Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle
Abstract
:Featured Application
Abstract
1. Introduction
2. Micro-Nozzle and Active Flow Control Configuration Using Secondary Injection
2.1. Micro-Nozzle Geometry
2.2. Secondary Injection Configuration
2.3. Micro-Nozzle Performance Estimation
3. Numerical Setup and Methodology
3.1. Numerical Approach and Setup
3.2. Grid Sensitivity Study
3.3. Validation, Boundary Conditions, and Test Matrix
- test case N2_7: the bypassed jet 1 activation at Mjet1 = 1.31 flow with overall mass flow rate conservation.
- test case N2_8: configuration without secondary injection at the same mass flow rate of test case N2_6.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Köhler, J.; Bejhed, J.; Kratz, H.; Bruhn, F.; Lindberg, U.; Hjort, K.; Stenmark, L. A hybrid cold gas microthruster system for spacecraft. Sens. Actuators A Phys. 2002, 97, 587–598. [Google Scholar] [CrossRef]
- Lemmer, K. Propulsion for cubesats. Acta Astronaut. 2017, 134, 231–243. [Google Scholar] [CrossRef]
- Silva, M.A.; Guerrieri, D.C.; Cervone, A.; Gill, E. A review of MEMS micropropulsion technologies for cubesats and pocket-qubes. Acta Astronaut. 2018, 143, 234–243. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, M.G.; Fontanarosa, D. A novel quasi-one-dimensional model for performance estimation of a Vaporizing Liquid Microthruster. Aerosp. Sci. Technol. 2019, 84, 1020–1034, ISSN 1270-9638. [Google Scholar] [CrossRef]
- Mueller, J.; Tang, W.; Wallace, A.; Lawton, R.; Li, W.; Bame, D.; Chakraborty, I.; Mueller, J.; Tang, W.; Wallace, A.; et al. Design, analysis and fabrication of a vaporizing liquid microthruster. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997; p. 3054. [Google Scholar]
- Fontanarosa, D.; De Pascali, C.; De Giorgi, M.G.; Siciliano, P.; Ficarella, A.; Francioso, L. Fabrication and embedded sensors characterization of a micromachined water-propellant vaporizing liquid microthruster. Appl. Therm. Eng. 2021, 188, 116625. [Google Scholar] [CrossRef]
- Guerrieri, D.C.; Silva, M.A.; Cervone, A.; Gill, E. Selection and characterization of green propellants for micro-resistojets. J. Heat Transf. 2017, 139, 102001. [Google Scholar] [CrossRef]
- Alexeenko, A.A.; Gimelshein, S.F.; Levin, D.A. Numerical Study of Flow Structure and Thrust Performance for 3-D Mems-Based Nozzles. In Proceedings of the 32nd AIAA Fluid Dynamics Conference and Exhibit, St. Louis, MO, USA, 24–26 June 2002. [Google Scholar]
- De Giorgi, M.G.; Fontanarosa, D.; Ficarella, A. Modeling viscous effects on boundary layer of rarefied gas flows inside micronozzles in the slip regime condition. Energy Procedia 2018, 148, 838–845. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Zhang, X.; Liu, M. Continuum-based model and its validity for micro-nozzle flows. Jisuan Wuli/Chin. J. Comput. Phys. 2007, 24, 598–604. [Google Scholar]
- Kim, I.; Kwon, S.; Lee, J.W. Effect of unsteadiness and nozzle asymmetry on thrust of a microthruster. Nanoscale Microscale Thermophys. Eng. 2012, 16, 50–63. [Google Scholar] [CrossRef]
- Hameed, A.A.; Kafafy, R.; Asrar, W.; Idres, M. Improving the efficiency of micronozzle by heating sidewalls. AIP Conf. Proc. 2012, 1440, 409–417. [Google Scholar]
- Cai, Y.; Liu, Z.; Song, Q.; Shi, Z.; Wan, Y. Fluid mechanics of internal flow with wall friction and cutting strategies for micronozzles. Int. J. Mech. Sci. 2015, 100, 41–49. [Google Scholar] [CrossRef]
- Handa, T.; Matsuda, Y.; Egami, Y. Phenomena peculiar to under-expanded flows in supersonic micronozzles. Microfluidics and Nanofluidics 2016, 20, 166. [Google Scholar] [CrossRef]
- Sebastião, I.B.; Santos, W.F.N. Numerical simulation of heat transfer and pressure distributions in micronozzles with surface discontinuities on the divergent contour. Comput. Fluids 2014, 92, 125–137. [Google Scholar] [CrossRef]
- Bayt, R.L.; Breuer, K.S. Viscous Effects in Supersonic MEMS-Fabricated Micronozzles. Available online: https://www.semanticscholar.org/paper/VISCOUS-EFFECTS-IN-SUPERSONIC-MEMS-FABRICATED-Bayt-Breuer/23e1ee942a84ab62f8fedb3e65950696aaa06990 (accessed on 22 April 2021).
