Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Oil Samples
2.2. Chromatographic Analysis of Fatty Acids
2.3. Evaluation of Bioactive Properties in vitro
2.3.1. Preparation of Oil Extracts
2.3.2. Cytotoxic Activity
2.3.3. Antimicrobial Activity Evaluation
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; Var, I., Uzunlu, S., Eds.; IntechOpen: London, UK, 2019; Volume 32, pp. 1–18. [Google Scholar]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-silleras, B.; Redondo-Del-río, M.P. Food safety through natural antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae—A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, C.E.; Litov, R.E.; Thormar, H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 1995, 6, 362–366. [Google Scholar] [CrossRef]
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.S.; Batool, S.A. Natural Antimicrobials, their Sources and Food Safety. In Food Additives; Karunaratne, D.N., Pamunuwa, G., Eds.; IntechOpen: London, UK, 2017; pp. 87–102. ISBN 9781626239777. [Google Scholar]
- Corrêa, R.C.G.; Di Gioia, F.; Ferreira, I.C.F.R.; Petropoulos, S.A. Wild greens used in the Mediterranean diet. In The Mediterranean Diet: An Evidence-based Approach; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2020; pp. 209–228. ISBN 9788578110796. [Google Scholar]
- Sodeifian, G.; Ardestani, N.S.; Sajadian, S.A.; Moghadamian, K. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization. J. Supercrit. Fluids 2018, 135, 34–44. [Google Scholar] [CrossRef]
- OECD/FAO. Oilseeds and oilseed products. In OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016; pp. 127–138. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil? Ind. Crops Prod. 2018, 124, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Arampatzis, D.A.; Tsiropoulos, N.G.; Petrović, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT Food Sci. Technol. 2020, 123, 109099. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Gómez-Mercado, F.; Ramos-Bueno, R.P.; González-Fernández, M.J.; Urrestarazu, M.; Jiménez-Becker, S.; de Bélair, G. Fatty acid profiles and sn-2 fatty acid distribution of γ-linolenic acid-rich Borago species. J. Food Compos. Anal. 2018, 66, 74–80. [Google Scholar] [CrossRef]
- Meddeb, W.; Rezig, L.; Zarrouk, A.; Nury, T.; Vejux, A.; Prost, M.; Bretillon, L.; Mejri, M.; Lizard, G. Cytoprotective activities of milk thistle seed oil used in traditional tunisian medicine on 7-ketocholesterol and 24S-hydroxycholesterol-induced toxicity on 158N murine oligodendrocytes. Antioxidants 2018, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Siger, A.; Dwiecki, K.; Borzyszkowski, W.; Turski, M.; Rudzińska, M.; Nogala-Kałucka, M. Physicochemical characteristics of the cold-pressed oil obtained from seeds of Fagus sylvatica L. Food Chem. 2017, 225, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, S.P. Sesame, rice-bran and flaxseed oils. In Vegetable Oils in Food Technology: Composition, Properties and Uses; Gunstone, F.D., Ed.; Blackwell Publishing Inc.: Boca Raton, FL, USA, 2002; pp. 297–326. ISBN 9780123849533. [Google Scholar]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An overview-phytochemical profile, isolation methods, and application. Molecules 2020, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Tavarini, S.; Castagna, A.; Conte, G.; Foschi, L.; Sanmartin, C.; Incrocci, L.; Ranieri, A.; Serra, A.; Angelini, L.G. Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances. Molecules 2019, 24, 3729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, M.I.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct. 2015, 6, 1035–1052. [Google Scholar] [CrossRef] [Green Version]
