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Abstract: This paper addresses the problem of data vectors modeling, classification and recognition
using infinite mixture models, which have been shown to be an effective alternative to finite mixtures
in terms of selecting the optimal number of clusters. In this work, we propose a novel approach
for localized features modelling using an infinite mixture model based on multivariate generalized
Normal distributions (inMGNM). The statistical mixture is learned via a nonparametric MCMC-
based Bayesian approach in order to avoid the crucial problem of model over-fitting and to allow
uncertainty in the number of mixture components. Robust descriptors are derived from encoding
features with the Fisher vector method, which considers higher order statistics. These descriptors are
combined with a linear support vector machine classifier in order to achieve higher accuracy. The
efficiency and merits of the proposed nonparametric Bayesian learning approach, while comparing
it to other different methods, are demonstrated via two challenging applications, namely texture
classification and human activity categorization.

Keywords: infinite mixture models; nonparametric bayesian learning; MCMC sampling; multivariate
generalized Normal distribution; texture classification; human action categorization

1. Introduction and Related Works

In recent years, there has been major progress in Statistical Machine Learning (SML)
with unsupervised learning problems such as clustering, classification and recognition
for both univariate and multivariate data. The success of statistical models depends on
their capacity to model and build an effective representation that holds the underlying
distribution of the data. SML has been used in various areas of research, such as knowledge
discovery, computer vision and pattern recognition. Over the last decades, there has been
extensive state-of-the-art related to these problems. In particular, there has been an increas-
ing interest in the use of both supervised and unsupervised learning methods to assign or
group similar objects into homogeneous and disjoint clusters. Such methods are also used
for constructing classifiers to effectively recognize objects on the basis of discriminative
visual features. A typical broadly used learning method is the so-called statistical mixture
model [1–5], which has the advantage of offering a tractable and flexible basis for statistical
inference. It is noted that statistical modelling has much to contribute to machine learning
and data science. In particular, mixture models are widely used in scientific problems,
where multidimensional objects are to be clustered or classified. In this situation, the data
should be modelled in terms of a mixture of many components. The well-principled Finite
mixture models (FMM) are used with success to partition multimodal data points and to
learn cluster membership of observations with unknown cluster labels [6]. For instance,
finite Gaussian mixture models were employed successfully in many applications [7,8].
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However, assuming Gaussian form density implies a strong assumption about the clusters’
shape and may lead to overfitting the number of components, as well as a poor recognition
(or classification) rate.

A difficult aspect when considering finite mixture models is the determining of the
exact component numbers, which help to avoid the issues of over- and under-fitting and
minimizing the approximation errors, especially when we are trying to model complex
real-world data problems (such as multimodal data) [9]. For instance, Laplace and Normal
densities fail to fit many complex shapes with multi-dimensional data and when describing
the heavier tails caused by specific patterns [10,11]. In this context, non-Gaussian data
modelling plays an essential role in accurate data clustering and classification. This prob-
lem can be addressed with more flexible statistical models, such as generalized Gaussian
mixtures [11]. For this purpose, extensive research efforts have been developed; nev-
ertheless, many of them still fail to achieve high accuracy for many applications [12].
On the other hand, several deterministic approaches have been implemented to deal with
model parameters estimation [13,14]. These approaches (also known as likelihood-based
approaches) are well documented but they suffer from local optimality.

In recent years, there has been increasing interest in Bayesian approaches (both para-
metric and nonparametric), which are seen as an attractive alternative for dealing with
the limitations of deterministic methods such as dependency on initialization [11,15,16].
Indeed, the availability of prior knowledge about the parameters helps to accurately es-
timate these parameters from the data using a fully Bayesian approach. This approach
is becoming more and more popular due to its flexibility and potential to include prior
information. In previous work [10], authors have shown that Bayesian estimation of multi-
variate generalized Gaussian (Normal) mixture can offer good flexibility in terms of data
fitting. The proposed method allows for the flexible modeling of both multidimensional
and multivariate data (i.e., correlated data) by considering the relationship between at-
tributes. It has also been demonstrated that multivariate normal mixtures are suitable for
high-dimensional data, but inference on multivariate mixture models is therefore more
difficult [17]. Parametric approaches, however, are inappropriate for real machine learning
problems as data sets grow over time under uncertainty and incompleteness. Thus, unlike
parametric Bayesian approaches, which assume an unknown finite number of components,
nonparametric Bayesian approaches guess infinitely complex models (i.e., an infinite num-
ber of components) [18,19] and have undergone significant theoretical and computational
progress over the years [20,21]. It should also be noted that, in finite mixture models,
estimating the optimal number of clusters is one of the difficult issues that can lead to an
overfitting problem. To cope with this, it is possible to think about extending the finite
model to infinite mixtures. In addition, given some famous algorithms that are able to gen-
erate accurately observations from posterior distribution, such as the Gibbs algorithm—a
particular form of Markov Chain Monte Carlo method (MCMC) [22–24]—infinite mixture
models have become an attractive paradigm for effective unsupervised learning.

