Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor
Abstract
:1. Introduction
2. Fluid Property Sensing
2.1. Fluid Property Sensor
2.2. Measurement Principle
2.3. Engine Oil
3. Oil Ageing Processes and Sensors for Fluid Property Detection
3.1. Oxidation
3.2. Water Contamination
3.3. Coolant Contamination
3.4. Fuel Contamination
3.5. Soot Contamination
3.6. Metal Contamination
3.7. TBN, TAN and Ageing
3.8. Incorrect Fluid Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Zhong, C.; Zhe, J. A Multi-Functional Sensor for Online Lubricating Oil Condition Monitoring. Int. J. Math. Game Theory Algebra 2017, 26, 303–315. [Google Scholar]
- Adeniyi, A.A.; Morvan, H.; Simmons, K. A Computational Fluid Dynamics Simulation of Oil-Air Flow between the Cage and Inner Race of an Aero-engine Bearing. J. Eng. Gas Turbines Power 2017, 139, 012506.1–012506.8. [Google Scholar] [CrossRef] [Green Version]
- Tamer, B.; Henein, N.; Naeim, A. Three-Dimensional Computational Fluid Dynamics Modeling and Validation of Ion Current Sensor in a Gen-Set Diesel Engine Using Chemical Kinetic Mechanism. J. Eng. Gas Turbines Power 2017, 139, 102810.1–102810.11. [Google Scholar]
- Rutledge, J.L.; Polanka, M.D.; Greiner, N.J. Computational Fluid Dynamics Evaluations of Film Cooling Flow Scaling Between Engine and Experimental Conditions. J. Turbomach. 2017, 139, 021004.1–021004.7. [Google Scholar] [CrossRef]
- Kordonski, W.; Gorodkin, S.; Behlok, R. In-line monitoring of (MR) fluid properties. J. Magn. Magn. Mater. 2015, 382, 328–334. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Tan, J.W. Emission characteristics of offshore fishing ships in the Yellow Bo Sea, China. J. Environ. Sci. 2018, 65, 86–94. [Google Scholar] [CrossRef]
- Zushi, Y.; Yamatori, Y.; Nagata, J.; Nabi, D. Comprehensive two-dimensional gas-chromatography-based property estimation to assess the fate and behavior of complex mixtures: A case study of vehicle engine oil. Sci. Total Environ. 2019, 669, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Gutiérrez, A.; Palos, R.; Azkoiti, M.J.; Arandes, J.M.; Bilbao, J. Cracking of Scrap Tires Pyrolysis Oil in a Fluidized Bed Reactor under Catalytic Cracking Unit Conditions. Effects of Operating Conditions. Energy Fuels 2019, 33, 3133–3143. [Google Scholar] [CrossRef]
- Zhuang, G.Z.; Gao, J.H.; Peng, S.M.; Zhang, Z.P. Synergistically using layered and fibrous organoclays to enhance the Theological properties of oil-based drilling fluids. Appl. Clay Sci. 2019, 172, 40–48. [Google Scholar] [CrossRef]
- Bulinski, Z.; Kabaj, A.; Krysinski, T.; Szczygiel, I.; Stanek, W.; Rutczyk, B.; Czarnowska, L.; Gladysz, P. A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions. Energy Convers. Manag. 2019, 195, 125–138. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kondoh, J. Properties of engine oil measured using a surface acoustic wave sensor. Jpn. J. Appl. Phys. 2018, 57, 07LD09. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhang, H.; Yang, Z.; Yuan, B.; Yuan, Z.; Xue, H. The Influence of Incident Power on the Magnetic Fluid Sensor Sensitivity Based on Optical Transmission Properties. Math. Probl. Eng. 2018, 2018, 9026071. [Google Scholar] [CrossRef]
- Blaise, M.; Feidt, M.; Maillet, D. Influence of the working fluid properties on optimized power of an irreversible finite dimensions Carnot engine. Energy Convers. Manag. 2018, 163, 444–456. [Google Scholar] [CrossRef]
- Rahimi, B.; Semnani, A.; Nezamzadeh-Ejhieh, A.; Langeroodi, H.S.; Davood, M.H. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage. J. Anal. Methods Chem. 2012, 2012, 819524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakopoulos, C.D.; Kosmadakis, G.M.; Pariotis, E.G. Evaluation of a new computational fluid dynamics model for internal combustion engines using hydrogen under motoring conditions. Energy 2009, 34, 2158–2166. [Google Scholar] [CrossRef]
- Aithal, S.M. Impact of Egr Fraction on Diesel Engine Performance Considering Heat Loss and Temperature-dependent Properties of the Working Fluid. Int. J. Energy Res. 2009, 33, 415–430. [Google Scholar] [CrossRef]