- Le Priol, L.; Gmur, J.; Dagmey, A.; Morandat, S.; El Kirat, K.; Saleh, K.; Nesterenko, A. Co-encapsulation of vegetable oils with phenolic antioxidants and evaluation of their oxidative stability under long-term storage conditions. LWT Food Sci. Technol. 2021, 142, 111033. [Google Scholar] [CrossRef]
- Wrona, M.; Silva, F.; Salafranca, J.; Nerín, C.; Alfonso, M.J.; Caballero, M.Á. Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control 2021, 120. [Google Scholar] [CrossRef]
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT Food Sci. Technol. 2014, 55, 521–527. [Google Scholar] [CrossRef]
- Seymen, M.; Uslu, N.; Türkmen, Ö.; Al Juhaimi, F.; Özcan, M.M. Chemical Compositions and Mineral Contents of Some Hull-Less Pumpkin Seed and Oils. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 1095–1099. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [Green Version]
- Vujasinovic, V.; Djilas, S.; Dimic, E.; Romanic, R.; Takaci, A. Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. JAOCS J. Am. Oil Chem. Soc. 2010, 87, 1497–1505. [Google Scholar] [CrossRef]
- Can-Cauich, C.A.; Sauri-Duch, E.; Moo-Huchin, V.M.; Betancur-Ancona, D.; Cuevas-Glory, L.F. Effect of extraction method and specie on the content of bioactive compounds and antioxidant activity of pumpkin oil from Yucatan, Mexico. Food Chem. 2019, 285, 186–193. [Google Scholar] [CrossRef]
- Nederal, S.; Škevin, D.; Kraljić, K.; Obranović, M.; Papeša, S.; Bataljaku, A. Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1763–1770. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Ojeda-Amador, R.M.; Gomez-Alonso, S.; Salvador, M.D.; Fregapane, G.; Hamdi, S. Cucurbita maxima pumpkin seed oil: From the chemical properties to the different extracting techniques. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.Z.; Rity, T.I.; Uddin, M.R.; Rahman, M.M.; Uddin, M.J. A comparative assessment of anti-inflammatory, anti-oxidant and anti-bacterial activities of hybrid and indigenous varieties of pumpkin (Cucurbita maxima Linn.) seed oil. Biocatal. Agric. Biotechnol. 2020, 28, 101767. [Google Scholar] [CrossRef]
- Obi, R.K.; Nwanebu, F.C.; Ndubuisi, U.U.; Orji, N.M. Antibacterial qualities and phytochemical screening of the oils of Curcubita pepo and Brassica nigra. J. Med. Plants Res. 2009, 3, 429–432. [Google Scholar]
- Petropoulos, S.; Karkanis, A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R.; Ntatsi, G.; Petrotos, K.; Lykas, C.; Khah, E. Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): An alternative source of omega-3 fatty acids. Plant Foods Hum. Nutr. 2015, 70, 420–426. [Google Scholar] [CrossRef]
- Guoyin, Z.; Hao, P.; Min, L.; Wei, G.; Zhe, C.; Changquan, L. Antihepatocarcinoma Effect of Portulaca oleracea L. in Mice by PI3K/Akt/mTOR and Nrf2/HO-1/NF- κ B Pathway. Evid. Based Complement. Altern. Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Eidi, A.; Mortazavi, P.; Moghadam, J.Z.; Mardani, P.M. Hepatoprotective effects of Portulaca oleracea extract against CCl 4 -induced damage in rats. Pharm. Biol. 2015, 53, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Egea-Gilabert, C.; Ruiz-Hernández, M.V.; Parra, M.Á.; Fernández, J.A. Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Sci. Hortic. 2014, 172, 73–81. [Google Scholar] [CrossRef]
