Olive Paste-Enriched Cookies Exert Increased Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Olive Paste Cookies Preparation
2.3. Analysis of Olive Paste and Cookies
2.4. Sensory Acceptability of Cookies
2.5. In Vitro Antioxidant Activity of Cookies
2.6. Statistical Analysis
3. Results
3.1. Analysis of Olive Paste
3.2. Analysis of Cookies
3.3. Sensory Acceptability
3.4. In Vitro Antioxidant Activity of Cookies
4. Discussion
4.1. Analysis of Olive Paste
4.2. Analysis of Cookies
4.3. Sensory Acceptability
4.4. In Vitro Antioxidant Activity of Cookies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance-A Review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Gok, I.; Ulu, E.K. Functional Foods in Turkey: Marketing, Consumer Awareness and Regulatory Aspects. Nutr. Food Sci. 2019, 49, 668–686. [Google Scholar] [CrossRef]
- Badrie, N.; Reid-Foster, S.; Benny-Ollivierra, C.; Roberts, H. Exercise Enthusiasts’ Perceptions and Beliefs of Functional Foods in Trinidad, West Indies. Nutr. Food Sci. 2007, 37, 345–357. [Google Scholar] [CrossRef]
- Tsartsou, E.; Proutsos, N.; Papadopoulos, I.; Tzouvelekas, V.; Castanas, E.; Kampa, M. Consumers’ Attitude toward Dietary Supplements and Functional Food: A Prospective Survey in a Greek Population Sample. Hormones 2021, 20, 177–188. [Google Scholar] [CrossRef]
- Manley, D. Manley’s Technology of Biscuits, Crackers and Cookies, 4th ed.; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Bhat, N.A.; Wani, I.A.; Hamdani, A.M. Tomato Powder and Crude Lycopene as a Source of Natural Antioxidants in Whole Wheat Flour Cookies. Heliyon 2020, 6, e03042. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Chirumbolo, S. Role of Oxidative Stress and Antioxidants in Daily Nutrition and Human Health. Nutrition 2017, 33, 311–321. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [Green Version]
- Dillard, C.J.; Bruce German, J. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea Europaea L.)—A Review. Int. J. Mol. Sci. 2012, 13, 1291–1340. [Google Scholar] [CrossRef]
- Durante, M.; Tufariello, M.; Tommasi, L.; Lenucci, M.S.; Bleve, G.; Mita, G. Evaluation of Bioactive Compounds in Black Table Olives Fermented with Selected Microbial Starters. J. Sci. Food Agric. 2018, 98, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Innocenti, M.; Mulinacci, N. Whole Lyophilized Olives as Sources of Unexpectedly High Amounts of Secoiridoids: The Case of Three Tuscan Cultivars. J. Agric. Food Chem. 2015, 63, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC Press: Washington, DC, USA, 2006. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic 1965, 16, 144–158. [Google Scholar]
- Sakka, D.; Karantonis, H.C. In Vitro Health Beneficial Activities of Pumpkin Seeds from Cucurbita Moschata Cultivated in Lemnos. Int. J. Food Stud. 2015, 4, 221–237. [Google Scholar] [CrossRef]
- Villanueva, N.D.M.; Da Silva, M.A.A.P. Comparative Performance of the Nine-Point Hedonic, Hybrid and Self-Adjusting Scales in the Generation of Internal Preference Maps. Food Qual. Prefer. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özyürek, M.; Güçlü, K.; Apak, R. The Main and Modified CUPRAC Methods of Antioxidant Measurement. TrAC-Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- López-López, A.; Montaño, A.; Garrido-Fernández, A. Nutrient Profiles of Commercial Table Olives: Fatty Acids, Sterols, and Fatty Alcohols; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Boskou, D. Table Olives: A Vehicle for the Delivery of Bioactive Compounds. J. Exp. Food Chem. 2017, 3, 123. [Google Scholar] [CrossRef] [Green Version]