- Waszczuk, K.; Piasecki, T.; Nitsch, K.; Gotszalk, T. Application of piezoelectric tuning forks in liquid viscosity and density measurements. Sens. Actuators B Chem. 2011, 160, 517–523. [Google Scholar] [CrossRef]
- González, M.; Ham, G.; Al Haddad, A.; Bernero, G.; Deffenbaugh, M. Downhole viscosity measurement platform using tuning fork oscillators. Sensors 2016. [Google Scholar] [CrossRef]
- Gonzalez, M.; Seren, H.; Buzi, E.; Deffenbaugh, M. Fast downhole fluid viscosity and density measurements using a self-oscillating tuning fork device. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017. [Google Scholar]
- Zhang, C.; Kaluvan, S.; Zhang, H.; Wang, G. PMN-PT based smart sensing system for viscosity and density measurement. Measurement 2017, 101, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Ghader, R.; Mina, G. On the Mathematical Modeling of a MEMS-Based Sensor for Simultaneous Measurement of Fluids Viscosity and Density. Sens. Imaging 2018, 19, 27. [Google Scholar]
- Poursadegh, F.; Lacey, J.S.; Brear, M.J.; Gordon, R.L. On the Fuel Spray Transition to Dense Fluid Mixing at Reciprocating Engine Conditions. Energy Fuels 2017, 31, 6445–6454. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G. Impact of properties of vegetable oil, bio-diesel, ethanol and n-butanol on the combustion and emissions of turbocharged HDDI diesel engine operating under steady and transient conditions. Fuel 2015, 156, 1–19. [Google Scholar] [CrossRef]
- Jonusas, A.; Miknius, L. Influence of the Process Conditions on Yield, Composition, and Properties of the Products Derived from the Thermolysis of Scrap Tire and Used Engine Oil Blends. Energy Fuels 2015, 29, 6978–6987. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S.S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transf. 2013, 46, 142–147. [Google Scholar] [CrossRef]
- Ghazvini, M.; Akhavan-behabadi, M.A.; Rasouli, E.; Raisee, M. Heat Transfer Properties of Nanodiamond-Engine Oil Nanofluid in Laminar Flow. Heat Transf. Eng. 2012, 33, 525–532. [Google Scholar] [CrossRef]
- Gonzalez, M.; Seren, H.R.; Ham, G.; Buzi, E.; Bernero, G.; Deffenbaugh, M. Viscosity and Density Measurements Using Mechanical Oscillators in Oil and Gas Applications. IEEE Trans. Instrum. Meas. 2018, 67, 804–810. [Google Scholar] [CrossRef]
- Voglhuber-Brunnmaier, T.; Reichel, E.K.; Sell, J.K.; Jakoby, B. Monitoring of Monosodium Urate Crystallization for the Detection of Crystal Arthropathies in Human Joints. Proceedings 2017, 1, 544. [Google Scholar] [CrossRef] [Green Version]
- Reichel, E.K.; Voglhuber-Brunnmaier, T.; Jakoby, B. Fluid Impedance Model for Resonator Viscosity Sensors. Procedia Eng. 2016, 168, 1012–1015. [Google Scholar] [CrossRef]
- Zabel, F.; Law, H.S.; Taylor, S.; Zuo, J. Impact of Uncertainty of Heavy Oil Fluid Property Measurements. J. Can. Pet. Technol. 2010, 49, 28–35. [Google Scholar] [CrossRef]
- Wang, W.; Tian, G.; Chen, M.; Tao, F.; Zhang, C.; Abdulraham, A.A.; Li, Z.; Jiang, Z. Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J. Clean. Prod. 2020, 245, 118714. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Tan, J.; Wang, H.; Ding, Y. Research on ammonia emissions characteristics from light-duty gasoline vehicles. J. Environ. Sci. 2021, 106, 182–193. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Meng, Z. Effect of Different Aging Conditions on the Soot Oxidation by Thermogravimetric Analysis. ACS Omega 2020, 5, 30568–30576. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tan, J. Experimental Study on Solid SCR Technology to Reduce NOx Emissions from Diesel Engines. IEEE Access 2020, 8, 151106–151115. [Google Scholar] [CrossRef]
- Jung, K.W.; Kharangate, C.R.; Lee, H.; Palko, J.; Zhou, F.; Asheghi, M.; Dede, E.M.; Goodson, K.E. Embedded cooling with 3D manifold for vehicle power electronics application: Single-phase thermal-fluid performance. Int. J. Heat Mass Transf. 2019, 130, 1108–1119. [Google Scholar] [CrossRef]