- Gonnella, M.; National, I.; Charfeddine, M.; Agricultural, C.R.A.; Universit, G.C.; Universit, P.S.; Moro, B.A. Purslane: A review of its potential for health and agricultural aspects. Eur. J. Plant Sci. Biotechnol. 2010, 4, 131–136. [Google Scholar]
- Alvarado-Gómez, E.; Tapia, J.I.; Encinas, A. A sustainable hydrophobic luffa sponge for efficient removal of oils from water. Sustain. Mater. Technol. 2021, 28, e00273. [Google Scholar] [CrossRef]
- Adewuyi, A.; Oderinde, R.A.; Rao, B.V.S.K.; Prasad, R.B.N.; Anjaneyulu, B. Blighia unijugata and Luffa cylindrica Seed Oils: Renewable Sources of Energy for Sustainable Development in Rural Africa. Bioenergy Res. 2012, 5, 713–718. [Google Scholar] [CrossRef]
- Ali, M.A.; Azad, M.A.K.; Yeasmin, M.S.; Khan, A.M.; Sayeed, M.A. Oil characteristics and nutritional composition of the ridge gourd (Luffa acutangula Roxb.) seeds grown in Bangladesh. Food Sci. Technol. Int. 2009, 15, 243–250. [Google Scholar] [CrossRef]
- Kamel, B.S.; Blackman, B. Nutritional and oil characteristics of the seeds of angled Luffa Luffa acutangula. Food Chem. 1982, 9, 277–282. [Google Scholar] [CrossRef]
- Muthumani, P.; Meera, R.; Mary, S.; Jeenamathew; Devi, P.; Kameswari, B.; Eswara Priya, B. Phytochemical screening and anti inflammatory, bronchodilator and antimicrobial activities of the seeds of Luffa cylindrica. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 11–22. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2- carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Zamani Ghaleshahi, A.; Ezzatpanah, H.; Rajabzadeh, G.; Ghavami, M. Comparison and analysis characteristics of flax, perilla and basil seed oils cultivated in Iran. J. Food Sci. Technol. 2020, 57, 1258–1268. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, W.; Sun, S.; Duan, X.; Zhang, Z. Enhanced extraction of oil from flaxseed (Linum usitatissimum L.) using microwave pre-treatment. J. Oleo Sci. 2015, 64, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Gutte, K.B.; Sahoo, A.K.; Ranveer, R.C. Effect of ultrasonic treatment on extraction and fatty acid profile of flaxseed oil. OCL Oilseeds Fats 2015, 22. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Howe, P.; Zhou, Y.F.; Xu, Z.Q.; Hocart, C.; Zhang, R. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J. Chromatogr. A 2000, 893, 207–213. [Google Scholar] [CrossRef]
- Delfan-Hosseini, S.; Nayebzadeh, K.; Mirmoghtadaie, L.; Kavosi, M.; Hosseini, S.M. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil. Food Chem. 2017, 222, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.; Voicu, G.; Sorin-Stefan, B.; Covaliu, C.; Dincă, M.; Ungureanu, N. Parameters influencing the screw pressing process of oilseed materials. In Proceedings of the 2nd International Conference on Thermal Equipment, Renewable Energy and Rural Development, Băile Olăneşti, Romania, 20–22 July 2013; pp. 243–248. [Google Scholar]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical properties and bioactive compounds of selected seed oils. LWT Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef]
- Murkovic, M.; Hillebrand, A.; Winkler, J.; Leitner, E.; Pfannhauser, W. Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Eur. Food Res. Technol. 1996, 203, 216–219. [Google Scholar] [CrossRef] [PubMed]
