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Abstract: This paper presents a comparative analysis of different earthing designs’ performances,
with particular interest on the use of earthing enhancing compound (EEC) for a selected earthing
design of 500 kV transmission towers in a rocky soil, using the SESCAD tool of the Current distribu-
tion, electromagnetic field grounding and soil structure analysis (CDEGS) software. The simulation
included the interpretation of soil profile and comparison between designs A, B and C, which are
currently used for the 500 kV tower footing resistance (TFR) improvement. Results showed each
design had reduced the TFR by 66%, 54.7% and 63.2% for the towers T42, T48 and T50, respectively.
In some cases, further improvement of TFR is required, especially in the rocky area where the soil
resistivity (SR) value is of more than 500 Ω·m. In this case, EEC was used in Design C, encasing
both the vertical and horizontal electrodes, and it reduced the TFR further by 16% to 20%. The
characteristics of the soil and earthing arrangement design play an important role in achieving
a low TFR value, which is directly proportional to the backflashover occurrence and thus to the
transmission line performance.

Keywords: earthing design; tower footing resistance (TFR); EEC; CDEGS

1. Introduction

Reducing the tower footing resistance (TFR) is the right option for increasing the
performance of a transmission line. TFR coupled with soil resistivity (SR) is known to have
a significant influence on the possibility of failure of a transmission line system [1]. In
Peninsular Malaysia, Tenaga Nasional Berhad (TNB) has fixed the tower footing resistance
to be less than or equal to 5 Ω for a 500 kV line [2]. Hence, an effective earthing design is
needed to improve the performance of transmission lines and it is one of the best solutions
for this issue. During the development of a transmission line, the TFR is one of the
important parameters to be considered. The result of a TFR change depends on several
factors, including the earthing structure and soil resistivity among others [3–7]. Typically,
the structure of the earthing system has a relationship to the configuration or the tower
footing shape. At present, round steel and profiled bar earth electrodes are buried at the
base of each footing before the concrete foundation is mounted [8,9]. Moreover, earth
electrodes and the tower footing are buried together during installation. In China, the
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earthing structure was usually installed based on the location of the transmission tower and
surrounding soil conditions. When the soil resistivity exceeds 100 Ω·m, an additional earth
electrode should be added, i.e., a rectangular or square horizontal electrode. However, if
the soil resistivity is over 4000 Ω·m, the use of a horizontal electrode along the tower and
connection of an earth electrode to each tower are two measures found to be more effective
and recommended [10–13]. Table 1 shows some of the current practices of earthing designs
available and used in several Asian countries.

Table 1. Current practice of earthing design and arrangement in several Asian countries.

Countries Earthing Design References Remarks

China
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Current distribution, electromagnetic field, grounding and soil structure analysis 
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Another method to reduce tower footing resistance is the counterpoise approach. It is
perceived as practical and efficient for high voltage transmission earthing systems [15,16].
There are two types of counterpoises that have been widely used for towers located in high
soil resistivity areas, such as rocky and sandy soils: the continuous and the radial type [3,4].
Other aspects important in earthing design include soil resistivity, number of soil layers
and soil thickness in each layer [17,18].

Thus, a convenient way to reduce the value of soil resistivity and earthing resistance
is to use an earthing enhancement compound (EEC), which has recently become popular
in electric power systems, particularly for mitigating the issue of earthing systems [19,20]
by replacing inappropriate soil content to minimise footing resistance caused by high cost
and space constraints [21–23]. Hence, in this paper, we intended to present an improve-
ment of an earthing system with different earthing designs and applications of EEC on a
selected design to achieve the requirement limit for tower footing resistance of a 500 kV
tower, i.e., less than or equal to 5 Ω. We also interpreted the soil structure and evaluated
several earthing designs based on the soil resistivity measurements carried out on selected
500 kV towers.

2. Methodology

A comprehensive description concerning our study method is provided in this section.
The outline of this study was divided into three stages: data collection; modelling and
computation work; and results analysis. In Stage 1, measurement work and data collection
on-site were undertaken using soil measurement equipment. The apparent resistance
of the soil was measured for Towers T42, T48 and T50, which were chosen for the case
study. This was followed by modelling and computation work in Stage 2, using the Current
distribution, electromagnetic field, grounding and soil structure analysis (CDEGS) software,
a platform to compute results based on the input from Stage 1. Finally, in Stage 3, results
were analysed and discussed before the conclusion of all findings and contributions.

