we could categorize E(u, v) into three groups
as follows: (1) both λ1 and λ2 are small, indicating that the intensity of the neighborhood
window of interest is nearly constant; (2) if one of the eigenvalues is greater than the other,
indicating an edge existence; (3) if both λ1 and λ2 are large, indicating a corner occurrence.

The GFTT detector evaluates a corner by utilizing the cornerness scoring function,
which is defined as

R = min(λ1, λ2). (8)

If the minimum eigenvalue is larger than a predefined threshold, then the neighbor-
hood window is considered a corner. In this study, we used the function goodFeaturesTo-
Track with its default parameters given in the OpenCV database to find the feature corners
of the STFT results.

5.3.2. Feature Descriptor with Rotated BRIEF and Feature Matching

We employed rotated BRIEF as the feature descriptor. Rotated BRIEF is based on
BRIEF, which only compares the intensity between two pixel positions around the detected
feature points to build a binary descriptor. Moreover, matching the binary descriptors
only requires the computation of the Hamming distances through XOR with a very fast
speed [26]. To mitigate the limitation of BRIEF, steered BRIEF, which is helpful in increasing
the orientation invariance, can be used. However, steered BRIEF exhibits a limitation
in differentiating the feature descriptors of different feature points.

We then selected rotated BRIEF for a better discerning ability of the feature descriptor.
Rotated BRIEF attempted to find the optimal sampling pairs, in contrast to BRIEF, which
uses randomly chosen sampling pairs, for the binary intensity tests. The detailed algorithm
of rotated BRIEF is as follows [18,27]:

First, the test set for N (≥256) feature points was created. For each feature point,
31 × 31 neighboring pixel points were taken as a large patch P1 to perform Gaussian
smoothing. Patch W2 of arbitrary 5 × 5 points was selected among W1, and the gray
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levels of these 25 points were averaged as the value of a representative point of W2.
Thus, the total number of points, i.e., (31 − 5 + 1) × (31 − 5 + 1) = 729 of W2, formed
the representative points. To extract these representative points as point pairs, we need M
(C729

2 = 729× 728÷ 2 = 265, 356) arrangements.
Subsequently, the point pairs at positions x and y were compared based on M arrange-

ments. The comparison followed the BRIEF scheme with

τ(p; x, y) =

{
1 if p(x) < p(y),
0 otherwise

(9)

where p(x) is the intensity value at position x.
A matrix Q of size N ×M was created. Each row of the matrix Q is a binary vector

for the feature descriptor. We obtained the average of each row of Q and rearranged
the row vector according to the distance between the average of each row of Q and 0.5.
The re-sequenced row vectors formed the matrix T.

This was followed by a greedy search. The first-row vector of T was placed into the first
row of matrix R. The next-row vector from T was compared with all the row vectors in R.
If its absolute correlation was greater than a threshold, the vector was discarded; else,
it was added to R. The previous step was repeated until there were 256 row vectors in R.
If the resulting row vectors of R were fewer than 256, the threshold was increased and
the above process was repeated.

Finally, we matched two sets of binary feature vectors using the Hamming dis-
tance. The MATLAB function matchFeatures was applied with a default threshold of
10. The threshold represents the percentage of distance from a perfect match. Two feature
vectors were considered to be matched when the distance between them was less than
the specified threshold.

6. Recognition Results of the Same Gestures and Different Gestures

Using the aforementioned methods, we investigated the four types of gestures de-
scribed in the previous section. For each studied gesture, we randomly took two samples
from five hand gesture operations. The samples were performed by the same person.
We first obtained the recognition results for the same gestures. For each of the four studied
gestures, we took the samples at different times as motions “A” and “B” and compared
them with each other to obtain the matching points of the extracted features. Table 1 lists
the test results of the matching points. Figure 9a shows that the results of the push motion
“A” tested against itself yielded 245 matching points and the push motion “B” tested
against itself yielded 251 matching points. The small yellow circles indicate the matching
points. Figure 9b shows that, by using the push motion “A” to test the push motion “B”,
we could obtain 189 matching feature points. When we switched the matching sequence,
that is, using the push motion “B” to the test motion “A”, we could obtain 179 matching
points. The pinch out motion “A” tested against itself yielded 210 matching feature points,
and the pinch out motion “B” tested against itself yielded 240 matching points. Using
the pinch out motion “A” to test “B”, we could obtain 165 matching points, and we could
obtain 149 matching points by switching the test order.

