Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material
Abstract
:1. Introduction
2. Patients and Methods
Patients
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, Q.X.; Ho, C.Y.X.; Chan, H.W.; Yong, B.Z.J.; Yeo, W.-S. Managing childhood and adolescent attention-deficit/hyperactivity disorder (ADHD) with exercise: A systematic review. Complement. Ther. Med. 2017, 34, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Aldemir, R.; Demirci, E.; Bayram, A.K.; Canpolat, M.; Ozmen, S.; Per, H.; Tokmakci, M. Evaluation of two types of drug treatment with QEEG in children with ADHD. Transl. Neurosci. 2018, 9, 106–116. [Google Scholar] [CrossRef]
- Jensen, P.S. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Arch. General Psychiatry 1999, 56, 1073–1086. [Google Scholar]
- Sonuga-Barke, E.; Coghill, D. Stimulant Drug Effects on Attention Deficit/Hyperactivity Disorder: A Review of the Effects of Age and Sex of Patients. Curr. Pharm. Des. 2010, 16, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.M.; Kraemer, H.C.; Hinshaw, S.P.; Arnold, L.E.; Conners, C.K.; Abikoff, H.B.; Clevenger, W.; Davies, M.; Elliott, G.R.; Greenhill, L.L.; et al. Clinical Relevance of the Primary Findings of the MTA: Success Rates Based on Severity of ADHD and ODD Symptoms at the End of Treatment. J. Am. Acad. Child. Adolesc. Psychiatry 2001, 40, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Wolraich, M.L.; Lambert, W.; Doffing, M.A.; Bickman, L.; Simmons, T.; Worley, K. Psychometric Properties of the Vanderbilt ADHD Diagnostic Parent Rating Scale in a Referred Population. J. Pediatr. Psychol. 2003, 28, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Woolsey, C.; Smoldon, J.; Devney, R. Initial development of an attention-deficit/hyperactivity disorder visual analog scale for rapid assessment of medication effects. J. Am. Assoc. Nurse Pract. 2020, 32, 8–14. [Google Scholar] [CrossRef]
- Staab, W.; Hottowitz, R.; Sohns, C.; Sohns, J.M.; Gilbert, F.; Menke, J.; Niklas, A.; Lotz, J. Accelerometer and Gyroscope Based Gait Analysis Using Spectral Analysis of Patients with Osteoarthritis of the Knee. J. Phys. Ther. Sci. 2014, 26, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zollinger, M.; Degache, F.; Currat, G.; Pochon, L.; Peyrot, N.; Newman, C.J.; Malatesta, D. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy. Front. Physiol. 2016, 7, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossig, A.A.C.; Antonini, A.; Buhmann, C.; Classen, J.; Csoti, J.A.; Falkenburger, B.; Schwarz, M.; Winkler, J.; Storch, A. Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J. Neural Transm. 2016, 123, 57–64. [Google Scholar] [CrossRef]
- Capela, N.A.; Lemaire, E.D.; Baddour, N.; Rudolf, M.; Goljar, N.; Burger, H. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. J. Neuroeng. Rehabil. 2016, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, M.H.; Henderson, A.; Chow, S.M.K.; Yao, G. Relationship between motor proficiency, attention, impulse, and activity in children with ADHD. Dev. Med. Child. Neurol. 2004, 46, 381–388. [Google Scholar] [CrossRef]
- Wood, A.C.; Asherson, P.; Rijsdijk, F.; Kuntsi, J. Is overactivity a core feature in ADHD? Familial and receiver operating charac-teristic curve analysis of mechanically assessed activity level. J. Am. Acad. Child. Adolesc. Psychiatry 2009, 48, 1023–1030. [Google Scholar] [CrossRef]
- Tunstall, M.J.; Oorschot, D.E.; Kean, A.; Wickens, J.R. Inhibitory Interactions Between Spiny Projection Neurons in the Rat Striatum. J. Neurophysiol. 2002, 88, 1263–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cospito, J.; Kultas-Ilinsky, K. Synaptic organization of motor corticostriatal projections in the rat. Exp. Neurol. 1981, 72, 257–266. [Google Scholar] [CrossRef]
