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Abstract: Research in sound classification and recognition is rapidly advancing in the field of pattern
recognition. One important area in this field is environmental sound recognition, whether it concerns
the identification of endangered species in different habitats or the type of interfering noise in urban
environments. Since environmental audio datasets are often limited in size, a robust model able
to perform well across different datasets is of strong research interest. In this paper, ensembles of
classifiers are combined that exploit six data augmentation techniques and four signal representations
for retraining five pre-trained convolutional neural networks (CNNs); these ensembles are tested
on three freely available environmental audio benchmark datasets: (i) bird calls, (ii) cat sounds, and
(iii) the Environmental Sound Classification (ESC-50) database for identifying sources of noise in
environments. To the best of our knowledge, this is the most extensive study investigating ensembles
of CNNs for audio classification. The best-performing ensembles are compared and shown to either
outperform or perform comparatively to the best methods reported in the literature on these datasets,
including on the challenging ESC-50 dataset. We obtained a 97% accuracy on the bird dataset, 90.51%
on the cat dataset, and 88.65% on ESC-50 using different approaches. In addition, the same ensemble
model trained on the three datasets managed to reach the same results on the bird and cat datasets
while losing only 0.1% on ESC-50. Thus, we have managed to create an off-the-shelf ensemble that
can be trained on different datasets and reach performances competitive with the state of the art.

Keywords: audio classification; data augmentation; ensemble of classifiers; pattern recognition

1. Introduction

Sound classification and recognition have long been included in the field of pattern
recognition. Some of the more popular application domains include speech recognition [1],
music classification [2], biometric identification [3], and environmental sound recogni-
tion [4], the topic of interest in this work. Following the three classical pattern recognition
steps of (i) preprocessing, (ii) feature/descriptor extraction, and (iii) classification, most
early work in sound classification began by extracting features from audio recordings such
as the Statistical Spectrum Descriptor or Rhythm Histogram [5]. Once it was recognized,
however, that visual representations of audio, such as spectrograms [6] and Mel-frequency
Cepstral Coefficients spectrograms (Mel) [7], contain valuable information, powerful tex-
ture extraction techniques like local binary patterns (LBP) [8] and its many variants [9]
began to be explored for audio classification [2,10]. In [2], for example, ensembles of
classifiers designed to fuse sets of the most robust texture descriptors with acoustic features
extracted from the audio traces on multiple datasets were exhaustively investigated; this
study showed that the accuracy of systems based solely on acoustic or visual features could
be enhanced by combining texture features.

Appl. Sci. 2021, 11, 5796. https://doi.org/10.3390/app11135796 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3502-7209
https://orcid.org/0000-0001-7664-6930
https://orcid.org/0000-0003-0510-1444
https://doi.org/10.3390/app11135796
https://doi.org/10.3390/app11135796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11135796
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11135796?type=check_update&version=2


Appl. Sci. 2021, 11, 5796 2 of 18

Recently, deep learners have proven even more robust in image recognition and
classification than have texture analysis techniques. In audio biodiversity assessment,
for example, a task that intends to monitor animal species at risk, convolution neural
networks (CNNs) have greatly enhanced the performance of animal [11] and bird identi-
fication [12–14]. Deep learners have also been adapted to identify the sounds of marine
animals [11] and fish [15]. In both these works, the authors combined CNN with visual
features; the fusion of CNNs with traditional techniques was shown to outperform both
the stand-alone conventional and single deep learning approaches.

Another environmental audio recognition problem that is growing in relevancy has to
do with identifying sources of noise in environments. This audio classification problem is
of particular concern for cell phone developers since noise interferes with conversation.
Consequently, datasets of extraneous sounds have been released to develop systems for
handling different kinds of noise. The Environmental Sound Classification (ESC-50) dataset,
for instance, contains 2000 labeled samples divided into fifty classes of environmental
sounds that range from dogs barking to the sound of sea waves and chainsaws. In [16], a
deep CNN achieved results superior to human classification on this dataset. Other work of
interest in this area includes [17–21].

For all its power, deep learning also has significant drawbacks when it comes to
environmental sound classification. For one, deep learning approaches require massive
training data [22]. For audio classification, this means collecting large numbers of labeled
audio signals and transforming them into visual representations, a task that is prohibitively
expensive and labor-intensive. Fortunately, there are methods for increasing the number
of images in small datasets. One such method is to apply data augmentation techniques.
Audio signals can be augmented in both the time and frequency domains, and these
augmentation techniques can be directly applied either on the raw signals themselves
or on the images obtained after they have been converted into spectrograms. In [23],
for example, several augmentation techniques were applied to the training set in the
BirdCLEF 2018 dataset. The augmentation pipeline involved taking the original bird audio
signals, chunking them, and then augmenting them in the time domain (e.g., by adding
background/atmospheric noise) and in the frequency domain (e.g., by applying pitch
shifts and frequency stretches). This augmentation process not only enlarged the dataset
but also produced nearly a 10% improvement in identification performance. Similarly,
some standard audio augmentation techniques such a time and pitch shifts for bird audio
classification were applied in [24]. Samples were also generated in [24] by summing
separate samples belonging to the same class. This summing technique was used for
domestic sound classification in [25,26]. In [27], new data was generated by computing the
weighted sum of two samples belonging to different classes and teaching the network to
predict the weights of the sum. Audio signal augmentation on a domestic cat sound dataset
was produced in [28] by random time stretching, pitch shifting, compressing the dynamic
range, and inserting noise. Data augmentation techniques that are standard in speech
recognition have also proven beneficial for animal sound identification, as in [29,30].