- García-Díaz, M.T.; Martínez-Rivas, J.M.; Mancha, M. Temperature and oxygen regulation of oleate desaturation in developing sunflower (Helianthus annuus) seeds. Physiol. Plant. 2002, 114, 13–20. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [Green Version]
- Dashora, N.; Chauhan, L.S.; Kumar, N. In vitro Cytotoxic Activity of Luffa acutangula on Human Neuronal Glioblastoma and Human Lung Adenocarcinoma Cell Lines. Sch. Acad. J. Pharm. 2014, 3, 401–405. [Google Scholar]
- Vanajothi, R.; Sudha, A.; Manikandan, R.; Rameshthangam, P.; Srinivasan, P. Luffa acutangula and Lippia nodiflora leaf extract induces growth inhibitory effect through induction of apoptosis on human lung cancer cell line. Biomed. Prev. Nutr. 2012, 2, 287–293. [Google Scholar] [CrossRef]
- Dashora, N.; Chauhan, L.S. Evaluation of antitumor potential of Luffa acutangula on Ehrlich’s ascites carcinoma treated mice. Int. J. Pharm. Clin. Res. 2015, 7, 296–299. [Google Scholar]
- Shendge, P.N.; Belemkar, S. Therapeutic potential of Luffa acutangula: A review on its traditional uses, phytochemistry, pharmacology and toxicological aspects. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, J.K.; Chen, J.; Thompson, L.U. Flaxseed oil-trastuzumab interaction in breast cancer. Food Chem. Toxicol. 2010, 48, 2223–2226. [Google Scholar] [CrossRef]
- Sorice, A.; Guerriero, E.; Volpe, M.G.; Capone, F.; La Cara, F.; Ciliberto, G.; Colonna, G.; Costantini, S.; McPhee, D.J. Differential response of two human breast cancer cell lines to the phenolic extract from flaxseed oil. Molecules 2016, 21, 319. [Google Scholar] [CrossRef] [Green Version]
- Truan, J.S.; Chen, J.M.; Thompson, L.U. Flaxseed oil reduces the growth of human breast tumors (MCF-7) at high levels of circulating estrogen. Mol. Nutr. Food Res. 2010, 54, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Medjakovic, S.; Hobiger, S.; Ardjomand-woelkart, K.; Bucar, F.; Jungbauer, A. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia 2016, 110, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Chari, K.Y.; Polu, P.R.; Shenoy, R.R. An Appraisal of Pumpkin Seed Extract in 1, 2-Dimethylhydrazine Induced Colon Cancer in Wistar Rats. J. Toxicol. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Abou-Elella, F.; Mourad, R. Anticancer and anti-oxidant potentials of ethanolic extracts of Phoenix dactylifera, Musa acuminata and Cucurbita maxima. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 710–720. [Google Scholar]
- Colagar, A.H.; Souraki, O.A. Review of Pumpkin Anticancer Effects. Quran Med. 2011, 1, 77–88. [Google Scholar] [CrossRef]
- Heng, C.X.; Li, F.; Li, Z.; Zhang, Z.C. Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res. 2003, 13, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Jajeh, F.; Khan, M.I.; Mukhtar, E.; Shabana, S.M.; Mukhtar, H. Sestrin-3 modulation is essential for therapeutic efficacy of cucurbitacin B in lung cancer cells. Carcinogenesis 2017, 38, 184–195. [Google Scholar] [CrossRef]
- Bardaa, S.; Halima, N.B.; Aloui, F.; Mansour, R.B.; Jabeur, H.; Bouaziz, M. Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids Health Dis. 2016, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Okbi, S.Y.; Mohamed, D.A.; Kandil, E.; Ahmed, E.K.; Mohammed, S.E. Antioxidant and anti-cancer effect of Egyptian and European pumpkin seed oil. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 574–580. [Google Scholar]