A similar test was also performed for the hand rotation motion. The rotation “A”
tested against itself yielded 320 matching points, and rotation “B” tested against itself
yielded 311 matching points. The cross-validation of using rotation “A” to test “B” yielded
192 matching points and the reverse order yielded 188 matching points. As for the gesture
of wrist motion from flexion to extension, the motion “A” tested against itself yielded 267
matching points; the motion “B” tested against itself yielded 250 matching points. Using
motion “A” to test “B” yielded 156 matching points, and the reverse order yielded 140
matching points.
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Table 1. Results of matching points for the same and different hand gestures.

Push A Push B Wrist A Wrist B Pinch A Pinch B Rot. A Rot. B
Push A 245 189 18 16 27 24 26 32
Push B 179 262 12 11 26 23 48 36
Wrist A 19 17 267 156 37 28 25 26
Wrist B 17 12 140 249 19 23 19 31
Pinch A 26 23 26 20 210 165 33 43
Pinch B 24 20 11 19 149 232 34 35
Rot. A 30 28 31 28 37 45 320 192
Rot. B 44 32 21 30 38 33 188 288
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Figure 9. (a) (Left) The results of the push motion ‘A’ testing itself with 245 matching points (marked
with yellow circles), and (Right) the push motion ‘B’ testing itself with 251 matching points. (b) The
push motion ‘A’ to test the push motion ‘B’ with 189 matched feature points.

From the above analysis, we observe that a stronger matching occurs at the comparison
of each identical feature description for each investigated case. The rotation motion
case showed the highest matching number of 320 points, and the pinch out motion case
showed the lowest matching number of 210 points. Although the matching points of
cross-validation for the same gestures were not as high as those for testing with an identical
gesture, they still exhibited the largest value of 192 and the smallest value of 140 for the four
investigated gestures. In addition, we observed that the comparison order could affect
the matching number of points for the same gesture motions. The differences of cross-
validation comparisons were 10, 16, 16, and 4 for push motion, wrist motion from flexion
to extension, pitch out, and rotation, respectively. The disparity is approximately one order
of magnitude less than the number of matching points, which indicates that the effect of
the test order could be reasonably neglected.

Subsequently, different gestures were examined. For every two cases of the same
gestures discussed above, we tested the other three cases of gestures. We selected some
examples to illustrate the matching results. Figure 10a–e shows the results of using the rota-
tion motion “A” to test the push motion “A”, the wrist motion from flexion to extension “A”
to test the pinch out motion “A”, the wrist motion from flexion to extension to test the rota-
tion motion “A”, the pinch out motion “A” to test the wrist motion from flexion to extension
“A”, and the push motion “A” to test the rotation motion “A”, respectively. The corre-
sponding numbers of matching points were 30, 37, 25, 26, and 26, respectively. The marked
matching points (yellow circle) in Figure 10 indicate much smaller numbers compared with
that of the same gestures. Therefore, a borderline of the matching points could be set to
distinguish similar gestures and different gestures using our proposed method.
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Figure 10. The results of feature points matching: (a) using the rotation motion ‘A’ to test push
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motion of wrist from flexion to extension to test the rotation motion ‘A’. (d) The pinch out motion
‘A’ to test the motion of ‘wrist from flexion to extension. (e) The push motion ‘A’ to test the rotation
motion ‘A’.

To correlate the hand gestures and matching results quantitatively, we categorized
the matching results into three groups. The first group consisted of identical hand gestures
with the number of matching points between 320 and 210. The second group had the same
hand gestures, but they were performed at different times. The number of matching
points was between 140 and 189. The third group consisted of different hand gestures,
and the number of matching points was between 48 and 11.