The goal of this work is to perform an extensive study of CNN classification using
different architectures combined with an investigation of multiple sets of different data
augmentation approaches and methods for representing audio signals as images. Building
such ensembles is motivated by two observations: (1) it is well known that ensembles of
neural networks generally perform better than stand-alone models due to the instability
of the training process [31], and (2) it has been shown in other classification tasks that an
ensemble of multiple networks trained with different augmentation protocols performs
much better than do stand-alone networks [32]. The classification scores of the CNNs are
combined by sum rule and compared and tested across three different audio classifica-
tion datasets: domestic cat sound classification [28,33], bird call classification [34], and
environmental noise classification [4].

The main contribution of this study is the exhaustive tests performed on ensembles
made by fusing (see Figure 1) five CNNs trained with four audio representations of raw
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sound signals combined with six different data augmentation methods (totaling thirty-five
subtypes). The performances of the best performing ensembles are compared across the
three datasets and with the state of the art. In the fair comparisons, our method outperforms
all others. Another contribution of this work is the free availability of the MATLAB source
code used in this study, available at https://github.com/LorisNanni.
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Figure 1. Proposed system. Many ensembles are generated by fine-tuning five pre-trained convolu-
tion neural networks (CNNs) separately on four possible audio representations combined with six
main data augmentation methods. The best combinations are experimentally derived. The arrows
indicate one possible combination of methods for building ensembles.

2. Audio Image Representations

Since the input to a CNN is in the form of a matrix, the following four methods were
used to map the audio signals into spectrograms:

1. The Discrete Gabor Transform (DGT): this is a short-time Fourier transform (STFT)
with a Gaussian kernel as the window function. The continuous version of DGT
can be defined as the convolution between the product of the signal with a complex
exponential and a Gaussian, as:

G(τ, ω) =
1
σ2

∫ +∞

−∞
x(t)eiωte−πσ2(t−τ)2

dt, (1)

where s(t) is the signal, ω is a frequency, and i is the imaginary unit. The width
of the Gaussian window is defined by σ2. The discrete version of DGT applies the
discrete convolution rather than the continuous convolution. The output G(τ, ω)
is a matrix, where the columns represent the frequencies of the signal at a fixed
time. The DGT implementation used in this study (see, [35]) is available at http:
//ltfat.github.io/doc/gabor/sgram.html (accessed on 6 January 2021).

2. Mel spectrograms (MEL) [36]: these spectrograms are computed by extracting the
coefficients relative to the compositional frequencies with STFT. Extraction is accom-
plished by passing each frame of the frequency-domain representation through a Mel
filter bank (the idea is to mimic the non-linear human ear perception of sound, which
discriminates lower frequencies better than higher frequencies). Conversion between
Hertz ( f ) and Mel (m) is defined as:

m = 2595 log10(1 + 700 f ). (2)

https://github.com/LorisNanni
http://ltfat.github.io/doc/gabor/sgram.html
http://ltfat.github.io/doc/gabor/sgram.html
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The filters in the filter bank are all triangular, which means that each has a response
of 1 at the center frequency, which decreases linearly towards 0 until it reaches the center
frequencies of the two adjacent filters, where the response is 0.

3. Gammatone (GA) band-pass filters: this is a bank of GA filters whose bandwidth
increases with the increasing central frequency. The functional form of Gammatone
is inspired by the response of the cochlea membrane in the inner ear of the human
auditory system [37]. The impulse response of a Gammatone filter is the product of a
statistical distribution (Gamma) and a sinusoidal carrier tone. This response can be
defined as:

hi(t) =
{

a · tn−1e−2πBitcos(2πωit) + φ , t ≥ 0
0 , t < 0

(3)

where ωi is the central frequency of the filter and φ its phase. Gain is controlled by
the constant a, and n is the order of the filter. Bi is a decay parameter that determines
the bandwidth of the band-pass filter.

4. Cochleagram (CO): this mapping models the frequency selectivity property of the
human cochlea [38]. To extract a cochleagram, it is first necessary to filter the original
signal with a gammatone filter bank (see, Equation (3) above). The filtered signal must
then be divided into overlapping windows. For each window and every frequency,
the energy of the signal is calculated.

Each of the four spectrograms is then mapped to a gray-scale image using a linear
transformation that maps the minimum value to 0 and the maximum value to 255, with
the value of each pixel rounded to the closest smaller integer.