The rest of this paper is organized as follows: In Section 3, we present our proposed
infinite mixture model as well as a fully Bayesian learning approach; in Section 4, we study
the performance of the developed framework on the basis of different applications and
data sets; finally, in Section 5, we conclude the current work.

2. Proposed Method

In this work, we take a step forward by extending the finite multivariate generalized
Normal mixture [10] to a more flexible infinite mixture (inSSDMM) where a nonparametric
prior on the data is adopted. The proposed mixture is learned via a fully unsupervised
Bayesian nonparametric approach by analyzing data without a priori information on
the number of clusters. Indeed, we propose applying a fully MCMC inference based on
Gibbs and Metropolis-Hastings algorithms to learn our infinite model. An efficient soft
quantization method for features and descriptors encoding using a Fisher Vector is also
exploited in this work, as in [25]. Unlike some earlier works, such as histograms and kernel
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codebook (bag-of-words approach), the Fisher Vector method offers more robust local
features representation [25]. Finally, we test the proposed approach on two challenging
problems, namely texture classification and object categorization.

In the following, we describe the different steps of the proposed framework, such as
the feature extraction step, the modelling step with the infinite mixture model and learning
the process via priors and posteriors (see Figure 1). Indeed, we start by extracting effective
visual features from each input image. Then, these features are modelled using our devel-
oped infinite multivariate generalized Normal mixture model. The proposed statistical
model is then learned via an effective nonparametric MCMC-based Bayesian approach in
order to avoid the crucial problem of model over-fitting and to allow uncertainty in the
number of mixture components. The next step consists of encoding features with robust
Fisher vectors to obtain effective descriptors that consider higher order statistics. Finally,
these descriptors are combined with a linear support vector machine classifier in order to
classify and categorize images.

Visual features
extraction

Infinite MGNMM-
based features 

modeling 

SVM-based 
categorization/ 
classification

Fisher Kernel-based 
descriptors 
encoding

Images database

Figure 1. The pipeline of the proposed method. First, robust invariant visual features are extracted
from each image. Then, these features are modelled using an infinite multivariate generalized Normal
mixture model. The next step consists of encoding them using Fisher vectors to obtain effective
descriptors. Finally, an SVM classifier is applied for categorization and classification applications.

2.1. Features Extraction and Encoding

The feature extraction step has been largely dealt with in the field of image analysis
applications. It is the process of acquiring relevant information such as shape, color and
texture. The extraction and characterization of particular regions in a given image is
one of the preliminary steps in many image processing procedures. To accomplish this
objective, it is crucial to analyze these images by extracting important details (patterns)
and providing an accurate description of them. If relevant and representative features are
well extracted, then the corresponding images will be interpreted better and then classified
correctly. It is known that the majority of classification and/or categorization methods
follow a common approach that is based on extracting visual features and applying a
feature quantization step (Bag of Words (BoW) model) and/or a soft assignment with
mixture models. However, these attempts give little importance to feature encoding and
therefore result in lossy step, as shown in [25,26]. In order to overcome this shortcoming
(i.e., reduce the quantization error), we propose here to apply a robust encoding step
based on Fisher kernel [25,27,28], which is defined as an extension of the BoW model. The
resulting Fisher Vector, which is determined by the gradient with respect to the model’s
parameters, contains both zero order statistics and higher order statistics of the developed
infinite mixtures of the features. Thus, the obtained vector is computed by concatenating
the gradient for all components of the infinite mixture model (inMGNMM). After that,
we proceed with a power normalization step on the feature vector in order to obtain an
invariant vector of descriptors, as in [28]. The last step consists of introducing the obtained
descriptors into a linear SVM classifier to perform the classification or the categorization
task. Thus, the proposed pipeline is summarized as follows (see also Figure 1):

1. Extracting visual features from the training images;
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2. Encoding extracted features into robust descriptors based on the proposed infinite
mixture model and a Fisher kernel to encode the higher order statistics of the infinite
mixtures of the extracted features;

3. Classifying and/or categorizing image descriptors using the SVM classifier.

2.2. Model Specification

We start by recalling here the finite mixture of K multivariate generalized Normal
distributions (MGND).