The analysis carried out included three modelling components: soil, earthing and
EEC. The methods of all models included several phases in sequence. The modelling and
simulations were all performed using the SESCAD tool for CDEGS. The CDEGS software
was sufficiently powerful to interpret complex soil profiles from field measurement data
and to design earthing systems [24]. The first step of this analysis was to use the RESAP
module to determine the soil profile based on the real data from Peninsular Malaysia.
Subsequently, the tower earthing structure was developed and evaluated using the MALT
module based on the soil structure built in the first step. After the earthing structure
was developed, the calculation of the EEC model followed. This section also provides
a real case study demonstrating how a proper simulation of soil, earthing and EEC was
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developed and analysed. The quantitative and qualitative analyses of the earthing system
were determined based on the earthing resistance obtained under steady-state conditions.

2.1. Description of the Case Studies

The Grid Division of Tenaga Nasional Berhad Transmission (TNB) is responsible
for the design, management and operation of the transmission systems comprising three
different line voltages, i.e., 132 kV, 275 kV and 500 kV. Here, a 500 kV double circuit line,
denoted as Line A–B, was selected for a case study, taking into consideration that the line
is located in a lightning-prone area and critical for the national grid. Furthermore, this
particular line was subsequently chosen based on the high number of interruptions on this
line compared with other 500 kV lines in Malaysia [25–27]. Within this area, 30% of the line
is under forestation and at a high altitude with a higher tower footing resistance caused by
the high altitude soil profile [25,27]. Generally, 500 kV towers consist of a two earth wire
design at the top with a height of around 46 to 67 m. For this analysis, the methodology of
interpreting the soil profile characteristics was applied to a real case involving three towers
on the 500 kV double-circuit line. Figure 1 shows the dimensions of a 500 kV transmission
tower. In short, the study cases were as follows:

a. Case study A: Modelling of soil profile interpretation.

i. Case A (1): Soil layer analysis
ii. Case A (2): Soil resistivity analysis

b. Case study B: Simulation of tower footing resistance (TFR) with different earthing
designs under steady state conditions, using CDEGS.

i. Case B (1): Effect of design analysis (Towers T42, T48 and T50)
ii. Case B (2): Effect of soil profile analysis

c. Case study C: Simulation of tower footing resistance (TFR) with earthing Design C
and encasement with EEC under steady state conditions, using CDEGS.
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2.2. Soil Modelling

Soil modelling is a methodology designed to mathematically describe the local soil
profile for the design of an earthing system. The soil is generally considered as uniform or
homogenous, although, in reality, it is often multi-layered. This is due to the geological
features—soil type differs from one location to another—and to the existence of bedrock or
groundwater that results in a significant change in resistivity as a function of depth [28–30].
In this study, the analysis started with computation of the soil profile interpretation using
the RESAP module of the CDEGS software. The RESAP computation module is sufficiently
powerful to calculate the soil resistivity value coupled with the approximate thickness of
the soil layers [31]. To interpret the exhaustive soil profile, an apparent resistance data
collection from site measurements was used as input to RESAP and the analysis of the soil
profile was achieved by applying a selected Wenner method during simulation [24]. In
this study, three apparent resistances from a selected tower were used, and Table 2 shows
the average of the apparent resistances for Towers T42, T48 and T50. These tests were
carried out with various measurements at different locations to achieve the best possible
indication of apparent resistance [32]. Figure 2 illustrates three measurements at different
location areas for every tower. R1, R2 and R3 represent the first, second and third apparent
resistance measurement positions (also known as traverses), respectively.

Table 2. Averages of apparent resistance (Ω) values.

Spacing, a (m)
Average Apparent Resistance (Ω)

T42 T48 T50

1 398.6 236.4 150.69
1.5 233.12 95.92 89.15
2 166.72 57.63 61.57
3 115.61 35.97 34.25

4.5 71.64 20.14 25.87
6 42.77 16.92 19.06
9 28.74 10.72 17.82

13.5 14.25 9 8.41
18 8.58 9.87 7.94

Measurements were successfully achieved using the Wenner method, which is the
most widely used and easy method for measuring soil resistivity in an earthing system.
The Wenner method is the simplest arrangement with four poles, denoted as C1, P1, P2
and C2, and a set of reading probes spaced during testing [33–36]. All electrodes are placed
in one line and equally spaced from each other. The two outer electrodes, namely C1 and
C2, are current electrodes and the two inner electrodes, P1 and P2, are potential electrodes.
Figure 3 presents a schematic of the Wenner measurement method currently used by the
power utility for on-site SR measurements.