3. Convolutional Neural Networks (CNNs)

Aside from the input and output layers, CNNs are composed of one or more of the
following specialized hidden layers: convolutional (CONV), activation (ACT), pooling
(POOL), and fully-connected (FC), or classification layer. The CONV layers pull out features
from the input volume and work by convolving a local region of the input volume (the
receptive field) to filters of the same size. Once the convolution is computed, these filters
slide into the next receptive field, where once again, the convolution between the new
receptive field and the same filter is computed. This process is iterated over the entire input
image, whereupon it produces the input for the next layer, a non-linear ACT layer, which
improves the learning capabilities and classification performance of the network. Typical
activation functions include (i) the non-saturating Rectified Linear Activation Function
(ReLU) function f (x) = tan h(x), (ii) the saturating hyperbolic tangent f (x) = tan h(x),
f (x) = |tan h(x)|, and (iii) the sigmoid function f (x) = (1 + e−x)

−1. Pool layers are often
interspersed between CONV layers and perform non-linear downsampling operations
(max or average pool) that serve to reduce the spatial size of the representation, which in
turn has the benefit of reducing the number of parameters, the possibility of overfitting,
and the computational complexity of the CNN. FC layers typically make up the last hidden
layers and have FC neurons to all the activations in the previous layer. SoftMax is generally
used as the activation function for the output CLASS layer, which performs the final
classification (also typically using the SoftMax function).

In this study, five CNNs pre-trained on ImageNet [39] or Places365 [40] are adapted
to the problem of environmental sound classification as defined in the datasets used in this
work. The architecture of the following pre-trained CNNs remains unaltered except for the
last three layers, which are replaced by an FC layer, an ACT layer using SoftMax, and a
CLASS layer also using SoftMax:

1. AlexNet [41] was the first neural network to win (and by a large margin) the ILSVRC
2012 competition. AlexNet has a structure composed of five CONV blocks followed
by three FC layers. The dimension of the hidden layers in the network is gradually
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reduced with max-pooling layers. The architecture of AlexNet is simple since every
hidden layer has only one input layer and one output layer.

2. GoogleNet [42] is the winner of ILSVRC 2014 challenge. The architecture of GoogleNet
involves twenty-two layers and five POOL layers. GoogleNet was unique in its
introduction of a novel Inception module, which is a subnetwork made up of parallel
convolutional filters. Because the output of these filters is concatenated, the number
of learnable parameters is significantly reduced. This study uses two pre-trained
GoogleNets: the first is trained on the ImageNet database [39], and the second is
trained on the Places365 [40] datasets.

3. VGGNet [43] is a CNN that took second place in ILSVRC 2014. Because VGGNet
includes 16 (VGG-16) or 19 (VGG-19) CONV/FC layers, it is considered extremely
deep. All the CONV layers are homogeneous. Unlike AlexNet [41], which applies a
POOL layer after every CONV layer, VGGNet is composed of relatively tiny 3 × 3
convolutional filters with a POOL layer applied every two to three CONV layers.
Both VGG-16 and VGG-19 are used in this study, and both are pre-trained on the
ImageNet database [39].

4. ResNet [44] was the winner of ILSVRC 2015 and is much deeper than VGGNet.
ResNet is distinguished by introducing a novel network-in-network architecture
composed of residual (RES) layers. ResNet is also unique in applying global average
pooling layers at the end of the network rather than the more typical set of FC layers.
These architectural advances produce a model that is eight times deeper than VGGNet
yet significantly smaller in size. Both ResNet50 (a 50-layer residual network) and
ResNet101 (the deeper variant of ResNet50) are investigated in this study. Both CNNs
have an input size of 224 × 224 pixels.

5. InceptionV3 [45] advances GoogleNet by making the auxiliary classifiers perform
as regulators rather than as classifiers. This is accomplished by factorizing 7 × 7
convolutions into two or three consecutive layers of 3 × 3 convolutions and applying
the RMSProp Optimizer. InceptionV3 accepts images of size 299 × 299 pixels.

In Table 1, we report the specifications of the different network architectures that we
used in our paper.

Table 1. Specifications of the different network architectures.

Networks Layers Parameters Size Input Size

AlexNet 8 61 million 227 Mb 227 × 227
GoogleNet 22 7 million 27 Mb 224 × 224

VGG16 16 138 million 515 Mb 224 × 224
VGG19 19 147 million 535 Mb 224 × 224

ResNet50 50 25.6 million 96 Mb 224 × 224
ResNet101 101 44.6 million 167 Mb 224 × 224
Inception 48 23.9 million 89 Mb 224 × 224

4. Data Augmentation Methods

Below is a description of the augmentation protocols that were combined and tested
in this study. For each data augmentation method used to train a CNN, both the original
and the artificially generated patterns were included in the training set.

4.1. Standard Signal Augmentation (SGN)

Standard signal augmentation (SGN) is the application of the built-in data augmenta-
tion methods for audio signals available in MATLAB (see samples in Figure 2). For each
training signal, ten new ones are generated by applying the following labeled transforma-
tions with 50% probability:

1. SpeedupFactorRange scales the speed of the signal by a random number in the range
of [0.8, 1.2];
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2. SemitoneShiftRange shifts the pitch of the signal by a random number in the range of
[−2, 2] semitones;

3. VolumeGainRange increases or decreases the gain of the signal by a random number
in the range of [−3, 3] dB;

4. SNR injects random noise into the signal in the range of [0, 10] dB;
5. TimeShiftRange shifts the time of the signal in the range of [−0.005, 0.005] seconds.
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4.2. Short Signal Augmentation (SSA)

