Marginal Adaptation Assessment for Two Composite Layering Techniques Using Dye Penetration, AFM, SEM and FTIR: An In-Vitro Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Sample
2.2. Cavities Preparation
2.3. Restoration Technique
2.4. Thermocycling
- 0—no evidence of dye penetration;
- 1—dye penetration along the axial cavity walls up to 1/3;
- 2—dye penetration along the axial cavity walls up to 2/3;
- 3—dye penetration along the whole axial cavity wall;
- 4—dye penetration on the pulpal wall.
2.5. Statistical Analysis
3. Results
3.1. Microleakage Assesment
3.2. Atomic Force Microscopy Analysis
3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) Analysis
3.4. Fourier Transform Infra-Red Spectroscopy (FTIR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shih, W.Y. Microleakage in different primary tooth restorations. J. Chin. Med. Assoc. 2016, 79, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, E. Adaptation and micro-leakage of composite resin restorations. Aust. Dent. J. 1984, 29, 362–370. [Google Scholar] [CrossRef]
- Chisnoiu, R.; Pastrav, O.; Delean, A.; Prodan, D.; Boboia, S.; Moldovan, M.; Chisnoiu, A. Push-out Bond Strengths of Three Different Endodontic Sealers A comparative study. Mater. Plast. 2015, 6, 239–242. [Google Scholar]
- Meiers, J.C.; Kresin, J.C. Cavity disinfectants and dentin bonding. Oper. Dent. 1996, 21, 153–159. [Google Scholar] [PubMed]
- Chisnoiu, R.; Moldovan, M.; Păstrav, O.; Delean, A.; Chisnoiu, A.M. The influence of three endodontic sealers on bone healing: An experimental study. Folia Morphol. 2016, 75, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Unterbrink, G.L.; Liebenberg, W.H. Flowable resin composites as “filled adhesives”: Literature review and clinical recommendations. Quint Int. 1999, 30, 249–257. [Google Scholar]
- Klaff, D. Blending Incremental and Stratified Layering Techniques to Produce an Aesthetic Posterior Composite Resin Restoration with a Predictable Prognosis. J. Esthet. Restor. Dent. 2001, 13, 101–113. [Google Scholar] [CrossRef]
- Matei, R.I.; Todor, L.; Cuc, E.A.; Popescu, M.R.; Dragomir, L.P.; Rauten, A.M.; Porumb, A. Microscopic aspects of junction between dental hard tissues and composite material depending on composite insertion: Layering versus bulk-fill. Rom. J. Morphol. Embryol. 2019, 60, 133–138. [Google Scholar]
- Ferracane, J.L.; Lawson, N.C. Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. J. Esthet. Restor. Dent. 2021, 33, 39–50. [Google Scholar] [CrossRef]
- Pardo Díaz, C.A.; Shimokawa, C.; Sampaio, C.S.; Freitas, A.Z.; Turbino, M.L. Characterization and Comparative Analysis of Voids in Class II Composite Resin Restorations by Optical Coherence Tomography. Oper. Dent. 2020, 45, 71–79. [Google Scholar] [CrossRef]
- Majety, K.K.; Pujar, M. In vitro evaluation of microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomers as intermediate layers. J. Conserv. Dent. 2011, 14, 414–417. [Google Scholar] [CrossRef] [Green Version]
- Chisnoiu, R.M.; Moldovan, M.; Prodan, D.; Chisnoiu, A.M.; Hrab, D.; Delean, A.G.; Muntean, A.; Rotaru, D.I.; Pastrav, O.; Pastrav, M. In-Vitro Comparative Adhesion Evaluation of Bioceramic and Dual-Cure Resin Endodontic Sealers Using SEM, AFM, Push-Out and FTIR. Appl. Sci. 2021, 11, 4454. [Google Scholar] [CrossRef]