Definition 1 (Multivariate generalized Normal distribution). We say that ~Y, D-dimensional
vector, has a multivariate generalized Normal distribution with parameters (~µ; Σ; β) and noted as
~Y ∼ MGND(~µ; Σ; β), if its density function is defined as [10]:

p(~Y|θ) = p(~Y|~µ; Σ; β) =
Γ( d

2 )

π
d
2 Γ( d

2β )2
d

2β

β

|Σ| 12
exp

[
− 1

2
((~Y−~µ)TΣ−1(~Y−~µ))β

]
. (1)

For the case of finite mixtures, we suppose that we have K components following a mul-
tivariate generalized Normal distribution. LetY set of vectors, such asY = {~Y1,~Y2, . . . ,~YN},
be a realization from K mixture components. Here the ~Yn = (xn1, . . . , xnD) is D-dimensional.
Thus, the likelihood is defined as follows [4]:

p(Y|Θ) =
N

∏
n=1

K

∑
k=1

wk p(~Yn|θk), (2)

where Θ = (~w, θ). p(~Yn|θk) is the kth component of the mixture defined by its parameters
θk = (~µk, Σk, βk). Here, {wk} is a mixing weight parameter that satisfies 0 ≤ wk ≤ 1
together with ∑K

k=1 wk = 1.

• ~µk is the mean vector of the MGGD distribution.
• βk represents its shape parameter. It inspects the peakedness and the spread of the

distribution.
• Σk is its covariance matrix, also called a scatter matrix.

It is noted that each ~Yn is generated from one component.

2.3. The Infinite Mixture Model

In recent years, many nonparametric Bayesian methods have been developed in
order to build more realistic and more flexible statistical mixture models. In this case,
parameters are considered random and follow specific probability distributions (known as
prior distributions), allowing us to describe our knowledge before seeing the data, and to
update our prior beliefs, the likelihood is used. On the other hand, nonparametric Bayesian
models have the advantage of allowing an infinite number of clusters, so there is no
constraint on this number, and they are therefore considered more suitable for modeling, in
particular with dynamic data. Thus, the number of parameters may increase or decrease as
we have new data. With an infinite mixture, we can overcome the limits of the finite models,
which are highly restrictive and then we effectively take into account the uncertainty of
the model (the data come from an infinite number of clusters). In what follows, we will
show how infinite mixture models have the ability to generate new clusters or delete
some of existing ones when new data arrive. The model learning is based on building
estimates of the posterior distribution for our infinite multivariate generalized Normal
mixture model using the Monte Carlo Markov Chain (MCMC) technique [15,29]. Given
that the calculation of posterior distributions is intractable for the case of mixture models, it
is therefore recommended to implement effective approximation tools to generate samples
from these posterior distributions. In this work, we are motivated to apply the well



Appl. Sci. 2021, 11, 5798 5 of 16

known Gibbs sampler [11,30] to generate posterior samples. In what follows, we focus on
developing the priors and conditional posteriors needed to run Gibbs sampling.

2.3.1. Priors and Conditional Posterior Distributions

In contrast to deterministic approximation, which is generally based on the EM
algorithm—where the missing data noted by Z = (~Z1, . . . , ~ZN) where ~Zi = (Zi1, . . . , ZiK)
for i = 1, . . . —the N. Bayesian approach to mixture learning is more efficient. Indeed, it is
able to overcome the drawbacks related to the deterministic methods (maximum likelihood-
based technique) such as its convergence to local maxima and their tendency to overfit noisy
and sparse data. In the following, we develop our fully nonparametric Bayesian approach
for learning the infinite multivariate generalized Normal mixture model (inMGNMM).
Thus, the likelihood of complete data (both observed and missing) is expressed as:

p(Y ,Z|Θ) =
N

∏
n=1

K

∏
k=1

(wk p(~Yn|θk))
Znk . (3)

The role of the likelihood is to update the prior knowledge as regards the parameters
of the model (p(Θ)). Then, the priors on the model parameters will be updated and
expressed in terms of posterior knowledge p(Θ|Y ,Z). By exploiting the Bayes’ rule, we
have the following relationship between priors, likelihood and posteriors [4]:

p(Θ|Z ,Y) = p(Z ,Y|Θ)p(Θ)∫
p(Z ,Y|Θ)p(Θ)