Short signal augmentation (SSA) works directly on the raw audio signals (see Figure 2
for some samples). For every original image, the following ten augmentations are applied
to produce ten new images:

1. applyWowResampling implements wow resampling, a variant of pitch shift that
changes the intensity in time. The formula for the wow transformation is:

F(s) = s + am
sin(2π fms)

2π fm
(4)

where s is the input signal. In this study, am = 3 and fm = 2;
2. applyNoise is the insertion of white noise so that the ratio between the signal and the

noise X dB (here, X = 10);
3. applyClipping normalizes the audio signal by leaving 10% of the samples out of [−1,

1], with the out-of-range samples (x) clipped to sign (x)
4. applySpeedUp not only increases but also decreases the speed of the audio signal; in

this study, the speed was augmented by 15%;
5. applyHarmonicDistortion is the repeated application of quadratic distortion to the

signal; in this study, the following distortion was applied five consecutive times:

sout = sin (2πsin); (5)

6. applyGain increases the gain by a specific number of decibels (set here to 10 dB);
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7. applyRandTimeShift randomly divides each audio signal into two signals and swaps
them by mounting them back into a randomly shifted signal. If we call sin(t) the value
of the input audio signal at time t, T is the length of the signal and t∗ is a random
time between 0 and T:

sout(t) = sin(mod(t∗ + t, T)) (6)

8. applyDynamicRangeCompressor applies dynamic range compression (DRC) [46]
to a sample audio signal. DRC boosts the lower intensities of an audio signal and
attenuates the higher intensities by applying an increasing piecewise linear function.
DRC, in other words, compresses an audio signal’s dynamic range;

9. applyPitchShift shifts the pitch of an audio signal by a specific number of semitones.
We chose to increase it by two semitones;

10. We use applyPitchShift again to decrease the pitch of the audio signal by two semi-
tones.

4.3. Super Signal Augmentation (SSiA)

With this protocol, twenty-nine new images are generated from every original image.
The following five augmentations are applied to every sample, with the parameters of the
augmentations randomized to generate the new images:

1. applyWowResampling, as in SSA;
2. applySpeedUp, as in SSA; but, in this case, the speed is either increased or decreased

by a random number of percentage points in the range [−5, 5];
3. applyGain, as in SSA, but the gain factor is sampled randomly in the range of

[−0.5, 0.5];
4. applyRandTimeShift, as in SSA;
5. applyPitchShift, as in SSA, but the pitch is shifted in the range of [−0.5, 0.5].

Small parameters are selected because applying multiple transformations to the input
introduces changes that are too large. The difference between the protocols in SSiA and
SSA is that the SSiA protocols create a large number of images through multiple small
transformations (See Figure 2). Conversely, the images created by SSA protocols are
generated with only one large transformation.

4.4. Time-Scale Modification (TSM)

This protocol applies the five algorithms contained in the time-scale modification
(TSM) toolbox [47]. TSM methods (samples in Figure 2) are commonly used in music
production software to change the speed of signals without changing their pitch. Since
two different constant stretching factors (0.5 and 1.8) were used for each TSM method, this
augmentation approach produced ten new images. For a detailed description of the TSM
toolbox, see [48]. A brief description of the five TSM algorithms follows:

1. OverLap Add (OLA): this algorithm is the simplest TSM method. It covers the
input signals with overlapping windows of size Ha and maps them into overlapping
windows of size Hs. The number Hα depends on the implementation of the algorithm,
while the ratio α = Hs/Ha is the speed-up factor, which can be optionally set. The
settings investigated in this study were 0.8 and 1.5. These same values were used for
each TSM method;

2. Waveform Similarity OverLap Add (WSOLA): this is a modification of OLA where
the overlap of the windows is not fixed but has some tolerance to better represent the
output signal in cases where there is a difference of phase;

3. Phase Vocoder addresses the same phase problem as WSOLA. However, it exploits the
dual approach by matching the windows in the frequency domain: first, the Fourier
transforms of the signal are calculated; second, the frequencies are matched, and the
signal is pulled back into the time domain;
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4. Phase Vocoder with identity phase locking: this TSM method is a modification of
Phase Vocoder where the frequencies are matched as if they were not independent of
each other. This modification was introduced by Laroche and Dolson [49];

5. Harmonic-Percussive Source Separation (HPSS): this augmentation technique decom-
poses an audio signal into its harmonic sound components, which form structures in
the time direction, and its percussive sounds, which yield structures in the frequency
direction. After decomposing the signal in this way, the phase vocoder is applied
with the identity phase locking to the harmonic component, and OLA is applied
to the percussive component. Finally, these two components are merged to form a
new signal.