2.3. Earthing Systems with Different Designs

A good earthing system design greatly improves the efficiency and performance of
a transmission line [31,37]. Generally, the configuration of an earthing system is related
to the footing shape. In a region of high soil resistivity, an additional earth electrode
should be applied to the tower base. Within this section of the study, three earthing design
arrangements, Designs A, B and C, were proposed to evaluate the performance of different
earthing design arrangements. The models of the earthing designs were developed using
SESCAD and they were implemented by the MALT module to compute the tower footing
resistance. Figure 4 illustrates the default design with a 2 × 60 m counterpoise, denoted
as Design A. In this design, the base of the tower was 15 m × 15 m, consisting of one
vertically driven electrode at a depth of 9 m. The burial depth of the horizontal electrode
was 0.5 m from the surface, and it was made of stranded copper with a radius of 6.35 mm
(or 0.00635 m).
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Design B was a combination of a radial and a ring, which was extended from the
default of Design A. The base of the tower was also 15 m × 15 m, with 10 m stranded
copper cable, extended horizontally from the tower leg, and 13 vertically driven electrodes.
Similarly to Design A, the burial depth of the horizontal electrode was 0.5 m from the
surface, and it was made of stranded copper with a radius of 6.35 mm (or 0.00635 m), as
shown in Figure 5.
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Lastly, Figure 6 illustrates the Design C, known as the diamond, with 4 × 60 m
counterpoises installed additionally to the vertical electrodes. For this particular design,
there were 28 vertically driven electrodes installed at a depth of 3 m, on top of a 9 m
electrode that was initially installed based on the default design.
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Figure 6. Design C: Diamond-style with counterpoise and vertical electrodes; (a) top view; (b) 3D view.

The analyses and discussions on the performance of the different earthing design
arrangements (Design A, B and C) were considered and simulated using the CDEGS
software approach.

2.4. Earthing Enhancing Compound (EEC)

The footing resistance has a linear relationship to soil resistivity. Soil resistivity is
a fundamental parameter in the design of line earthing and is used to measure the fault
current of the earth along a transmission line [38]. The effect of soil resistivity on earth
impedance is generally greater compared with earthing electrode arrangements. It is an
indicator of how much electric current is conducted, and it varies with soil type, moisture
and temperature [39–41]. Previous studies showed that soil resistivity might be decreased
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by increasing the salt content, moisture and temperature of soil [41–43]. Therefore, imple-
menting the EEC approach to substitute for an unsuitable soil content surrounding the
electrodes is a simple method to reduce tower footing impedance. After several years of
research and development, EEC brand A (later denoted as EEC) was developed and has
been used very effectively in many locations around the world. The EEC is referred to
as an ultra-conductive material containing a soil resistivity reducing agent that provides
extremely minimal resistance to the flow of electrical conductivity and thus significantly
improves the efficiency of the earthing. EEC is made of environmentally friendly, robust
components and contains no heavy metals nor other harmful materials [44]. In this part of
our study, the test was conducted according to the manufacturer’s instructions, and the
physical properties of EEC with prepared specimens were as in normal use, as shown in
Table 3 [44]. Subsequently, the modelling of EEC in CDEGS was developed by adding a
coating to the surrounding electrode. The thickness of the EEC is one of the variables that
influence the electrode resistance, and all parameters used in this study were based on
the actual earthing system arrangement and the properties of EEC. Figure 7 illustrates a
cross-sectional view of the EEC that was modelled by the CDEGS software. There are three
parameters required in for modelling: the borehole radius, Rborehole; the earth electrode
radius, Relectrode; and the thickness of the outer electrode, which represents the thickness of
the EEC surrounding the electrode. It can be calculated by the following equation:

Rborehole − Relectrode = EEC thickness

Table 3. Physical properties of the EEC.