- Heilbronner, S.R.; Rodriguez-Romaguera, J.; Quirk, G.J.; Groenewegen, H.J.; Haber, S.N. Circuit-Based Corticostriatal Homologies Between Rat and Primate. Biol. Psychiatry 2016, 80, 509–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Künzle, H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study inMacaca fascicularis. Brain Res. 1975, 88, 195–209. [Google Scholar] [CrossRef]
- Künzle, H. An Autoradiographic Analysis of the Efferent Connections from Premotor and Adjacent Prefrontal Regions (Areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 1978, 15, 185–209. [Google Scholar] [CrossRef]
- Szabo, J. The efferent projections of the putamen in the monkey. Exp. Neurol. 1967, 19, 463–476. [Google Scholar] [CrossRef]
- Giedd, J.N.; Blumenthal, J.; Molloy, E.; Castellanos, F. Brain Imaging of Attention Deficit/Hyperactivity Disorder. Ann. N. Y. Acad. Sci. 2006, 931, 33–49. [Google Scholar] [CrossRef]
- Arnt, J. Hyperactivity following injection of a glutamate agonist and 6, 7-ADTN into rat nucleus accumbens and its inhibition by THIP. Life Sci. 1981, 28, 1597–1603. [Google Scholar] [CrossRef]
- Swanson, C.J.; Kalivas, P.W. Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J. Pharmacol. Exp. Ther. 2000, 292, 406–414. [Google Scholar]
- Austin, M.C.; Kalivas, P.W. The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res. 1988, 441, 209–214. [Google Scholar] [CrossRef]
- Costall, B.; Domeney, A.M.; Naylor, R.J. Locomotor hyperactivity caused by dopamine infusion into the nucleus accumbens of rat brain: Specificity of action. Psychopharmacol. 1984, 82, 174–180. [Google Scholar] [CrossRef]
- Worbe, Y.; Baup, N.; Grabli, D.; Chaigneau, M.; Mounayar, S.; McCairn, K.; Féger, J.; Tremblay, L. Behavioral and Movement Disorders Induced by Local Inhibitory Dysfunction in Primate Striatum. Cereb. Cortex 2008, 19, 1844–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, L.S.; Eshel, G.; Dreher, J.; Ong, J.; Jackson, D.M. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens. Pharmacol. Biochem. Behav. 1991, 38, 829–835. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies 2018, 11, 1850. [Google Scholar] [CrossRef] [Green Version]
- Tsikriteas, Z.M.; Roscow, J.I.; Bowen, C.R.; Khanbareh, H. Flexible ferroelectric wearable devices for medical applications. iScience 2021, 24, 101987. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef]
- Jerrentrup, L.; Canisius, S.; Wilhelm, S.; Kesper, K.; Ploch, T.; Vogelmeier, C.; Greulich, T.; Becker, H.F. Work of Breathing in Fixed and Pressure Relief Continuous Positive Airway Pressure (C-Flex™): A post hoc Analysis. Respiration 2016, 93, 23–31. [Google Scholar] [CrossRef]
- Chandel, V.; Singhal, S.; Sharma, V.; Ahmed, N.; Ghose, A. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 2019, pp. 3290–3296. [Google Scholar]
- Bussing, R.; Fernandez, M.; Harwood, M.; Hou, W.; Garvan, C.W.; Eyberg, S.M.; Swanson, J.M. Parent and teacher SNAP-IV ratings of attention deficit hyperactivity disorder symptoms: Psychometric properties and normative ratings from a school district sample. Assessment 2008, 15, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, D.J.; McLennan, J.D. An Alternative Approach to Scoring the MTA-SNAP-IV to Guide Attention-Deficit/Hyperactivity Disorder Medication Treatment Titration towards Symptom Remission: A Preliminary Consideration. J. Child. Adolesc. Psychopharmacol. 2015, 25, 749–753. [Google Scholar] [CrossRef]