4.5. Short Spectrogram Augmentation (SSpA)

Short spectrogram augmentation (see samples in Figure 3): works directly on spectro-
grams and generates five transformed versions of each original
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1. applySpectrogramRandomShifts randomly applies pitch shift and time shift;
2. VocalTractLengthNormalization (apply VTLN) creates a new image by applying

VTLP [29], which divides a given spectrogram into 10 unique temporal slices. Once
so divided, each slice passes through the following transformation:

G( f ) =

{
α f , 0 ≤ f < f0
fmax−α f0
fmax− f0

( f − f0) + α f0 , f0 ≤ f ≤ fmax ,
(7)

where f0, fmax are the basic and maximum frequency, and α ∈ [a, b] is randomly
chosen. In this study, a and b are set to 0.9 and 1.1, respectively;

3. applyRandTimeShift does what its name indicates by randomly picking the shift
value T in [1, M], where M is the horizontal size of the input spectrogram. A given
spectrogram is cut into two different images: S1 and S2, the first taken before and
second after time T. The new image is generated by inverting the order of S1 and S2;

4. applyRandomImageWarp creates a new image by applying thin-spline image warping
(TPS-Warp) [50] to a given spectrogram. TPS-Warp is a perturbation method applied
to the original image by randomly changing the position of a subset S of the input
pixels. It adapts pixels that do not belong to S via linear interpolation. In this study,
the spectrogram is changed on the horizontal axis only. Also, a frequency-time mask is
applied by setting to zero the values of two rows and one column of the spectrogram.
In this study, the width of the rows is set to 5 pixels and the width of the column to
15 pixels;
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5. applyNoiseS applies pointwise random noise to spectrograms. The value of a pixel is
multiplied by a uniform random variable of average one and variance one, with a
probability 0.3

4.6. Super Spectro Augmentation (SuSA)

In this protocol, 29 new images are generated from each original sample. The following
five augmentation methods are applied to each signal, with parameters randomized to
produce different samples (see samples in Figure 3):

1. applySpectrogramRandomShifts as in SSpA, but with the time shift equal to zero and
random pitch shift in the range [−1, 1];

2. applyVTLN as in SSpA;
3. applyRandTimeShift as in SSpA;
4. applyFrequencyMasking sets to zero at most two random columns (which represent

times) and at most two random rows (which represent frequencies);
5. applyNoiseS applies pointwise random noise to spectrograms. The value of a pixel is

multiplied by a uniform random variable in [0.3, 1.7] with a probability of 0.1.

5. Experimental Results
5.1. Datasets

The approach presented here was tested on three sound datasets (see Figure 4 for
some examples):

• BIRDZ [34]: a control audio dataset, where recordings in the wilds were downloaded
from the Xeno-canto Archive (http://www.xeno-canto.org/ accessed on 6 January
2021). BIRDZ contains 2762 bird acoustic events with 339 detected “unknown” events
that are either noise or other vocalizations aside from the eleven labeled North Amer-
ican bird species. Many spectrogram types (constant frequency, broadband with
varying frequency components, broadband pulses, frequency modulated whistles,
and strong harmonics) are included;

• CAT [28,33]: a balanced dataset of 300 samples of 10 classes of cat vocalizations collected
from Kaggle, YouTube, and Flickr. The average duration of each sound is ~ 4 s;

• ESC-50 [4]: an environmental sound classification dataset with 2000 samples evenly
divided into 50 classes and five folds; each fold contains eight samples. The five
folds with class names in parentheses are Animals (Dog, Rooster, Pig, Cow, Frog,
Cat, Hen, Flying Insects, Sheep, and Crow), Natural soundscapes and water sounds
(Rain, Sea waves, Crackling fire, Crickets, Chirping birds, Water drops, Wind, Pouring
water, Toilet flush, and Thunderstorm), Human non-speech (Crying baby, Sneezing,
Clapping, Breathing, Coughing, Footsteps, Laughing, Brushing teeth, Snoring, and
Drinking/sipping), Interior and domestic sounds (Door knock, Mouse click, Keyboard
typing, Door, wood creaks, Can opening, Washing machine, Vacuum cleaner, Clock
alarm, Clock tick, and Glass breaking), and Exterior and urban noises (Helicopter,
Chainsaw, Siren, Car horn, Engine, Train, Church bells, Airplane, Fireworks, and
Hand saw).

The data augmentation techniques explored in this study are assessed on each dataset
using the same testing protocols described in the original papers. The recognition rate (the
average accuracy across all folds) is used as the performance indicator. Also, it should
be noted that many papers [16,27,46,48,51–53] report classification results on the datasets
listed above that are superior to human performance.

http://www.xeno-canto.org/
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Figure 4. Spectrogram samples from (a) BIRDZ, (b) CAT, and (c) ESC-50 illustrating the applications
of identifying bird songs, cat calls, and environmental noise. The horizontal axis in each image
represents time, and the vertical axis represents frequency. Note that the frequency scale has been
reversed in this figure.