- Silva, R.; Carvalho, I.S. In vitro antioxidant activity, phenolic compounds and protective effect against DNA damage provided by leaves, stems and flowers of Portulaca oleracea (Purslane). Nat. Prod. Commun. 2014, 9, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.L.; Liang, X.; Gao, P.Y.; Li, D.Q.; Sun, Q.; Li, L.Z.; Song, S.J. Two new alkaloids from Portulaca oleracea and their cytotoxic activities. J. Asian Nat. Prod. Res. 2014, 16, 259–264. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Portulaca oleracea seed oil exerts cytotoxic effects on human liver cancer (HepG2) and human lung cancer (A-549) cell lines. Asian Pac. J. Cancer Prev. 2015, 16, 3383–3387. [Google Scholar] [CrossRef] [Green Version]
- Al-Mathkhury, H.J.F.; Al-Dhamin, A.S.; Al-Taie, K.L. Antibacterial and Antibiofilm Activity of Flaxseed Oil. Iraqi J. Sci. 2016, 57, 1086–1095. [Google Scholar]
- Kaithwas, G.; Mukerjee, A.; Kumar, P.; Majumdar, D.K. Linum usitatissimum (linseed/flaxseed) fixed oil: Antimicrobial activity and efficacy in bovine mastitis. Inflammopharmacology 2011, 19, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.S.; Escher, G.B.; da Silva Pereira, J.M.; Marinho, M.T.; Prado-Silva, L.d.; Sant’Ana, A.S.; Dutra, L.M.; Barison, A.; Granato, D. 1H NMR combined with chemometrics tools for rapid characterization of edible oils and their biological properties. Ind. Crops Prod. 2018, 116, 191–200. [Google Scholar] [CrossRef]
- Joshi, Y.; Garg, R.; Juyal, D. Evaluation of synergistic antimicrobial activity of Gemifloxacin with Linum usitatissimum seed oil. J. Phytopharm. 2014, 3, 384–388. [Google Scholar]
- Swain, T.; Sahoo, R.K.; Kar, D.M.; Subudhi, E. Phytomedicinal potential of Luffa cylindrica (L.) Reom extracts. J. Pure Appl. Microbiol. 2013, 7, 697–703. [Google Scholar]
- Ercisli, S.; Coruh, I.; Gormez, A.; Sengul, M. Antioxidant and antibacterial activities of Portulaca oleracea L. grown wild in Turkey. Ital. J. Food Sci. 2008, 20, 533–542. [Google Scholar]
- Oraibi, A.; AlShammari, A.; Mohsien, R.; Obaid, W. Investigation the Antibacterial Activity of Portulaca oleracea L. Tissue Cultures in vitro. J. Pharm. Res. Int. 2017, 18, 1–7. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti- oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22, 7–15. [Google Scholar] [CrossRef]
- Du, Y.K.; Liu, J.; Li, X.M.; Pan, F.F.; Wen, Z.G.; Zhang, T.C.; Yang, P.L. Flavonoids extract from Portulaca oleracea L. induce Staphylococcus aureus death by apoptosis-like pathway. Int. J. Food Prop. 2017, 20, S534–S542. [Google Scholar] [CrossRef]
- Tayel, A.A.; Shaban, S.M.; Moussa, S.H.; Elguindy, N.M.; Diab, A.M.; Mazrou, K.E.; Ghanem, R.A.; El-Sabbagh, S.M. Bioactivity and application of plant seeds’ extracts to fight resistant strains of Staphylococcus aureus. Ann. Agric. Sci. 2018, 63, 47–53. [Google Scholar] [CrossRef]
- Bakkiyaraj, S.; Pandiyaraj, S. Evaluation of potential antimicrobial activity of some medicinal plants against common food-borne pathogenic microorganism. Int. J. Pharma Bio Sci. 2011, 2, 484–491. [Google Scholar]