- Huang, W.; Wang, J.F.; Xia, J.X.; Zhao, P.; Dai, Y.P. Performance analysis and optimization of a combined cooling and power system using low boiling point working fluid driven by engine waste heat. Energy Convers. Manag. 2019, 180, 962–976. [Google Scholar] [CrossRef]
- Wei, A.; Qu, J.; Qiu, H.H.; Wang, C.; Cao, G.H. Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management. Int. J. Heat Mass Transf. 2019, 135, 746–760. [Google Scholar] [CrossRef]
- Shuai, S.; Tang, T.; Zhao, Y.; Hua, L. State of the art and outlook of diesel vehicle emission regulations and aftertreatment technologies. J. Automot. Saf. Energy 2012, 3, 200–217. [Google Scholar]
- Dong, S.; Shen, G.; Xu, M.; Zhang, S.; An, L. The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine. Energy 2019, 181, 378–386. [Google Scholar] [CrossRef]
- Kitson, R.C.; Cesnik, C.E.S. Fluid–Structure–Jet Interaction Effects on High-Speed Vehicle Performance and Stability. J. Spacecr. Rockets 2019, 56, 586–595. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, Y.L.; Liu, Z.C. Carrier temperature controlling strategies of diesel particulate filter during drop-to-idle regeneration process. Trans. CSICE 2013, 31, 154–158. [Google Scholar]
- Yu, X.; Yu, W.; Wang, C.; Yu, D. Thermodynamic analysis of the influential mechanism of fuel properties on the performance of an indirect precooled hypersonic airbreathing engine and vehicle. Energy Convers. Manag. 2019, 196, 1138–1152. [Google Scholar] [CrossRef]
- Kitson, R.C.; Cesnik, C.S. Fluid-Structure-Jet Interaction Modeling and Simulation of High-Speed Vehicles. J. Spacecr. Rockets 2018, 55, 190–201. [Google Scholar] [CrossRef]
- Tian, G.D.; Zhang, H.H.; Feng, Y.X.; Jia, H.F.; Zhang, C.Y.; Jiang, Z.G.; Li, Z.W.; Li, P.G. Operation patterns analysis of automotive components remanufacturing industry development in China. J. Clean. Prod. 2017, 64, 1363–1375. [Google Scholar] [CrossRef]
- Lao, C.T.; Akroyd, J.; Eaves, N.; Kraft, M. Modeling of secondary particulate emissions during the regeneration of Diesel Particulate Filters Open access. Energy Procedia 2017, 142, 3560–3565. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J.W. Green Traffic-Oriented Heavy-Duty Vehicle Emission Characteristics of China VI Based on Portable Emission Measurement Systems. IEEE Access 2020, 8, 106639–106647. [Google Scholar] [CrossRef]
- Tian, G.; Ren, Y.; Feng, Y.; Zhou, M.; Zhang, H.; Tan, J. Modeling and Planning for Dual-objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony. IEEE Trans. Ind. Inform. 2019, 15, 2456–2468. [Google Scholar] [CrossRef]
- Ju, P.; Jiang, T.Y.; Li, H.Y. Hierarchical Control of Air-Conditioning Loads for Flexible Demand Response in the Short Term. IEEE Access 2019, 11, 184611–184621. [Google Scholar] [CrossRef]
- Ge, Y.S.; Wang, A.J.; Wang, M.; Ding, Y.; Tan, J.W.; Song, Y.C. Application of Portable Emission Measurement System (PEMS) on the Emission Measurement of Urban Vehicles On-road. Automot. Saf. Energy 2010, 2, 141–145. [Google Scholar]
Measurement Parameter | Measurement Range | Precision | Resolution Ratio |
---|---|---|---|
Viscosity | 0.5–50 cP | ±2% | 0.015625 cP |
Density | 0.65–1.5 g/cm3 | ±1% | 0.00003052 g/cm3 |
Dielectric constant | 1.0–6.0 | ±1% | 0.00012207 |
Temperature | −40–150 °C | 0.1 °C | 0.03125 °C |
Stage | Oxidation A/cm |
---|---|
Phase 1 | 0–3 |
Phase 2 | 3–16.5 |
Phase 3 | 16.5–31.5 |
Phase 4 | 31.5–40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Liu, Y.; Tan, J. Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor. Appl. Sci. 2021, 11, 5642. https://doi.org/10.3390/app11125642
Sun H, Liu Y, Tan J. Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor. Applied Sciences. 2021; 11(12):5642. https://doi.org/10.3390/app11125642
Chicago/Turabian StyleSun, Hao, Yingshuai Liu, and Jianwei Tan. 2021. "Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor" Applied Sciences 11, no. 12: 5642. https://doi.org/10.3390/app11125642
APA StyleSun, H., Liu, Y., & Tan, J. (2021). Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor. Applied Sciences, 11(12), 5642. https://doi.org/10.3390/app11125642