5.2. Results

In Tables 2–5, the accuracy obtained by some of the data augmentation protocols is
reported and compared with the baseline that skips the augmentation step (NoAUG). The
CNNs were trained for 30 epochs with a learning rate of 0.0001, except for the last fully
connected layer that has a learning rate of 0.001 and a batch size of 60. The one exception is
the CNN labeled ‘VGG16BatchSize’, the standard VGG16 with a fixed batch size of 30. For
NoAUG, the batch size was set to 30. Also, seven fusions are reported in Tables 2–5. We
combined the results of the CNNs in an ensemble using the sum rule. The sum rule consists
of averaging all the output probability vectors of the stand-alone CNNs in the ensemble to
create a new probability vector that is used for classification. The rationale behind fusion,
as Hansen [31] notes, is that “the collective decision produced by the ensemble is less likely
to be in error than the decision made by any of the individual networks.” The labels used
in the tables and a brief description of the seven ensembles follow:

1. GoogleGoogle365: sum rule of GoogleNet and GoogleNetPlaces365 trained with each
of the data augmentation protocols;

2. FusionLocal: sum rule of CNNs where each one is trained with a different data
augmentation method;

3. FusionShort: sum rule of all CNNs trained with SGN, SSA, and SSpA;
4. FusionShortSuper: sum rule of all CNNs trained with SGN, SSA, SSpA, SSiA, and SuSA;
5. FusionSuper: sum rule of all CNNs trained with SGN, SSiA, SuSA, and TSM;
6. FusionSuperVGG16: sum rule of VGG16 trained with SGN, SSiA, SuSA, and TSM;
7. FusionALL: sum rule of all CNNs trained with SGN, SSA, SSpA, SSiA, SuSA, and TSM.
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Table 2. Performance on the CAT (mean accuracy over ten-fold cross-validation). Values of interest
are in bold.

CAT NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 83.73 85.76 86.10 83.39 87.12 86.78 87.12
GoogleNet 82.98 86.10 87.80 83.39 86.78 85.08 87.80

VGG16 84.07 87.12 88.47 85.76 87.80 87.80 88.47
VGG19 83.05 85.42 87.80 84.75 86.10 86.10 89.15

ResNet50 79.32 81.36 85.42 76.95 85.08 82.03 87.12
ResNet101 80.34 84.75 85.42 75.59 82.03 73.56 86.78
Inception 79.66 82.71 — 66.44 — 84.07 86.10

GoogleNetPlaces365 85.15 86.44 85.76 83.73 86.10 86.10 88.47
VGG16BatchSize — 86.10 88.14 86.78 89.49 86.10 89.15

FusionLocal 88.14 88.47 89.83 86.78 89.83 89.83 90.51
FusionShort 88.47

FusionShortSuper 89.83
FusionSuper 90.17
FusionALL 89.83

FusionSuperVGG16 89.83

Table 3. Performance on the BIRDZ (mean accuracy over ten-split training/test set).

BIRDZ NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 94.48 94.96 95.40 94.02 95.05 95.76 88.51
GoogleNet 92.41 94.66 94.84 91.48 93.85 95.85 82.91

VGG16 95.30 95.59 95.60 94.69 95.44 96.18 94.63
VGG19 95.19 95.77 87.15 * 94.50 95.44 96.04 94.88

ResNet50 90.02 94.02 93.22 90.48 92.95 94.16 91.75
ResNet101 89.64 94.00 92.76 88.36 92.84 94.20 90.62
Inception 87.23 93.84 92.48 83.81 92.30 94.01 90.52

GoogleNetPlaces365 92.94 94.81 95.10 92.43 94.76 95.80 86.91
VGG16BatchSize — 95.84 —- 94.91 95.81 96.31 94.78

FusionLocal 95.81 96.32 96.24 95.76 96.39 96.89 95.27
FusionShort 96.47

FusionShortSuper 96.79
FusionSuper 96.90
FusionALL 96.89

FusionSuperVGG16 96.78
The * indicates a fold that failed to converge so producing a random performance in that fold. Values of interest
are in bold.

Table 4. Performance on the ESC-50 (mean accuracy over the five-fold cross-validation). Values of
interest are in bold.

ESC-50 NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 60.80 72.75 73.85 65.75 73.30 64.65 70.95
GoogleNet 60.00 72.30 73.70 67.85 73.20 71.70 73.55

VGG16 71.60 79.40 80.90 75.95 79.35 77.85 79.05
VGG19 71.30 78.95 78.80 74.10 78.00 76.40 77.45

ResNet50 62.90 76.65 75.95 70.65 77.20 73.95 77.40
ResNet101 59.10 75.25 75.65 70.05 77.50 72.30 74.85
Inception 51.10 71.60 74.70 63.45 75.55 71.10 70.65

GoogleNetPlaces365 63.60 75.15 76.10 71.35 74.00 71.60 73.55
VGG16BatchSize — 79.40 80.50 73.45 79.35 77.85 80.00

FusionLocal 75.95 84.75 85.30 80.25 85.25 82.25 85.30
FusionShort 86.45

FusionShortSuper 87.15
FusionSuper 87.55
FusionALL 87.30

FusionSuperVGG16 85.75
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Table 5. Performance using different methods for representing the signal as an image.