- Blekas, G.; Vassilakis, C.; Harizanis, C.; Tsimidou, M.; Boskou, D.G. Biophenols in Table Olives. J. Agric. Food Chem. 2002, 50, 3688–3692. [Google Scholar] [CrossRef]
- Charoenprasert, S.; Mitchell, A. Factors Influencing Phenolic Compounds in Table Olives (Olea Europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef]
- Boskou, G.; Salta, F.N.; Chrysostomou, S.; Mylona, A.; Chiou, A.; Andrikopoulos, N.K. Antioxidant Capacity and Phenolic Profile of Table Olives from the Greek Market. Food Chem. 2006, 94, 558–564. [Google Scholar] [CrossRef]
- Boskou, D.; Camposeo, S.; Clodoveo, M.L. Table Olives as Sources of Bioactive Compounds. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015. [Google Scholar]
- Jan, R.; Saxena, D.C.; Singh, S. Physico-Chemical, Textural, Sensory and Antioxidant Characteristics of Gluten—Free Cookies Made from Raw and Germinated Chenopodium (Chenopodium Album) Flour. LWT-Food Sci. Technol. 2016, 71, 281–287. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhong, M.; Xie, F.; Wang, H.; Li, L.; Qi, B.; Zhang, S. Digestibility, Textural and Sensory Characteristics of Cookies Made from Residues of Enzyme-Assisted Aqueous Extraction of Soybeans. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Were, L.M. Chlorogenic acid induced colored reactions and their effect on carbonyls, phenolic content, and antioxidant capacity in sunflower butter cookies. LWT-Food Sci. Technol. 2018, 87, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Yang, M.; Zhang, G.; He, H.; Yang, T. Antioxidant Activities and Phenolic Compositions of Wheat Germ as Affected by the Roasting Process. J. Am. Oil Chem. Soc. 2015, 92, 1303–1312. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Vuorela, S.; Romero, M.-P.; Motilva, M.-J.; Heinonen, M. Antioxidant Activity of Olive Pulp and Olive Oil Phenolic Compounds of the Arbequina Cultivar. J. Agric. Food Chem. 2005, 53, 2002–2008. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants—An Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Rahiman, S.; El-Metwally, T.H.; Shrivastava, D.; Tantry, M.N.; Tantry, B.A. Oleuropein and Oleic Acid: A Novel Emerging Dietary Target for Human Chronic Diseases. Indian J. Biochem. Biophys. 2019, 56, 263–268. [Google Scholar]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [Green Version]
- Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial Effects of the Olive Oil Phenolic Components Oleuropein and Hydroxytyrosol: Focus on Protection against Cardiovascular and Metabolic Diseases. J. Transl. Med. 2014, 12, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvorovic, J.; Ziberna, L.; Tramer, F.; Passamonti, S.; Daglia, M.; Nabavi, S.F.; Sobarzo-Sánchez, E.; Nabavi, S.M. Hydroxytyrosol, a Phenyl Ethyl Alcohol with Health Effects. Curr. Org. Chem. 2017, 21, 325–332. [Google Scholar] [CrossRef]
- Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders. Nutrients 2017, 9, 306. [Google Scholar] [CrossRef]
- De las Hazas, M.C.L.; Rubió, L.; Macià, A.; Motilva, M.J. Hydroxytyrosol: Emerging Trends in Potential Therapeutic Applications. Curr. Pharm. Des. 2018, 24, 2157–2179. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.A.; Masoodi, F.A.; Gani, A.; Baba, W.N.; Rahmanian, N.; Akhter, R.; Wani, I.A.; Ahmad, M. Olive Oil and Its Principal Bioactive Compound: Hydroxytyrosol—A Review of the Recent Literature. Trends Food Sci. Technol. 2018, 77, 77–90. [Google Scholar] [CrossRef]
Ingredients (%) | OPCC | OPCGTO | OPCVEG | OPCORG |
---|---|---|---|---|
Hard margarine | 21.1 | 17 | 17 | 17 |
Sugar | 6 | 6 | 6 | 6 |
Water | 15.9 | - | - | - |
Olive Paste | - | 20 | 20 | 20 |
Wheat Flour | 44 | 44 | 44 | 44 |
Oat flour | 13 | 13 | 13 | 13 |