If we define the maximum number of matching points in the aforementioned cases,
which is 320, as a denominator to find the matching ratio of hand gesture recognition, then
the identical hand gestures are indicated by a matching ratio beyond 0.66 (i.e., greater
than 210 divided by 320). The same gestures are indicated by matching ratios above 0.44.
The different hand gestures could be determined by a matching ratio of less than 0.15.
The results indicate that there is a large ratio interval of 0.29 to prevent the misjudgment of
hand gestures.

Furthermore, if we directly find the probability density functions according to the ex-
perimental matching points shown in Table 1 for the same hand gestures and the different
hand gestures, the probability of accuracy rate could be found. The mean value (µ) and
standard deviation (σ) are 214.44 and 53.43 for the identical gestures, 26.73 and 9.02 for
the different gestures. Using the probability of normal distribution, the accuracy rate could
be estimated as below:

Let X1 be the matching points for the cases of failure of hand gesture recognition
possessing the normal distribution N(µ1, σ2

1 ) with probability density function (pdf) F1(x)
and cumulative density function (cdf) F1(x) and X2 be the matching points for the cases
of correct hand gesture recognition possessing the normal distribution N(µ2, σ2

2 ) with pdf
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F2(x) and cdf F2(x), µ1 < µ2. The area of intersection zone, which indicates the probability
of faulty hand gesture recognition, could be found by

P(X1 > c) + P(X2 < c)

= 1− F1(c) + F2(c)

= 1− 1
2 erf( c−µ1√

2σ1
) + 1

2 erf( c−µ2√
2σ2

)

, (10)

where erf(.) means the error function, c is the x-value for F1(x) = F2(x) and can be obtained by

c =
−σ2

2 µ1 − σ2
1 µ2 + σ1σ2

√(
2(σ2

2 − σ2
1 ) log

(
σ2
σ1

)
+ (µ2 − µ1)

2
)

(
σ2

1 − σ2
2
) (11)

Figure 11 shows the analyzed results. The accuracy rate of hand gesture recognition
could achieve a probability of 99.8% by using the developed scheme.
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We estimated the required time to execute the proposed algorithm for hand gesture
recognition. The calculation was based on the MATLAB code operated in the personal
computer with the hardware configuration of Intel Core i5 CPU @3.10 GHz and 8 GB RAM.
Through the MATLAB timer functions of tic (starts a stopwatch timer) and toc (prints
the elapsed time since tic was used). The amount of time required to complete one hand
gesture recognition was about 0.7 s. The computational cost could be further reduced
by converting the MATLAB code to C program language or Python language for better
performance.

In the future, we will explore more different types of hand gestures for recognition.
More data from different testers will be analyzed. In addition, the parameters used
in the algorithm could be further investigated to obtain optimized results. For example,
the window functions used in the STFT analysis and the threshold values in the MATLAB
matchFeatures function.

The proposed methods in this study could be applied to other problems such as
structural health monitoring or fault diagnosis of machines [28–30]. For example, using
the receiving acoustic signal along with the presented signal processing scheme possesses
the advantages of low-cost hardware setup and non-destructive detection. The described
image processing scheme could be also employed for thermal imaging data analysis.
For instance, using a specific fusion method to extracting features, along with nearest
neighbor classifier and support vector machine has been studied as an effective way for
fault diagnosis of the angle grinder [30]. It could be interesting for further investigation by
using our proposed imaging processing scheme.
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7. Conclusions

Based on linear and rotational Doppler effect, four different hand gestures of push,
wrist motion from flexion to extension, pinch out, and hand rotation were studied for
gesture recognition. The hardware of the ultrasonic monitoring system was implemented
with a circuit containing a frequency mixer, filters, and oscillators to lower our sampling
frequency and acquire Doppler signals. An algorithm to judge the start time of the hand
gestures was proposed by obtaining the second derivative of the strength at the peak
frequency with the maximum strength. Hand gesture recognition was performed using
the image constructed using the STFT results. The GFTT algorithm was employed to find
the feature corners of the images of the STFT results. A rotated BRIEF feature descriptor was
used to perform the binary coding of the feature corners, and the Hamming distance was
employed to match the feature descriptor. Based on the experimental results, the accuracy
rate of hand gesture recognition with the proposed scheme reaches 99.8%.
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