∝ p(Z ,Y|Θ)p(Θ), (4)

where (Z ,Y), p(Θ) and p(Θ|Z ,Y) are the complete data, the prior information about the
model’s parameters and the posterior, respectively. It is important to note that the choice of
the priors is one of the crucial aspects of Bayesian modeling and directly influences the
final results [31]. The provided observed data will certainly improve these priors. In what
follows, selecting and specifying the best choice for priors is covered as well as the finding
of the underlying equations for the posteriors. After that, we will simulate a value very
close to the truth for Θ ∼ p(Θ|Z ,Y) by applying the efficient Gibbs sampler algorithm. In
the current work, we choose priors for the parameters of the proposed model as follows:

• We start by specifying a common prior for ~µj as a Normal distribution, thus we have
~µj ∼ N (~µ0, Σ0).

• For the shape parameter , β j, an appropriate prior is the Gamma distribution (β j ∼
G(αβ, ββ)).

• For the covariance matrix Σj, a natural prior choice is the Inverted Wishart (Σj ∼
IW(ψ, ν)).

Having all these prior distributions, we move now to calculate all conditional posterior
distributions based on the Bayes’ theorem.

- The conditional posterior distribution for the mean parameter is determined as:

p(~µj|Z ,Y) ∝ p(~µj) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ N (~µ0, Σ0) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ exp(−1
2
(~µj −~µ0)

TΣ−1
0 (~µj −~µ0)) ×

exp
(

∑
Zij=1

(
−1

2mβ j
((~Yi −~µj)

TΣ−1
j (~Yi −~µj))

β j)
)

.

(5)
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- The conditional posterior distribution for the shape parameter is determined as:

p(β j|Z ,Y) ∝ p(β j) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ G(αβ, ββ) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ β
αβ−1
j e−ββ β j

( β j

Γ(d/2β j)2
d/2β j

)nj
×

exp
(

∑
Zij=1

(
−1

2mβ j
((~Yi −~µj)

TΣ−1
j (~Yi −~µj))

β j)
)

.

(6)

- The conditional posterior distribution of covariance matrix is calculated as:

p(Σj|Z ,Y) ∝ p(Σj) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ IW(ψ, ν) ∏
Zij=1

p(~Yi|~µj, β j, Σj)

∝ |Σj|−(ν+d+1)/2e−1/2tr(ψΣ−1
j ) ×

exp
(

∑
Zij=1

(
−1

2mβ j
((~Yi −~µj)

TΣ−1
j (~Yi −~µj))

β j)
)

.

(7)

As for the conditional posterior distribution of the mixing weight ~w, we know that ~w is
determined on the simplex {(w1, . . . , wK) : ∑K−1

j=1 wk < 1}, then, in order to account for the
infinite mixture principle, a natural prior that we have to state is the Dirichlet distribution
with parameters δ

M [20].

p(~w|δ) = Γ(δ)

∏K
k=1 Γ( δ

K )

K

∏
k=1

w
δ
K−1
k . (8)

The inference of ~w is performed via the inference of the membership vectors ~Zn. Thus,
we can deduce p(Z|~w) as follows:

p(Z|~w) =
N

∏
n=1

p(~Zn|~w) =
N

∏
n=1

wZi1
1 . . . wZnM

M (9)

=
N

∏
n=1

K

∏
k=1

wZnk
k =

K

∏
k=1

wak
k ,

where ak represents the total elements in cluster k. When considering the Dirichlet integral,

we will obtain p(Z|η) = ∏N
n=1

(∑l<n I~Zn=~Zl
)+ δ

K

((n−1)+δ)
. For ~Yl , l = 1, . . . , n− 1, the conditional prior

that ~Xn to be in component k is given as [32]:

p(Znk = 1|δ; ~Z1, . . . , ~Zn−1) =
∑l<n I~Zn=~Zl

+ δ
K

n− 1 + δ
. (10)