- Gau, S.S.-F.; Shang, C.-Y.; Liu, S.-K.; Lin, C.-H.; Swanson, J.M.; Liu, Y.-C.; Tu, C.-L. Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale—Parent form. Int. J. Methods Psychiatr. Res. 2008, 17, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Ito, K.; Kita, Y.; Inagaki, M.; Kaga, M.; Swanson, J.M. Psychometric properties of Japanese version of the Swanson, Nolan, and Pelham, version-IV Scale-Teacher Form: A study of school children in community samples. Brain Dev. 2014, 36, 700–706. [Google Scholar] [CrossRef]
- Granana, N.; Richaudeau, A.; Gorriti, C.R.; O’Flaherty, M.; Scotti, M.E.; Sixto, L.; Allegri, R.; Fejerman, N. Assessment of attention deficit hyperactivity: SNAP-IV scale adapted to Argentina. Revista Panamericana De Salud Publica Pan Am. J. Public Health 2011, 29, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, L.R.; Williams, J.B.W. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Association: Washington, DC, USA, 1980. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. BMC Med. 2013, 17, 133–137. [Google Scholar]
- Costa, D.S.; de Paula, J.J.; Malloy-Diniz, L.F.; Romano-Silva, M.A.; Miranda, D.M. Parent SNAP-IV rating of atten-tion-deficit/hyperactivity disorder: Accuracy in a clinical sample of ADHD, validity, and reliability in a Brazilian sample. J. Pediatr. 2018, 95, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.L.; Guo, B.; Valentine, A.Z.; Groom, M.J.; Daley, D.; Sayal, K.; Hollis, C. The Validity of the SNAP-IV in Children Displaying ADHD Symptoms. Assessment 2019, 27, 1258–1271. [Google Scholar] [CrossRef]
Sex (M/F) | Age | Subtype (C/I) | SNAP Score Before Medication | SNAP Score After Medication | Reduction Percentage |
---|---|---|---|---|---|
18/4 | 8y4m ± 2y6m | 20/2 | 42.61 ± 12.05 (parents) | 37.72 ± 12.72 (parents) | 11.48% |
38.76 ± 11.81 (teacher) | 32.15 ± 15.19 (teacher) | 17.05% |
Parameters | Before Treatment | After Treatment | Reduction Rate | p Value |
---|---|---|---|---|
Inattentiveness (P) | 16.00 ± 5.46 | 14.28 ± 4.78 | 10.75% | 0.3521 |
Hyperactivity (P) | 15.22 ± 5.27 | 12.00 ± 5.41 | 21.16% | 0.0147 * |
Oppositional (P) | 11.39 ± 5.02 | 10.89 ± 5.81 | 4.39% | 0.7088 |
Inattentiveness (T) | 15.00 ± 4.66 | 15.46 ± 5.49 | −3.07% | 0.7921 |
Hyperactivity (T) | 14.08 ± 7.12 | 9.62 ±7.10 | 31.68% | 0.0330 * |
Oppositional (T) | 9.69 ± 5.38 | 7.08 ± 5.58 | 26.93% | 0.076 |
Before Treatment | After Treatment | Reduction Rate | p Value | |
---|---|---|---|---|
Variance | 2239.6 ± 3314.5 | 480.36 ± 871.35 | 78.55% | 0.0067 * |
Zero crossing rate | 1.0112 ± 0.7547 | 0.4499 ± 0.5588 | 55.49% | 0.0005 * |
High energy rate | 0.5062 ± 0.2815 | 0.2883 ± 0.2644 | 43.05% | 0.0003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.-C.; Wu, R.-C.; Chiang, C.-T.; Chiu, Y.-H.; Ouyang, C.-S.; Lin, Y.-T.; Lin, L.-C. Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material. Appl. Sci. 2021, 11, 5478. https://doi.org/10.3390/app11125478
Yang R-C, Wu R-C, Chiang C-T, Chiu Y-H, Ouyang C-S, Lin Y-T, Lin L-C. Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material. Applied Sciences. 2021; 11(12):5478. https://doi.org/10.3390/app11125478
Chicago/Turabian StyleYang, Rei-Cheng, Rong-Ching Wu, Ching-Tai Chiang, Yi-Hung Chiu, Chen-Sen Ouyang, Ying-Tong Lin, and Lung-Chang Lin. 2021. "Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material" Applied Sciences 11, no. 12: 5478. https://doi.org/10.3390/app11125478
APA StyleYang, R. -C., Wu, R. -C., Chiang, C. -T., Chiu, Y. -H., Ouyang, C. -S., Lin, Y. -T., & Lin, L. -C. (2021). Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material. Applied Sciences, 11(12), 5478. https://doi.org/10.3390/app11125478