- Jafari, T.; Alaghehmad, H.; Moodi, E. Evaluation of cavity size, kind and filling technique of composite shrinkage by finite element. Dent. Res. J. 2018, 15, 33–39. [Google Scholar]
- Sarfi, S.; Neerja, S.; Ekta, G.; Dildeep, B. Comparing microleakage inSilorane based composite and nanofilled composite using different layering techniques in class I restorations: An in vitro study. IAIM 2017, 4, 23–32. [Google Scholar]
- Sahu, D.; Somani, R. Comparative evaluation of microleakage of various glass-ionomer cements: An in vitro study. Int. J. Prev. Clin. Dent. Res. 2018, 5, 17–20. [Google Scholar]
- Youssef, M.N.; Youssef, F.A. Effect of enamel preparation method on in vitro marginal microleakage of a flowable composite used as pit and fissure sealant. Int. J. Paediatr. Dent. 2006, 16, 342–347. [Google Scholar] [CrossRef]
- Paromita, M.; Abiskrita, D.; Utpal, K.D. Comparative evaluation of microleakage of three different direct restorative materials (silver amalgam, glass ionomer cement, cention N), in Class II restorations using stereomicroscope: An in vitro study. Indian J. Dent. Res. 2019, 30, 277–281. [Google Scholar]
- Celik, C.; Bayaktar, Y.; Ozdemir, B.E. Effect of Saliva Contamination on Microleakage of Open Sandwich Restorations. Acta Stomatol. Croat. 2020, 54, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Moezyzadeh, M.; Kazemipoor, M. Effect of different placement techniques on microleakage of class V composite restorations. J. Dent. 2009, 6, 121–129. [Google Scholar]
- Tsujimoto, A.; Jurado, C.A.; Barkmeier, W.W.; Sayed, M.E.; Takamizawa, T.; Latta, M.A.; Miyazaki, M.; Garcia-Godoy, F. Effect of Layering Techniques on Polymerization Shrinkage Stress of High- and Low-viscosity Bulk-fill Resins. Oper. Dent. 2020, 45, 655–663. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Rossomando, K.J.; Wendt, S.L., Jr. Thermocycling and dwell times in microleakage evaluation for bonded restorations. Dent. Mater. 1995, 11, 47–51. [Google Scholar] [CrossRef]
- Weinmann, W.; Thalacker, C.; Guggenberger, R. Siloranes in dental composites. Dent. Mater. 2005, 21, 68–74. [Google Scholar] [CrossRef]
- Hilton, T.J.; Schwartz, R.S.; Ferracane, J.L. Microleakage of four Class II resin composite insertion techniques at intra oral temperature. Quint. Int. 1997, 28, 135–144. [Google Scholar]
- Neiva, I.F.; de Andrada, M.A.C.; Baratieri, L.N.; Monteiro, S.; Ritter, A.V. An in vitro study of the Effect of Restorative Technique on Marginal Leakage in Posterior Composites. Oper. Dent. 1998, 23, 282–289. [Google Scholar]
- Yap, A.U.J.; Wang, H.B.; Siow, K.S.; Gan, L.M. Polymerization Shrinkage of Visible-Light-Cured Composites. Oper. Dent. 2000, 25, 98–103. [Google Scholar]
- Albers, H.F. Tooth-Colored Restoratives. Principles and Techniques; BC Decker Inc.: London, UK, 2002; pp. 90–93. [Google Scholar]
- Bagis, Y.H.; Baltacioglu, I.H.; Kahyaogullari, S. Comparing Microleakage and the Layering Methods of Silorane-based Resin Composite in Wide Class II MOD Cavities. Oper. Dent. 2009, 34, 578–585. [Google Scholar] [CrossRef]
- Santhosh, L.; Bashetty, K.; Nadig, G. The influence of different composite placement techniques on microleakage in preparations with high C- factor: An in vitro study. J. Conserv. Dent. 2008, 11, 112–116. [Google Scholar] [CrossRef]