In order to N vectors, Equation (10) is updated as follows [32]:

p(Znk = 1|δ;Z−n) =
a−nk +

δ
K

N − 1 + δ
, (11)

where Z−n = {~Z1, . . . , ~Zn−1, ~Zn+1, . . . , ~ZN}, a−nk is the number of vectors, excluding ~Yi, in
cluster j. It is then necessary to calculate the conditional posterior by multiplying the prior
(Equation (11)) by the likelihood ~Yi.
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Remember that, in order to deploy mixture models, we have to define the number of
components (called the model’s complexity), which is always a difficult question. In our
nonparametric case, we initially assume an infinite number of clusters by making K → ∞
in Equation (11). So, the conditional prior becomes [20,32]:

p(Znk = 1|δ;Z−n) =


a−nk

N−1+δ if a−nk > 0 if k ∈ represented clusters(R)
δ

N−1+δ if a−nk = 0 if k ∈ unrepresented clusters(U )
,

(12)

where the represented clusters are denoted byR and the unrepresented clusters are denoted
by U . Once the conditional priors in Equation (12) are evaluated, we now calculate the
posterior using the following resulting equation [32]:

p(Znk = 1|~µk, βk, Σk, ~wk, δ;Z−n) (13)

=


a−nk

N−1+δ p(~Yn|~µk, βk, Σk, ~wk) if k ∈ R∫ δp(~Yn |~µk ,βk ,Σk ,~wk)p(~µk)p(βk)p(Σk)p(~wk)
N−1+δ d~µkdβkdΣkdwk if k ∈ U

.

Depending on a given probability, the former equation can be explained clearly by the
fact that each vector is assigned to a represented or unrepresented cluster. If a vector is set
for an unrepresented component, then we will create a new represented component all the
time we have at least an empty cluster). This scenario explains the principle behind the
countably infinite mixture well [20]. Our implemented Bayesian infinite model is illustrated
in Figure 2. This figure shows the underlying graphical model.

ZiYiΣ𝑘

𝜇0
Σ0

𝜓

𝛼𝛽

𝜇𝑘

wk

𝛽k

𝜈

𝛽𝛽
Figure 2. Graphical representation of our developed Bayesian infinite multivariate generalized
Normal mixture model. Fixed hyperparameters are indicated by rounded boxes and random variables
by circles. Y is the observed variable, Z is the latent variable, large boxes indicate repeated process,
and the arcs show the dependencies between variables.

2.3.2. Pseudo-Algorithm

After obtaining all necessary conditional posterior distributions, we consider the MCMC
to estimate the underlying values. Here, the iterative Gibbs algorithm is executed [21] in
order to sample the next unknown amounts from the conditional distributions given the
values obtained previously. Our implemented pseudo-algorithm is summarized as follows:

• Generate ~Zi from Equation (13), i = 1, . . . , N.
• Update the represented clusters denoted by M.
• Update wj =

nj
N+δ and nj, j = 1, . . . , M.

• Update the mixing parameters wU = δ
δ+N .

• Update ~µk, βk and Σk using the underlying posteriors, k = 1, . . . , K.
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It is worth noting that, during the initialization step, the algorithm starts by supposing
that all the vectors are in the same cluster. Moreover, the initial values for the model’s
parameters are supposedly produced from their prior distribution. To sample the vectors
Zi, it is required to compute the integral in Equation (13); however, this quantity is not
analytically tractable. To deal with this issue, we propose to apply an efficient algorithm
named “Metropolis-Hastings algorithm (M-H)”. The latter has the advantage of making
the right decision to accept or reject the new samples—at iteration (t)—using an acceptance
rate defined as follows:

r =
p(Θ̃j|Z ,Y)q(Θ(t−1)

j |Θ̃j)

p(Θ(t−1)
j |Z ,Y)q(Θ̃j|Θ

(t−1)
j )

, (14)

where q is the target distribution. In order to deal with the convergence problem with
MCMC inference (in other words, how much the MCMC has to be executed), this problem
is addressed, as in [33], to stop sampling and by applying a successful algorithm named
one long-run with diagnostics [34].

3. Experiments

The goal of the following experiments is to evaluate the proposed framework and to
compare the performance of the infinite multivariate generalized Normal mixture to its
counterpart finite model and also to other models. We are primarily concerned with two
challenging applications, namely texture classification and human activity categorization.
For each of these, we have run ten chains with varying initial parameter values and have
considered 10,000 iterations for the Metropolis-within-Gibbs sampler. Convergence was
assessed using the diagnostic procedures, as in [35]. For all models tested, we discarded
the first 1000 iterations as “burn-in” and kept the remaining 9000 iterations, from which
we calculated the posteriors.