- Hao, P.F.; Ding, Y.T.; Yao, Z.H.; He, F.; Zhu, K.Q. Size effect on gas flow in micro nozzles. J. Micromech. Microeng. 2005, 15, 2069. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Zhang, G.; Chen, Y. Study on micronozzle flow and propulsion performance using DSMC and continuum methods. Acta Mech. Sin./Lixue Xuebao 2006, 22, 409–416. [Google Scholar] [CrossRef]
- Neilson, J.H.; Gilchrist, A.; Lee, C.K. Side Thrust Control by Secondary Gas Injection into Rocket Nozzles. J. Mech. Eng. Sci. 1968, 10, 239–251. [Google Scholar] [CrossRef]
- Green, C.J.; McCullough, F. Liquid injection thrust vector control. AIAA J. 1963, 1, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Shanmugaraj, G.; Jeyan, J.M.; Singh, V.K. Effects of secondary injection on the performance of over-expanded single expansion ramp nozzle. J. Phys. Conf. Ser. 2020, 1473, 012002. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Xu, J.-L.; Huang, S.; Lin, Y.-C.; Jiang, J.-J. Experimental and numerical investigation of an axisymmetric divergent dual throat nozzle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 563–572. [Google Scholar] [CrossRef]
- Gu, R.; Xu, J.; Guo, S. Experimental and Numerical Investigations of a Bypass Dual Throat Nozzle. ASME. J. Eng. Gas Turbines Power 2014, 136, 084501. [Google Scholar] [CrossRef]
- Léger, L.; Zmijanovic, V.; Sellam, M.; Chpoun, A. Controlled flow regime transition in a dual bell nozzle by secondary radial injection. Exp. Fluids 2020, 61, 246. [Google Scholar] [CrossRef]
- Sieder-Katzmann, J.; Propst, M.; Stark, R.; Schneider, D.; General, S.; Tajmar, M.; Bach, C. ACTiVE–Experimental set up and first results of cold gas measurements for linear aerospike nozzles with secondary fluid injection for thrust vectoring. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences EUCASS, Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Cuppoletti, D.R.; Gutmark, E.J.; Hafsteinsson, H.E.; Eriksson, L.E.; Prisell, E. Analysis of Supersonic Jet Thrust with Fluidic Injection. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. AIAA 2014-0523. [Google Scholar]
- Ferrero, A.; Martelli, E.; Nasuti, F.; Pastrone, D. Fluidic Control of Transition in a Dual-bell Nozzle. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, VIRTUAL EVENT, 24–28 August 2020. AIAA 2020-3788. [Google Scholar] [CrossRef]
- Semlitsch, B.; Mihăescu, M.; Fuchs, L. Large Eddy Simulation of Fluidic Injection into a Supersonic Convergent-Divergent Duct. In Direct and Large-Eddy Simulation IX; Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V., Eds.; ERCOFTAC Series; Springer: Cham, Switzerland, 2015; Volume 20. [Google Scholar] [CrossRef] [Green Version]
- Semlitsch, B.; Mihăescu, M. Fluidic Injection Scenarios for Shock Pattern Manipulation in Exhausts. AIAA J. 2018, 56, 4640–4644. [Google Scholar] [CrossRef]
- Semlitsch, B.; Cuppoletti, D.R.; Gutmark, E.J.; Mihăescu, M. Transforming the Shock Pattern of Supersonic Jets Using Fluidic Injection. AIAA J. 2019, 57, 1851–1861. [Google Scholar] [CrossRef] [Green Version]
- Zmijanovic, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A. Experimental–Numerical Parametric Investigation of a Rocket Nozzle Secondary Injection Thrust Vectoring. J. Propuls. Power 2016, 32, 196–213. [Google Scholar] [CrossRef]
- Cen, J.; Xu, J. Performance evaluation and flow visualization of a MEMS based vaporizing liquid micro-thruster. Acta Astronaut. 2010, 67, 468–482. [Google Scholar] [CrossRef]
- de Giorgi, M.G.; Fontanarosa, D. Numerical data concerning the performance estimation of a Vaporizing Liquid Microthruster. Data Brief 2019, 22, 307–311. [Google Scholar] [CrossRef]
- Greenshields, C.; Weller, H.; Gasparini, L.; Reese, J. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 2010, 63, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kurganov, A.; Tadmor, E. New high-resolution central schemes for nonlinear conservation laws and convectiondiffusion equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef] [Green Version]
- van Leer, B. Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- NASA. Examining Spatial (Grid) Convergence. 2006. Available online: https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html (accessed on 14 February 2021).