Soda | 0.7 | 0.7 | 0.7 | 0.7 |
Salt | 0.8 | - | - | - |
Samples | %Moisture | % Oil Content | GAE (mg/g) |
---|---|---|---|
OP1 | 64.6 ± 1.5 b | 20.3 ± 0.8 a | 1.74 ± 0.06 a |
OP2 | 66.1 ± 1.5 b | 19.7 ± 0.8 a | 1.35 ± 0.08 b |
OP3 | 66.8 ± 1.4 b | 20.9 ± 0.9 a | 1.45 ± 0.07 b |
OP4 | 80.6 ± 0.6 a | 6.6 ± 0.1 b | 0.49 ± 0.02 c |
OPCC | OPCGTO | OPCVEG | OPCORG | |
---|---|---|---|---|
Protein (%) | 9.2 | 9.1 | 9.3 | 8.9 |
Fat (%) | 20.5 | 20.5 | 20.6 | 20.8 |
Saturated Fat (%) | 18.8 a | 7.0 b | 6.9 b | 7.1 b |
Unsaturated Fat (%) | 1.7 b | 13.5 a | 13.7 a | 13.7 a |
Carbohydrates (%) | 64.0 | 63.6 | 62.8 | 64.0 |
Dietary fibers (%) | 3.3 b | 4.2 a | 4.4 a | 4.1 a |
Moisture (%) | 5.7 | 5.9 | 6.0 | 5.9 |
Salt (%) | 1.0 | 0.9 | 1.2 | 0.9 |
Energy (Kcal/100g) | 478 | 475 | 474 | 479 |
Water Activity (aw) | 0.430 | 0.413 | 0.425 | 0.437 |
OPCC | OPCGTO | OPCVEG | OPCORG | |
---|---|---|---|---|
Appearance | 6.45 ± 0.92 a | 6.08 ± 0.83 b | 5.98 ± 0.75 b | 6.06 ± 0.74 b |
Flavor | 7.04 ± 0.66 c | 7.96 ± 0.79 a | 7.52 ± 0.96 b | 5.86 ± 0.86 d |
Mouthfeel | 7.69 ± 0.88 | 7.43 ±0.89 | 7.39 ± 0.82 | 7.41 ± 0.69 |
General acceptability | 6.86 ± 0.74 c | 7.55 ±0.80 a | 7.20 ±0.88 b | 5.76 ± 0.62 d |
OPCC | OPCGTO | OPCVEG | OPCORG | |
---|---|---|---|---|
Total phenolics (B) | 0.79 ± 0.04 c | 2.20 ± 0.07 a | 1.83 ± 0.06 b | 1.76 ± 0.07 b |
Total phenolics (A) | 0.77 ± 0.03 c | 2.26 ± 0.04 a | 1.89 ± 0.04 b | 1.79 ± 0.05 b |
DPPH (B) | 1.10 ± 0.26 c | 3.23 ± 0.29 a | 2.70 ± 0.26 b | 2.64 ± 0.19 b |
DPPH (A) | 1.04 ± 0.18 c | 3.47 ± 0.2 a | 2.85 ± 0.27 b | 2.67 ± 0.05 b |
ABTS (B) | 0.73 ± 0.07 c | 2.05 ± 0.13 a | 1.78 ± 0.09 b | 1.62 ± 0.09 b |
ABT (A) | 0.69 ± 0.09 c | 2.16 ±0.02 a | 1.84 ± 0.11 b | 1.67 ± 0.08 b |
FRAP (B) | 23.39 ± 0.71 | 80.35 ± 1.87 | 65.57 ± 1.57 | 61.05 ± 1.74 |
FRAP (A) | 22.71 ± 0.54 c | 82.73 ± 1.55 a | 68.30 ± 3.08 b | 62.83 ± 2.23 b |
CUPRAC (B) | 33.48 ± 3.36 c | 134.28 ± 6.23 a | 107.59 ± 6.0 b | 95.28 ± 6.79 b |
CUPRAC (A) | 32.52 ± 3.10 c | 138.56 ±7.62 a | 110.44 ±6.74 b | 97.04 ± 6.08 b |
Total Phenolics | |
---|---|
Pearson Correlation Coefficients | |
DPPH | 0.993 |
ABTS | 0.990 |
FRAP | 0.999 |
CUPRAC | 0.994 |
Total Phenolics | OPC | OPCG | OPCT | OPCO |
---|---|---|---|---|
Before baking | 1.33 ± 0.09 c | 1.48 ± 0.08 b | 1.50 ± 0.08 b | 1.87 ± 0.06 a |
After baking | 1.37 ± 0.08 c | 1.51 ± 0.10 b | 1.54 ± 0.07 b | 1.92 ± 0.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyri, E.-A.; Piromalis, S.-P.; Koutelidakis, A.; Kafetzopoulos, D.; Petsas, A.S.; Skalkos, D.; Nasopoulou, C.; Dimou, C.; Karantonis, H.C. Olive Paste-Enriched Cookies Exert Increased Antioxidant Activities. Appl. Sci. 2021, 11, 5515. https://doi.org/10.3390/app11125515
Argyri E-A, Piromalis S-P, Koutelidakis A, Kafetzopoulos D, Petsas AS, Skalkos D, Nasopoulou C, Dimou C, Karantonis HC. Olive Paste-Enriched Cookies Exert Increased Antioxidant Activities. Applied Sciences. 2021; 11(12):5515. https://doi.org/10.3390/app11125515
Chicago/Turabian StyleArgyri, Eleni-Anna, Stylianos-Panagiotis Piromalis, Antonios Koutelidakis, Dimitrios Kafetzopoulos, Andreas S. Petsas, Dimitrios Skalkos, Constantina Nasopoulou, Charalampia Dimou, and Haralabos C. Karantonis. 2021. "Olive Paste-Enriched Cookies Exert Increased Antioxidant Activities" Applied Sciences 11, no. 12: 5515. https://doi.org/10.3390/app11125515
APA StyleArgyri, E. -A., Piromalis, S. -P., Koutelidakis, A., Kafetzopoulos, D., Petsas, A. S., Skalkos, D., Nasopoulou, C., Dimou, C., & Karantonis, H. C. (2021). Olive Paste-Enriched Cookies Exert Increased Antioxidant Activities. Applied Sciences, 11(12), 5515. https://doi.org/10.3390/app11125515