CAT BIRD ESC-50

GA MEL CO GA MEL CO GA MEL CO

AlexNet 82.03 83.73 79.32 91.85 91.43 87.54 73.95 73.50 65.50
GoogleNet 74.07 84.07 77.97 90.71 88.96 86.95 73.75 73.25 66.15

VGG16 83.39 86.10 80.00 92.65 93.17 88.82 77.60 79.20 66.75
VGG19 85.76 83.73 77.97 92.93 93.22 89.07 76.40 77.55 65.85

ResNet50 82.03 83.05 75.93 90.87 90.74 86.98 75.80 76.05 67.75
ResNet101 82.71 82.37 79.32 91.15 91.00 87.28 75.00 74.80 64.90
Inception 79.66 84.75 77.63 89.53 89.86 87.35 73.95 72.55 67.50

GoogleNetPlaces365 83.05 82.71 77.63 90.88 88.31 86.75 73.60 75.50 68.70
VGG16BatchSize 85.42 87.80 81.02 93.09 93.22 89.43 77.80 78.95 67.50

FusionLocal 87.46 88.47 82.37 93.76 93.97 90.57 81.90 83.80 73.25

VGG16 can fail to converge; when this happens, VGG16 undergoes a second training.
VGG16 can also produce a numeric problem by assigning the same scores to all patterns.
In this case, all scores are considered zeros. Other numeric problems in the fusions by sum
rule can occur. To avoid such issues, all scores that do not produce not-a-number value are
treated as zero.

In Tables 2–4, the DGT spectrogram is used for representing the signal as an image.
Any cell with ‘—’ means that the given CNN was not trained successfully (mainly due
to memory problems with the graphical processing units (GPUs). We also tested three
additional methods GA, MEL, and CO to represent a signal as an image, coupled with
SGN only, as reported in Table 5.

In Table 6, our best ensembles FusionGlobal and FusionGlobal-CO are compared with
the state of the art. FusionGlobal is built with the CNNs belonging to Fusion Super and
those reported in Table 5. FusionGlobal-CO is constructed similarly to FusionGlobal but
without considering the CNNs trained using CO as a signal representation approach. The
performance reported in [11] in Table 5 is different from that reported in the original paper
since, for a fair comparison with this work, we ran the method without considering the
supervised data augmentation approaches.

Table 6. Comparison of our best sound classification ensemble with state of the art.

Descriptor BIRDZ CAT ESC-50

[11] 96.45 89.15 85.85
FusionGlobal 96.82 90.51 88.65

FusionGlobal-CO 97.00 90.51 88.55
[2] 95.1 — —

[34] 93.6 — —
[33] — 87.7 —
[28] — 91.1 —

[28]—CNN — 90.8 —
[51] 96.7 — —
[20] — — 94.10
[54] — — 89.50
[21] — — 87.10
[19] — — 88.50
[27] — — 84.90
[16] — — 86.50
[17] — — 83.50
[52] — — 83.50
[18] — — 81.95

Human Accuracy [4] — — 81.30
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The following conclusions can be drawn from the reported results:

1. There is no single data augmentation protocol that outperforms all the others across
all the tests. TSM performs best on CAT and ESC-50 but works poorly on BIRDZ.
Data augmentation at the spectrogram level works poorly on ESC-50 as well as on
two other datasets. SGN and data augmentation at the signal level work well across
all the datasets. On average, the best data augmentation approach is SSA. Although it
produces a performance that is close to SSiA, the training time for SSA is shorter;

2. The best stand-alone CNNs are VGG16 and VGG19;
3. DGT works better than the other signal representations;
4. Combining different CNNs enhances performance across all the tested datasets;
5. For the ensemble FusionLocal, data augmentation is marginally beneficial on CAT

and BIRDZ but produces excellent results on ESC-50. Compared to the stand-alone
CNNs, data augmentation improves results on all three datasets. Of note, an ensemble
of VGG16 (FusionSuperVGG16) outperforms the stand-alone VGG16;

6. The performance of the ensemble of CNNs trained with different augmentation
policies (FusionALL) can be further improved by adding to the ensemble those
networks trained using different signal representations (FusionGlobal). However, this
performance improvement required considerable computation time, mainly during
the training step;

7. The approach in [20] manages to outperform our results, but the authors pretrained
their networks on AudioSet; hence the comparison with our approach is not fair.

The methods reported in Table 6 were based solely on deep learning approaches. As
mentioned in the introduction, several papers have proposed sound classification methods
based on texture features. It is also possible to construct ensembles that combine deep
learning with texture methods. To examine the potential of combining ensembles trained
on texture descriptors with deep learning approaches, the following two fusion rules
were examined:

a. Sum rule between FusionGlobal and the ensemble of texture features proposed
in [55] (extracted from DGT images) obtains an accuracy of 98.51% (higher than that
obtained by FusionGlobal). In BIRDZ, the ensemble of texture features obtains an ac-
curacy of 96.87%, which is close to that obtained by our deep learning approach. The
ensemble with texture descriptors works poorly on ESC-50, producing an accuracy
of only 70.6%. As a result, it is not advantageous to combine the texture approach
with FusionGlobal;

b. The sum rule1 between FusionGlobal and [34] obtains an excellent accuracy of 98.96%
compared to [34], which achieves an accuracy of 93.6%. This means that the features
extracted in [34] and by the deep learning approach access different information.

In terms of computation time, the most expensive activity is the conversion of audio
signals into spectrograms since the conversion runs on a CPU and not on a GPU. In Table 7,
computation time is reported for different CNNs and signal representations on a machine
equipped with an i7-7700HQ 2.80 GHz processor, 16 GB RAM, and a GTX 1080 GPU. This
test was run on an audio file of length 1.27 s with a sample rate of 32 kHz. It is interesting to
note that FusionGlobal takes less than three seconds using a laptop. However, a speed-up is
possible: audio files can be classified simultaneously with DGT since it can be parallelized.