3.1. Texture Classification

First of all, we are motivated by the problem of texture images’ modeling and cate-
gorization. Unlike natural images, which include certain objects and structures, texture
images are a special category of images and do not have a well defined shape. Texture
characteristics play an important role in visual content analysis and are a well-studied
property of images. It has been widely exploited before as an important indicator for
the categorization and classification of images [36–39]. A number of computer vision
applications use the texture information such as information retrieval, material classifi-
cation [40], object detection [37,41], image segmentation [36,42,43] and facial expression
recognition [38]. Previous texture extraction techniques have been mainly based on Gray
Level Co-occurring Histograms [44], Local Binary Pattern (LBP) [45] and different filter
banks [46]. An in-depth examination of these approaches is beyond the scope of our
study. Instead, we are focusing on an efficient technique to extract relevant texture fea-
tures and this technique has produced interesting results (DMD) [25]. It is based on the
representation of texture using a set of local features called dense micro-block difference
(DMD). The obtained features do not involve any quantization, thus retaining the complete
information. In addition, these features do not involve any thresholding step and have the
advantage of being quick and simple, like binary features. They are capable of achieving
high discrimination and are considered invariant with respect to orientation, scale and
resolution. After extracting these features, we encode them using a Fisher vector method
[25] to obtain a set of descriptors of the underlying image. Thus, each image is represented
by a robust multidimensional vector of descriptors that involve high-order statistics (the
Matlab code for the features is available at http://www.cs.tut.fi/~mehta/texturedmd
(accessed on 1 February 2021)). The last step is to classify the resulting descriptors using
a linear support vector machine classifier, which results in the categorization of texture
images into homogeneous categories. In all our experiments, we use a linear SVM classifier,
which is able to directly operate on the vector of features and also requires less training

http://www.cs.tut.fi/~mehta/texturedmd
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time over other SVM kernels. The performance study is reported in terms of accuracy
based on 10 fold cross validation.

Experimental evaluation involves the following texture databases. The first dataset,
named UIUCTex [47], contains 25 texture classes and each one includes 40 images, thus,
each has 40,640 × 480 pixel images. The textures of this dataset are taken under different
scales and viewpoint changes, including non-rigid deformations. The second dataset,
named KTH-TIPS [40], contains images of ten classes (materials) and each one includes
81 images (200 × 200 pixel ) per class. Images are captured with different combinations
such as nine different scales, viewed under three different poses and illumination direc-
tions. The third dataset is the UMD dataset [48], which is composed of 25 textures classes
including 40 samples (with resolution of 1280 × 900) per each texture-class (a total number
of 25 × 40 = 1000 uncalibrated images). Images are captured under different significant
distances and viewing directions, and the illuminations are uncontrolled.

Figure 3 shows random samples of textured images from different classes presenting
in the three datasets. For all these databases, 50% of images are randomly chosen for
training and 50% for testing. In order to quantify how well textures are classified, we
evaluate the performance with an accuracy metric. To validate our approach (inMGNMM),
we compared it with five other methods, namely finite Gaussian mixture (GMM), infinite
Gaussian mixture (inGMM), finite generalized Gaussian mixture (GGMM), infinite general-
ized Gaussian mixture (inGGMM), and finite multivariate generalized Gaussian mixture
(MGGMM) [10].

(a) KTH-TIPS dataset

(b) UIUCTex dataset

(c) UMD dataset

Figure 3. Samples of textures from different datasets (a) KTH-TIPS, (b) UIUCTex, and (c)
UMD dataset.

The evaluation results using three different datasets for six different methods are
summarized in Tables 1–3, respectively. Accordingly, it is clear that our method has the
highest achieved accuracy for the three datasets. In particular, for the case of the UMD
dataset, the accuracy of our infinite mixture with DMD features is 92.12% and, therefore,
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it outperforms the other methods—GMM, inGMM, GGMM and inGGMM by—6%, 5%,
2.37% and 1.92%, respectively. Likewise, we reached the same conclusion for other datasets,
and our model provides very encouraging results using different features as compared
to other models. By contrast, the worst performance is obtained with the Gaussian-based
classification. We can also conclude that all obtained results using our proposed infinite
mixture are increased by around 1% to 2% if comparing it to its finite mixture counterpart
(MGGMM). This can be explained by the model’s capacity to combine prior knowledge
during the learning process, its generalization capability, and its flexibility in terms of
making less restrictive assumptions about the number of clusters than the finite model. On
the other hand, a superior performance of the visual feature DMD over the SIFT and LBP
for texture classification task can be observed in all these datasets. With DMD, the accuracy
is improved over SIFT and LBP by around 3% and 2%, respectively. This result is probably
achieved by the rich description of DMD obtained by considering all possible fine details
at different resolutions and scales. Finally, we note that the performance of all methods for
the KTH-TIPS dataset indicates that it is sometimes difficult to identify texture because of
its various rotation and viewpoint changes.