- Othman, A.S. Bactericidal efficacy of omega-3 fatty acids and esters present in moringa oleifera and Portulaca oleracea fixed oils against oral and gastro enteric bacteria. Int. J. Pharmacol. 2017, 13, 44–53. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T. V Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wang, S.; Zhang, L.; Wang, X.; Ma, F.; Mao, J.; Zhang, Q. Evaluation and comparison of antibacterial activities of edible vegetable oils in China. Oil Crop Sci. 2018, 3, 57–62. [Google Scholar] [CrossRef]
- Abdelillah, A.; Houcine, B.; Halima, D.; Meriel, C.S.; Imane, Z.; Eddine, S.D.; Abdallah, M.; Daoudi, C.S. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus. Asian Pac. J. Trop. Biomed. 2013, 3, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Amrithaa, B.; Geetha, R.V. Comparative evaluation of antimycotic activity of Cucurbita maxima seed oil and orange peel oil in reducing Candida albicans count. Drug Invent. Today 2020, 14, 1210–1213. [Google Scholar]
- Abd El-Aziz, A.B.; Abd El-Kalek, H.H. Antimicrobial proteins and oil seeds from pumpkin (Cucurbita moschata). Nat. Sci. 2011, 9, 105–119. [Google Scholar]
- Sener, B.; Orhan, I.; Ozcelik, B.; Kartal, M.; Aslan, S.; Ozbilen, G. Antimicrobial and Antiviral Activities of Two Seed Oil. Nat. Prod. Commun. 2007, 2, 395–398. [Google Scholar]
Fatty Acids | Linseed Oil 1 | Linseed Oil 2 | Linseed Oil 3 | Luffa Oil | Purslane Oil | Pumpkin Oil |
---|---|---|---|---|---|---|
C14:0 | 0.042 ± 0.001e | 0.043 ± 0.001e | 0.054 ± 0.001c | 0.095 ± 0.002b | 0.049 ± 0.001c | 0.155 ± 0.003a |
C15:0 | - | - | - | - | 0.028 ± 0.001 | - |
C16:0 | 4.61 ± 0.04e | 4.32 ± 0.04f | 5.36 ± 0.01d | 13.77 ± 0.07c | 14.1 ± 0.1b | 14.72 ± 0.05a |
C16:1 | 0.068 ± 0.004c | 0.044 ± 0.001d | 0.086 ± 0.004b | 0.153 ± 0.005a | 0.086 ± 0.001b | 0.15 ± 0.01a |
C17:0 | 0.057 ± 0.004e | 0.055 ± 0.004e | 0.072 ± 0.002c | 0.166 ± 0.004a | 0.105 ± 0.003c | 0.113 ± 0.002b |
C18:0 | 2.85 ± 0.01d | 3.10 ± 0.01c | 3.06 ± 0.01c | 6.99 ± 0.02a | 3.046 ± 0.006c | 6.24 ± 0.01b |
C18:1n9c | 7.09 ± 0.01c | 6.43 ± 0.01e | 6.95 ± 0.01d | 15.14 ± 0.03b | 5.24 ± 0.02f | 21.76 ± 0.01a |
C18:2n6c | 12.87 ± 0.01f | 14.58 ± 0.01e | 17.98 ± 0.02d | 61.86 ± 0.01a | 34.10 ± 0.05c | 55.25 ± 0.05b |
C18:3n3 | 71.90 ± 0.05a | 70.93 ± 0.01b | 65.62 ± 0.04c | 0.94 ± 0.02f | 41.25 ± 0.08e | 0.323 ± 0.006g |
C20:0 | 0.095 ± 0.002e | 0.102 ± 0.001e | 0.153 ± 0.001d | 0.312 ± 0.003c | 0.60 ± 0.01a | 0.401 ± 0.005b |
C20:1 | 0.080 ± 0.002c | 0.081 ± 0.001c | 0.124 ± 0.002a | 0.057 ± 0.001d | 0.102 ± 0.001b | 0.119 ± 0.008a |
C22:0 | 0.081 ± 0.001e | 0.088 ± 0.005d | 0.133 ± 0.004c | 0.092 ± 0.006d | 0.25 ± 0.01a | 0.144 ± 0.002b |
C22:2 | - | - | - | - | 0.49 ± 0.05a | 0.35 ± 0.03b |
C23:0 | 0.186 ± 0.004e | 0.164 ± 0.002f | 0.222 ± 0.005d | 0.251 ± 0.001c | 0.51 ± 0.01a | 0.292 ± 0.003b |
C24:0 | 0.085 ± 0.005b | 0.061 ± 0.001c | 0.183 ± 0.002a | 0.180 ± 0.001a | - | - |
SFA | 8.01 ± 0.04e | 7.94 ± 0.02f | 9.24 ± 0.01d | 21.86 ± 0.06b | 18.7 ± 0.1c | 22.06 ± 0.06a |
MUFA | 7.24 ± 0.01c | 6.56 ± 0.01d | 7.16 ± 0.01d | 15.35 ± 0.03b | 5.43 ± 0.02e | 22.03 ± 0.02a |
PUFA | 84.76 ± 0.04b | 85.51 ± 0.01a | 83.60 ± 0.02c | 62.79 ± 0.04e | 75.83 ± 0.08d | 55.92 ± 0.08f |
PUFA/SFA | 10.58 ± 0.02b | 10.77 ± 0.01a | 9.05 ± 0.01c | 2.87 ± 0.05e | 4.06 ± 0.04d | 2.55 ± 0.07f |
n6/n3 | 0.18 ± 0.03e | 0.21 ± 0.01e | 0.27 ± 0.03d | 65.81 ± 0.02b | 0.83 ± 0.06c | 166.57 ± 0.03a |
Seed Oil | Cytotoxicity to Non-Tumor Cell Lines | Cytotoxicity to Tumor Cell Lines | |||
---|---|---|---|---|---|
PLP2 (Porcine Liver Primary Culture) | HeLa (Cervical Carcinoma) | HepG2 (Hepatocellular Carcinoma) | MCF-7 (Breast Carcinoma) | NCI-H460 (Non-Small Cell Lung Cancer) | |