- Usha, H.; Kumari, A.; Mehta, D.; Kaiwar, A.; Jain, N. Comparing microleakage and layering methods of silorane-based resin composite in class V cavities using confocal microscopy: An in vitro study. J. Conserv. Dent. 2011, 14, 164–168. [Google Scholar]
- Eakle, W.S.; Ito, R.K. Effect of insertion technique on microleakage in mesio-occlus-odistal composite resin restorations. Quint. Int. 1990, 21, 117–123. [Google Scholar]
- Oliveira, K.M.; Lancellotti, A.C.; Ccahuana-Vasquez, R.A.; Consani, S. Influence of filling technique on shrinkage stress in dental composite restorations. J. Dent. Sci. 2013, 8, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Verluis, A.; Douglas, W.H.; Cross, M.; Sakaguchi, R.L. Does an Incremental Filling Technique Reduce Polymerization Shrinkage Stresses? J. Dent. Res. 1996, 75, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Ferracane, J.; Lee, I.B. Effect of layering methods, composite type and flowable liner on the polymerization shrinkage stress of light cured composites. Dent. Mater. 2012, 28, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chang, J.; Ferracane, J.; Lee, I.B. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dent. Mater. 2008, 24, 1501–1505. [Google Scholar] [CrossRef]
- Batista, L.H.C.; Silva, J.G.; Silva, M.F.A.; Tonholo, J. Atomic force microscopy of removal of dentin smear layers. Microsc. Microanal. 2007, 13, 245–250. [Google Scholar] [CrossRef]
- Kakaboura, A.; Fragouli, M.; Rahiotis, C.; Silikas, N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J. Mater. Sci. Mater. Med. 2007, 18, 155–163. [Google Scholar] [CrossRef]
- Botta, A.C.; Duarte, S.; Paulin Filho, P.I.; Gheno, S.M. Effect of dental finishing instruments on the surface roughness of composite resins as elucidated by atomic force microscopy. Microsc. Microanal. 2008, 14, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Hasna, A.A.; Matuda, A.G.N.; Lopes, S.R.; Mafetano, A.P.V.P.; Arantes, A.; Duarte, A.F.; Barcellos, D.C.; Torres, C.R.G.; Pucci, C.R. Adhesive systems effect over bond strength of resin-infiltrated and de/remineralized enamel. F1000Research 2019, 11, 1743. [Google Scholar] [CrossRef]
- Yamauchi, K.; Tsujimoto, A.; Jurado, C.A.; Shimatani, Y.; Nagura, Y.; Takamizawa, T.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Etch-and-rinse vs self-etch mode for dentin bonding effectiveness of universal adhesives. J. Oral Sci. 2019, 27, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Stansbury, J.W. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent. Mater. 2012, 28, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Pilo, R.; Oelgiesser, D.; Cardash, H.S. A survey of output intensity and potential for depth of cure among light-curing units in clinical use. J. Dent. 1999, 27, 235–241. [Google Scholar] [CrossRef]
- Moraes, L.G.P.; Rocha, R.S.F.; Menegazzo, L.M.; Araújo, E.B.; Yukimito, K.; Moraes, J.C.S. Infrared spectroscopy: A tool for determination of the degree of conversion in dental composites. J. Appl. Oral Sci. 2008, 16, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, V.; Rudrapati, L.; Badami, V.; Tummala, M. Incremental techniques in direct composite restoration. J. Conserv. Dent. 2017, 20, 386–391. [Google Scholar] [PubMed]
- Derhami, K.; Colli, P. Microleakage in Class 2 composite restorations. Oper. Dent. 1995, 20, 100–105. [Google Scholar] [PubMed]