Table 1. Overall classification accuracy rate (%) of different approaches for the three texture datasets
using SIFT features.

Method KTH-TIPS UIUCTex UMD

GMM 80.22 84.64 83.70
inGMM 80.94 85.33 84.14
GGMM 82.11 86.51 86.42

inGGMM 83,30 87.21 87.17
MGGMM [10] 84.10 88.09 88.15

inMGNMM (our method) 85.91 89.03 89.10

Table 2. Overall classification accuracy rate (%) of different approaches for the three texture datasets
using LBP features.

Method KTH-TIPS UIUCTex UMD

GMM 80.88 84.98 83.99
inGMM 81.24 86.03 84.84
GGMM 82.90 87.05 86.96

inGGMM 83.94 87.84 87.86
MGGMM [10] 84.81 88.78 88.87

inMGNMM (our method) 86.29 89.81 89.97

Table 3. Overall classification accuracy rate (%) of different approaches for the three texture datasets
using DMD features.

Method KTH-TIPS UIUCTex UMD

GMM 83.08 87.77 86.12
inGMM 84.13 89.77 87.12
GGMM 85.76 90.02 89.75

inGGMM 86.88 90.67 90.20
MGGMM [10] 87.67 91.07 91.23

inMGNMM (our method) 88.91 92.11 92.12

3.2. Human Actions Categorization

Recently, multimedia categorization and recognition are becoming two challenging
research problems that have attracted a lot of attention for several applications [49–52].
Object categorization refers to the task of labelling objects into one of the predefined and
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meaningful categories and this step is mainly based on extracting effective visual features.
Image categorization plays an essential role in many applications such as automatic or-
ganization, activity recognition, object retrieval and tracking. In particular, recognizing
human activities (HAR) is extremely recommended for security purposes (video surveil-
lance), health care, robotics, and so forth. The objective is to identify the actions of one
or more persons and then to analyze them [53]. It is worth noting that manually catego-
rizing a big dataset is impractical and time consuming. Recently, various automatic and
semi-automatic methods have been developed to address this problem [10,12,54–56]. For
instance, a finite generalized Gaussian mixture model is investigated to deal with HAR
through a complex real dataset [10,12,52]. In [57], the authors developed an algorithm to
identify human gestures using features derived from key poses. A Hidden Markov Model
is also presented for HAR in [58]. It is noted that, for a human, a simple glance is enough
to classify or categorize any action. Nevertheless, exact and accurate categorization with a
computer (or algorithm) is a very difficult task and it will be more complex in the presence
of illumination, occlusions, lighting, noise, the and absence of a large amount of labelled
data. Thus, increasing attention has been paid to unsupervised machine learning methods,
which are able to learn objects from unlabelled data. Furthermore, implementing more
advanced computational intelligence techniques is required to solve the above issues and
to achieve higher recognition rates.

In this work, our contribution consists of exploiting our approach for human activity
categorization and recognition. For this goal, the KTH human action dataset [59] was used
to evaluate its performance. Some samples of representative actions with four scenarios
are presented in Figure 4. These scenarios are outdoors (s1), outdoors with scale variation
(s2), outdoors with different clothes (s3) and indoors (s4). The dataset basically contains
2391 sequences with different actions that are grouped into six categories—running, boxing,
walking, jogging, hand waving and hand clapping.

Walking Jogging Running Boxing Handwaving Handclapping
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Figure 4. Sample frames of the KTH dataset actions with different scenarios.

Before we applied our model to categorize actions, we basically adopted a few useful
preprocessing steps. Fist, a visual vocabulary was constructed by adopting the bag-of-
words (BOW) model representation for the input training sequences. Indeed, each sequence
would be defined by a set of local SIFT3D descriptors [60]. These features were then quan-
tized as visual words via the K-means algorithm [61]. We then had a frequency histogram
over the visual words. After that, we applied a probabilistic Latent Semantic Analysis
(pLSA) [62] method on the obtained frequency histograms to generate a d-dimensional
vector for each image. This final representation would then be used for unsupervised
activity categorization.