Table 7. Computation time (in seconds) between CNNs and signal representations.

Signal Representation Computation Time CNN Computation Time

DGT 1.29 AlexNet 0.01
GA 0.02 GoogleNet 0.03

MEL 0.01 VGG16 0.01
CO 0.08 VGG19 0.01

ResNet50 0.02
ResNet101 0.03
Inception 0.03
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In Table 8, we compare some of the advantages and disadvantages of our system with
audio approaches proposed in the literature whose backbone is a neural network trained
on image-based audio features.

Table 8. Comparisons among the different approaches of audio classification.

Paper Method Advantages

Ours
Ensemble of networks with different

data augmentation and different
spectrograms.

Great performances over a variety of
datasets and easy to implement but
requires large computational power.

[20]
Multi-stage sequential learning with

knowledge transfer from a large
audio dataset.

State of the art on ESC-50. However,
it requires large computational power,

and the model is pretrained on a
large audio dataset.

[54] Pretrained model with multi-channel
features.

Simple model with performances
similar to ours on ESC-50.

[21] CNN model with potential
compression.

Performance close to the state of the
art on ESC-50 and suitable for mobile

devices.

[16]

CNN with filter banks learned using
convolutional Restricted Boltzmann
Machines + fusion with gammatone
spectral coefficient and Mel energies.

Performance close to ours on ESC-50
but unsuitable for mobile devices.

[56] CNN with mix-up and data
augmentation.

Very light network for mobile devices
that performs very well, but not as
much as the state-of-the art models.

6. Conclusions

In this paper, we presented the largest study conducted so far that investigates ensem-
bles of CNNs using different data augmentation techniques for audio classification. Several
data augmentation approaches designed for audio signals were tested and compared with
each other and with a baseline approach that did not include data augmentation. Data aug-
mentation methods were applied to the raw audio signals and their visual representations
using different spectrograms. CNNs were trained on different sets of data augmentation
approaches and fused via the sum rule.

Experimental results clearly demonstrate that ensembles composed of fine-tuned CNNs
with different architectures maximized performance on the tested three audio classification
problems, with some of the ensembles obtaining results comparable with the systems, including
on the ESC-50 dataset. To the best of our knowledge, this is the largest, most exhaustive study
of CNN ensembles applied to the task of audio classification. Our best ensemble, FusionGlobal
is composed of 63 networks with nine different architectures and seven different trainings
for every network. Four of the networks were obtained using different data augmentation
strategies and three different methods to create a spectrogram. It is worth noting that the same
ensemble is competitive with the state of the art on the three datasets. To be more precise, we
reach 96.82% on the BIRDZ dataset, 90.51% on the CAT dataset, and 88.65% on ESC-50.

This work can be expanded further by investigating which augmentation methods
(spectrogram augmentation vs. signal augmentation) work best for classifying different
kinds of sounds. We also plan to apply transfer learning using spectrograms instead of
natural images. A systematic selection of augmentation approaches, e.g., by iteratively
evaluating an increasing subset of augmentation techniques (as is typical when evaluating
different features), would require an enormous amount of time and computation power.
An expert-based approach that utilizes the knowledge of environmental scientists would
be the best way of handling this challenge.

This study could also be expanded by including more datasets, which would provide
a more comprehensive validation of the proposed fusions. Furthermore, there is a need
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to investigate the impact on performance when different CNN topologies and parameter
settings in the retuning step are combined with different types of data augmentation.

The technique proposed here is not exclusively applicable to environmental sound
classification but can be applied to many related audio tasks. For example, this technique
should work well for real-time audio event detection and speech recognition. An important
application area related to the ESC-50 dataset for noise identification would be to apply
our approach to the more refined problem of fault diagnosis of drilling machines and
other machinery [57,58]. Most studies in this area have focused on extracting handcrafted
texture features from visual representations of sound [58]. But recently, there has been
some interesting work that has successfully used deep learning to solve this problem [57].
Investigating the performance of our proposed method to tasks such as these would involve
combining a different set of network architectures, but the main idea of ensembling different
models obtained from many audio augmentation protocols should increase classification
performance on these novel tasks and would be worth investigating in the future. Finally,
we plan on exploring some possibilities presented in [59].
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Abbreviations
List of the methodological acronyms along with a few others used in this study.
ACT CNN Activation Layer
CNN Convolutional Neural Networks
CO Cochleagram
CONV CNN Convolutional Layer
DGT Discrete Gabor Transform
FC CNN Fully-Connected Layer
GA Gammatone
GLCM Gray Level Co-occurrence Matrices
GPU Graphical Processing Unit
HPSS Harmonic-Percussive Source Separation
LBP Local Binary Patterns
LPQ Local Phase Quantization
Mel Mel-frequency Cepstral Coefficients spectrograms
POOL CNN Pooling Layer
SGN Standard Signal Augmentation
SSA Short Signal Augmentation
SSiA Super Signal Augmentation
SSpA Short Spectrogram Augmentation
STFT Short-Time Fourier Transform
SuSA Super Spectro Augmentation
SVM Support Vector Machines
TSM Time Scale Modification
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