Properties Unit Values

Visual appearance - Dark tan (powdered)

Dry bulk density (average)
at 47.7 N compaction force g/cm3 1.07

Resistivity (average) at 100% moisture content,
EEC mixed with water
(1:1 ratio by volume)

Ω·m 0.6

Wet bulk density (average)
at 1:1 ratio by volume g/cm3 1.49

Conductivity (average) at 100% moisture
content, EEC mixed with water

(1:1 ratio by volume)
S/m 1.7Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 16 
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Table 3 indicates the soil resistivity parameter of the EEC, which was 0.6 Ω·m, and the
thickness of the coating was 0.116698 m, as depicted in Table 4, and this was defined by
selecting “Define|Coating types” on the characteristic menu in CDEGS. Table 4 shows also
the details of EEC and its thickness required to fill a borehole.
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Table 4. Details about the EEC required for modelling in CDEGS.

Parameter Value

Radius of the borehole (m) 0.12
Radius of the electrode (m) 0.003302

EEC thickness (m) 0.116698

In practice, each bag of 25 kg of EEC was mixed with 15–20 L of water (depending
upon the level of dryness of the site) so that it assumed a slurry form. Referring to Figure 6,
this EEC slurry was poured to surround the borehole of a vertical electrode and to cover the
horizontal electrode, then we filled the hole up back with the soil. Depending on the actual
dimensions at the tower based, estimated 67 bags of 25 kg EEC were used for each tower.

3. Results and Discussion

In this section, we provide an analysis of the soil profile for the selected towers of a
500 kV line in Peninsular Malaysia. Furthermore, the computations of the tower footing
impedance (TFI) and ground potential rise (GPR) curve, using the soil profiles, were
compared between all the different designs.

3.1. Case Study A: Soil Profile Interpretation

In the quest to interpret the soil profiles, we inferred from the results that the soil
profiles for each tower consisted of two, three and sometimes four layers with different
values of soil resistivity. As indicated in Figure 8, the Tower T42 soil profile had two layers.
The surface layer, referred to as air, had infinite resistivity and thickness. The first layer of
the soil had a resistivity of 2240.443 Ω·m and a thickness of approximately 5.3335 m, while
in case of the second layer, it was 842.7448 Ω·m and an infinite thickness.
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Figure 8. Soil profile interpretation for the Tower T42.

Figure 9 shows the soil structure for Tower T48, which was composed of three lay-
ers with different soil resistivity. Results indicated that the highest soil resistivity was
recorded at the third layer with 2520.846 Ω·m and an infinite thickness. The first and
second layer showed 2066.665 Ω·m and 535.7491 Ω·m and the thickness of 0.7022 m and
9.4521 m, respectively.
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Figure 10 presents the four-layer soil profile for the Tower T50. Result indicated that the
soil resistivity of the first layer was 1129.640 Ω·m and its thickness was 0.8880 m. The second
and third layer showed the values of soil resistivity of 610.0205 Ω·m and 487.6068 Ω·m,
having the thicknesses of 0.2014 m and 1.3932 m, respectively. The fourth layer, denoted as
the bottom layer, had a resistivity of 873.3768 Ω·m and an infinite thickness.
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3.2. Case Study B: Tower Footing Resistance Computation for Different Earthing Designs

In this section, the tower footing resistance computation is presented for three different
design arrangements: (i) default design with counterpoise (Design A) (ii) radial and ring
electrodes (Design B) and (iii) diamond with counterpoise and electrodes (Design C).
Specifically, the TFRs were computed for three conditions of soil structure, as described in
Section 3.1. Figure 11 presents the TFRs for the three types of earthing design buried in a
two-layer (T42), three-layer (T48) and four-layer (T50) stratified soil. Results indicated that
the Tower T42 had the highest TFR value as compared with Tower T48 and Tower T50. In
this case, the resistance was influenced by the first layer, which had a high soil resistivity.
This particular layer had a soft topsoil, porous enough to retain ample air and water. In
comparison, the middle and bottom layers were harder and more compact than the top
layer. These layers did not contain any organic matter and consisted of a rock that made
them very rough [45]. Changing Design A for Design C reduced the TFR of each tower by
more than 50% (66% for T42, 54.7% for T48 and 63.2% for T50). Table 5 summarizes the TFR
values improvements when Design B or Design C were deployed to each of the towers.
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Figure 11. Influence of design arrangements on tower footing resistance in a 2-layer, 3-layer and
4-layer soil in Towers T42, T48 and T50, respectively.
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Table 5. Tower footing resistance analysis of different design arrangements.