- Poggio, C.; Chiesa, M.; Scribante, A.; Mekler, J.; Colombo, M. Microleakage in Class II composite restorations with margins below the CEJ: In vitro evaluation of different restorative techniques. Med. Oral Patol Oral Cir Bucal. 2013, 18, e793–e798. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Ramos, O.L. Influence of different restorative techniques on microleakage in class II cavities with gingival wall in cementum. Oper. Dent. 2001, 26, 253–259. [Google Scholar] [PubMed]
- Roberson, T.M.; Heymann, H.O.; Ritter, A.V. Introduction to Composite Restorations. Sturdevant’s Art & Science Operative Dentistry, 4th ed.; Mosby: St. Louis, MI, USA, 2002; pp. 473–499. [Google Scholar]
- Eick, J.D.; Cobb, C.M.; Chappel, R.P.; Spencer, P.; Robinson, S.J. The dentinal structure: Its influence on dentinal adhesion. Part I. Quint. Int. 1991, 22, 967–977. [Google Scholar]
Microleakage | Mean | Standard Deviation | p-Value |
---|---|---|---|
Group A | 1 | 1.1427 | 0.723 |
Group B | 2 | 1.3304 |
Roughness | Mean Value | Standard Deviation | p-Value | |
---|---|---|---|---|
Ra | C | 45.6 | 13.923 | |
C–E | 315.25 | 31.063 | 0.093 | |
C–D | 240.25 | 98.63 | ||
Rq | C | 57.9 | 17.583 | |
C–E | 412.0 | 35.655 | 0.184 | |
C–D | 300.75 | 119.226 |
Roughness | Mean Value | Standard Deviation | p-Value | |
---|---|---|---|---|
Ra | C | 49.83 | 8.857 | 0.063 |
C–E | 318.75 | 139.047 | ||
C–D | 253.0 | 88.185 | ||
Rq | C | 67.86 | 11.850 | 0.058 |
C–E | 411.75 | 188.032 | ||
C–D | 309.25 | 91.729 |
Roughness | Mean Value | Standard Deviation | p-Value | ||
---|---|---|---|---|---|
Ra | C–E | Group A | 315.25 | 31.063 | 0.294 |
Group B | 318.75 | 139.047 | |||
C–D | Group A | 240.25 | 98.63 | 0.162 | |
Group B | 253.0 | 88.185 | |||
Rq | C–E | Group A | 412.0 | 35.655 | 0.091 |
Group B | 411.75 | 188.032 | |||
C–D | Group A | 300.75 | 119.226 | 0.087 | |
Group B | 309.25 | 91.729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chisnoiu, A.M.; Moldovan, M.; Sarosi, C.; Chisnoiu, R.M.; Rotaru, D.I.; Delean, A.G.; Pastrav, O.; Muntean, A.; Petean, I.; Tudoran, L.B.; et al. Marginal Adaptation Assessment for Two Composite Layering Techniques Using Dye Penetration, AFM, SEM and FTIR: An In-Vitro Comparative Study. Appl. Sci. 2021, 11, 5657. https://doi.org/10.3390/app11125657
Chisnoiu AM, Moldovan M, Sarosi C, Chisnoiu RM, Rotaru DI, Delean AG, Pastrav O, Muntean A, Petean I, Tudoran LB, et al. Marginal Adaptation Assessment for Two Composite Layering Techniques Using Dye Penetration, AFM, SEM and FTIR: An In-Vitro Comparative Study. Applied Sciences. 2021; 11(12):5657. https://doi.org/10.3390/app11125657
Chicago/Turabian StyleChisnoiu, Andrea Maria, Marioara Moldovan, Codruta Sarosi, Radu Marcel Chisnoiu, Doina Iulia Rotaru, Ada Gabriela Delean, Ovidiu Pastrav, Alexandrina Muntean, Ioan Petean, Lucian Barbu Tudoran, and et al. 2021. "Marginal Adaptation Assessment for Two Composite Layering Techniques Using Dye Penetration, AFM, SEM and FTIR: An In-Vitro Comparative Study" Applied Sciences 11, no. 12: 5657. https://doi.org/10.3390/app11125657
APA StyleChisnoiu, A. M., Moldovan, M., Sarosi, C., Chisnoiu, R. M., Rotaru, D. I., Delean, A. G., Pastrav, O., Muntean, A., Petean, I., Tudoran, L. B., & Pastrav, M. (2021). Marginal Adaptation Assessment for Two Composite Layering Techniques Using Dye Penetration, AFM, SEM and FTIR: An In-Vitro Comparative Study. Applied Sciences, 11(12), 5657. https://doi.org/10.3390/app11125657