In order to assess the performance of the proposed approach, we adopted the accuracy
metric as a recognition rate for human action categorization. To test the efficiency of
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our method, we used a five-fold cross-validation setup. For evaluation purposes, we
compared the proposed approach with several state-of-the-art methods as depicted in
Table 4. According to this comparative study, we can clearly see that our approach provides
the best recognition rate (84.68%) compared to the other methods. This result is considered
very encouraging given that we approached the recognition problem in an unsupervised
manner. The superior performance of the proposed infinite model over its finite counterpart
(82.01%) is also clear. This result proves that the infinite mixtures are more attractive and
flexible enough to be applied to recognition problems. We report that the developed
framework does not take into account any background tracking or subtraction and, for
this reason, the accuracy is considered quite high. Note that sometimes we are not able to
recognize very similar actions such as those involving hand motions. To improve these
findings, it may be interesting to simultaneously incorporate a feature selection process
into the developed statistical learning model.

Table 4. Comparative study for Human Activity Recognition between different approaches for the
KTH database.

Method Recognition Rate (%)

GMM-FS 72.51
GMM-KL 77.77

GGMM-FS 73.89
GGMM-KL 78.05
SVM-Linear 73.24

SVM-Polynomial 71.44
SVM-Radial basis 79.33
Niebles et al. [63] 83.33
Wong et al. [64] 73.24
Fan et al. [65] 79.33

Schuldt et al. [59] 71.71
Dolar et al. [66] 78.50

MGGMM-FS [10] 82.01
MGGMM-KL [10] 82.36

inMGNMM (our method) 84.68

4. Discussion

The experiments conducted show the superiority of our approach over other state-of-
the-art statistical models and methods. Indeed, the obtained results show the benefits of our
model and prove the flexibility of the implemented statistical framework. In particular, we
obtain a better performance within the descriptor DMD (in terms of accuracy). However, it
is important to note that some poor results are obtained (for all involved methods in this
work) and this can probably be explained by the difficulty of identifying the exact texture
class due to its different rotations and changes in viewpoints. One possible solution, which
we are starting to work on, is to introduce a feature selection mechanism, as in [67,68], to
improve the classification performance. Another challenge we face with our method is
to fine-tune hyperparameters that may have an impact on classification and recognition
accuracy. It is also important to note that the quality of images used for validation purposes
may be affected by uncertainties and/or inaccuracies that would make the edges not
perfectly distinguishable. In these cases, it would be necessary to use fuzzy preprocessing
of the images, as done in [69,70]. On the other hand, Bayesian classification by infinite
mixture models is also noted to be interesting due to its efficient MCMC sampling technique;
however, it is problematic because of its high computational cost. In particular, we run
the Gibbs algorithm several times to achieve a correct average accuracy. Therefore, one
potential for future work might be to extend this work to use variable inference instead,
in order to save time over MCMC methods. Finally, it may be important to apply the
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proposed work to more complicated and challenging machine vision datasets for further
performance evaluation.

5. Conclusions

We have proposed in this paper an effective hierarchical nonparametric statistical
Bayesian framework that tackles complex data modeling, categorization and classification.
The proposed framework is based on a mixture of multivariate generalized Normal distri-
butions (MGNMM). The main goal here is to extend the finite MGNMM to the infinite case
(inMGNMM), in which the number of components is supposed to be infinite initially and
will be inferred automatically during the learning and modeling of classes. The success of
the nonparametric Bayesian learning approach is due to the appropriate choice of priors
and the accurate posterior estimates via MCMC simulations. The proposed inMGNMM
is learned through MCMC inference. This learning algorithm is guaranteed to converge
and has the advantage of taking into account our prior knowledge, to formalize our un-
certainty via flexible probability distributions, and to overcome the over-fitting issue. Our
choice of the infinite assumption, instead of the finite, is motivated by the fact it is able
to learn the number of components (i.e., model selection) and the parameters at the same
time. The implemented framework allows for the logical treatment of determining the
optimal number of components and the efficient estimation of the parameters’ values. The
effectiveness of the developed approach is confirmed by testing it on two challenging com-
puter vision applications, namely texture classification and human activities categorization.
Extensive experiments were conducted and the results demonstrate that the proposed
approach outperforms the state-of-the-art on a number of datasets. These results prove the
coherence, effectiveness and flexibility of our approach. Future works could be devoted to
extending the current Bayesian work by integrating a feature selection mechanism, which
could further enhance the expected results. It is also our hope that many other real-world
image/signal processing problems can be tackled within the proposed approach. Finally,
we plan to extend the current work by implementing a variational inference model in order
to overcome the computational complexity of the Bayesian approach.
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