Earthing Design
Tower Footing Resistance Value, Ω

Tower T42 Tower T48 Tower T50

Design A 26.3 20 15.2
Design B 25.3 20.3 13.9
Design C 8.8 9.2 5.6

3.3. Case Study C: Effect of EEC on Electrodes

An EEC is deployed in regions with high soil resistivity to enclose electrodes to reduce
tower footing resistance (TFR). This is normally indicated in case of a high soil resistivity
(SR) value measured at the site, typically above 500 Ω·m in the case of a 500 kV tower. The
use of EEC was incorporated in Design C, where it was considered as the better solution
by TNB. The TFR value was found to be reduced by Design C and was further improved
when the EEC was applied. Results of the use of this earthing design with the EEC are
summarized in Table 6. They indicated that the TFR of the Tower T42 was reduced from
8.8 Ω to 7 Ω, whilst for Tower T48, the TFR decreased from 9.2 Ω to 7.7 Ω and from 5.6 Ω
to 4.6 Ω for Tower T50. Therefore, EEC was found to be very effective at reducing the earth
resistance to less than 5 Ω, as per TNB requirement for the 500 kV lines in Malaysia.

Table 6. TFR analysis of Design C encased with EEC.

Design C

Tower
Tower Footing Resistance Value, Ω

Without EEC With EEC

T42 8.8 7
T48 9.2 7.7
T50 5.6 4.6

Similarly, a decreasing trend of TFR after the addition of EEC is shown in Figure 12,
which clearly indicates an improvement made by the EEC deployment.
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Figure 12. Comparison of the TFR value with and without EEC implementation for Design C.

Table 7 shows the percentage of TFR reduction after the addition of EEC to T42, T48
and T50 using the Design C. It can be seen that the EEC provided a promising solution,
particularly for the towers located in a rocky area, where low soil resistivity and TFR are
hard to achieve. Reductions of 20.45% for T42, 16.3% for T48 and 17.86% for T50 were
obtained from this simulation.
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Table 7. Percentage reduction of TFR for selected towers.

Earthing Design with EEC
% Reduction of TFR

Tower T42 Tower T48 Tower T50

Design C 20.45 16.3 17.86

It is interesting to note that the results obtained in this work are crucial for the next
step of the line performance study. In the context of the criticality of this 500 kV line,
which is known as very critical and a backbone of the transmission network in Peninsular
Malaysia, this work was able to quantify the significance of each approach considered by
the power utility via several earthing designs. Despite the fact that the solutions are unique
to each utility, especially in the Southeast Asia (SEA) region, this work can be shared within
the interested community of power utilities. Although the TFR generally decreases when
EEC is applied to a selected design, the reduction may not be substantial [46]. This is
particularly true in the case of these 500 kV lines, located in a high-terrain area with a rocky
soil. It can be observed that the TFR is heavily dependent on weather conditions, such
as the amount of rainfall, soil moisture and temperature of the surroundings, which is
applicable for a country such as Malaysia [47]. When the temperature is too high, it leads to
dryness of the soil, thereby affecting the soil resistivity value. Thus, it can be inferred that
EEC is able to reduce the TFR, thus improving the overall transmission line performance.

4. Conclusions

This paper presented an analysis of TFR for different earthing designs and arrange-
ments, taking into account the deployment of EEC. Three earthing designs were considered
and simulated in the CDEGS environment, adopted from the current practice of the power
utility, to improve the transmission line performance. The significant contribution of this
work consists in the information, crucially required by the power utility, concerning the
TFR values related to each design and the percentual improvement made by deploying
EEC. This quantification of information is required for choosing the most technically and
financially viable approach to earthing design to be deployed in TFR reduction and thus
in improvement of the overall transmission line performance. As highlighted earlier, this
work is significant because this 500 kV line is considered critical in Malaysia. Therefore, a
much stringent requirement was put in place, especially on the TFR value that needs to be
maintained. Even 1 Ω improvement can be translated into tens of thousands of Malaysian
Ringgit worth of investment and several ohms of reduction will certainly help the power
utility to significantly cut down their operational expenses.

In conclusion, the study confirmed that characteristics of the soil profile and the
earthing arrangement design play an important role in the earthing system. The application
of EEC surrounding the electrodes is a convenient, simple and easy way to reduce High
TFR can lead to an outage of the transmission tower, especially on backflashover, and it is
well known that the higher the soil resistivity, the higher TFR of that particular area [48].
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