Linseed oil 1 | 301 ± 23a | 291±27b | >400 | >400 | 369 ± 33a |
Linseed oil 2 | >400 | >400 | >400 | >400 | >400 |
Linseed oil 3 | >400 | >400 | >400 | >400 | >400 |
Luffa oil | 215 ± 17c | 189 ± 17c | >400 | >400 | 136 ± 12b |
Purslane oil | >400 | 307 ± 12a | >400 | >400 | >400 |
Pumpkin oil | 259 ± 21b | 270 ± 25b | >400 | >400 | >400 |
Seed Oil | Staphylococcus aureus (ATCC 11632) | Bacillus cereus (Food Isolate) | Micrococcus flavus (ATCC 10240) | Enterobacter cloacae (ATCC 35030) | Salmonella Typhimurium (ATCC 13311) | Escherichia coli (ATCC 25922) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Linseed oil 1 | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 |
Linseed oil 2 | 4.00 | 8.00 | 1.00 | 2.00 | 1.00 | 2.00 | 0.50 | 1.00 | 2.00 | 4.00 | 2.00 | 4.00 |
Linseed oil 3 | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 0.50 | 1.00 |
Luffa oil | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 | 4.00 |
Purslane oil | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 | 1.00 | 2.00 |
Cucurbit oil | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 0.50 | 1.00 |
E211 | 4.00 | 4.00 | 0.50 | 0.50 | 1.00 | 2.00 | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 |
E224 | 1.00 | 1.00 | 2.00 | 4.00 | 1.00 | 2.00 | 0.50 | 0.50 | 1.00 | 1.00 | 0.50 | 1.00 |
Seed Oil | Aspergillus fumigatus (ATCC 9197) | Aspergillus versicolor (ATCC 11730) | Aspergillus niger (ATCC 6275) | Penicillium funiculosum (ATCC 36839) | Penicillium verrucosum var. cyclopium (Food Isolate) | Trichoderma viride (IAM 5061) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Linseed oil 1 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 | 4.00 | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 |
Linseed oil 2 | 2.00 | 4.00 | 1.00 | 2.00 | 1.00 | 2.00 | 0.5 | 1.00 | 0.5 | 1.00 | 0.5 | 1.00 |
Linseed oil 3 | 1.00 | 2.00 | 2.00 | 4.00 | 0.50 | 1.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 |
Luffa oil | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 |
Purslane oil | 4.00 | 8.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 | 2.00 | 4.00 |
Cucurbit oil | 1.00 | 2.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 1.00 | 2.00 |
E211 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 2.00 | 4.00 | 1.00 | 2.00 |
E224 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.50 | 1.00 | 1.00 | 0.50 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Rouphael, Y.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Appl. Sci. 2021, 11, 5738. https://doi.org/10.3390/app11125738
Petropoulos SA, Fernandes Â, Calhelha RC, Rouphael Y, Petrović J, Soković M, Ferreira ICFR, Barros L. Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Applied Sciences. 2021; 11(12):5738. https://doi.org/10.3390/app11125738
Chicago/Turabian StylePetropoulos, Spyridon A., Ângela Fernandes, Ricardo C. Calhelha, Youssef Rouphael, Jovana Petrović, Marina Soković, Isabel C. F. R. Ferreira, and Lillian Barros. 2021. "Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds" Applied Sciences 11, no. 12: 5738. https://doi.org/10.3390/app11125738
APA StylePetropoulos, S. A., Fernandes, Â., Calhelha, R. C., Rouphael, Y., Petrović, J., Soković, M., Ferreira, I. C. F. R., & Barros, L. (2021). Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Applied Sciences, 11(12), 5738. https://doi.org/10.3390/app11125738