Micro-Nozzle Parameters | Dimensions |
---|---|
Ainlet | 1070 μm × 120 μm |
Aexit | 1760 μm × 120 μm |
At | 150 μm × 120 μm |
Rt | 75 μm |
αconv | 45° |
αdiv | 15° |
Secondary Injection Parameters | Dimensions |
---|---|
xjet,1 1 | 1.730 mm |
Ajet,1 | 40 μm × 120 μm |
xjet,2 1 | 2.475 mm |
Ajet,2 | 50 μm × 120 μm |
Test Case Name | Refinement Level | Cell Number | Grid Spacing 1 [μm] | Spacing Factor | GCI Parameter, θxy 2 [μm] | GCI [%] |
---|---|---|---|---|---|---|
SIM1-2D | Fine | 35,690 | 48.89 | 1 | 28.79 | GCI12 = 0.035 |
SIM2-2D | Intermediate | 23,931 | 83.81 | 1.71 | 28.68 | GCI23 = 0.514 |
SIM3-2D | Coarse | 17,732 | 135.38 | 2.77 | 27.06 | - |
Test Case Name | Refinement Level | Cell Number | Grid Spacing 1 [μm] | Spacing Factor | GCI Parameter, θxy 2 [μm] | GCI [%] | Computational Cost 3 [h] |
---|---|---|---|---|---|---|---|
3DGIS_1 | Fine | 607,720 | 10 | 1 | 22.47 | GCI12 = 0.67 | 105.34 |
3DGIS_2 | Intermediate | 516,360 | 15 | 1.5 | 23.33 | GCI23 = 5.26 | 87.51 |
3DGIS_3 | Coarse | 493,520 | 20 | 2 | 16.31 | - | 80.58 |
Test Case | Jet 1 | Jet 2 | [kg/s] | [kg/s] | [kg/s] | Mjet,1 | Mjet,2 | cμ,jet1 | cμ,jet2 | cμ,tot |
---|---|---|---|---|---|---|---|---|---|---|
H2O_1 | OFF | OFF | 5.00 × 10−6 | - | 5.00 × 10−6 | - | - | - | - | - |
H2O_2 | ON | OFF | 5.00 × 10−6 | 0.63 × 10−6 | 5.63 × 10−6 | 1.09 | - | 1.26 × 10−1 | - | 1.26 × 10−1 |
H2O_3 | ON | ON | 5.00 × 10−6 | 0.96 × 10−6 | 5.96 × 10−6 | 1.09 | 0.55 | 1.28 × 10−1 | 4.02 × 10−2 | 1.68 × 10−1 |
H2O_4 | ON | OFF | 4.50 × 10−6 | 0.50 × 10−6 | 5.00 × 10−6 | 0.95 | - | 1.11 × 10−1 | - | 1.11 × 10−1 |
Test Case | Jet 1 | Jet 2 | [kg/s] | [kg/s] | [kg/s] | Mjet,1 | Mjet,2 | cμ,jet1 | cμ,jet2 | cμ,tot |
---|---|---|---|---|---|---|---|---|---|---|
N2_1 | OFF | OFF | 5.00 × 10−6 | - | 5.00 × 10−6 | - | - | - | - | - |
N2_2 | ON | OFF | 5.00 × 10−6 | 0.15 × 10−6 | 5.15 × 10−6 | 0.43 | - | 8.58 × 10−3 | - | 8.58 × 10−3 |
N2_3 | ON | OFF | 5.00 × 10−6 | 0.29 × 10−6 | 5.29 × 10−6 | 0.86 | - | 3.95 × 10−2 | - | 3.95 × 10−2 |
N2_4 | ON | ON | 5.00 × 10−6 | 0.50 × 10−6 | 5.50 × 10−6 | 0.86 | 0.43 | 4.28 × 10−2 | 1.38 × 10−2 | 5.66 × 10−2 |
N2_5 | ON | OFF | 5.00 × 10−6 | 0.76 × 10−6 | 5.76 × 10−6 | 1.71 | - | 1.93 × 10−1 | - | 1.93 × 10−1 |
N2_6 | ON | ON | 5.00 × 10−6 | 1.24 × 10−6 | 6.24 × 10−6 | 1.71 | 0.86 | 2.33 × 10−1 | 6.40 × 10−2 | 2.97 × 10−1 |
N2_7 | ON | OFF | 4.50 × 10−6 | 0.50 × 10−6 | 5.00 × 10−6 | 1.31 | - | 1.19 × 10−1 | - | 1.19 × 10−1 |
N2_8 | OFF | OFF | 6.24 × 10−6 | - | 6.24 × 10−6 | - | - | - | - | - |
Test Case | [kg/s] | A* [mm2] | p0 [Pa] | T [mN] | Isp [s] | [-] | [%] | [-] |
---|---|---|---|---|---|---|---|---|
H2O_1 | 5.00 × 10−6 | 0.018 | 2.15 × 105 | 4.489 | 89.8 | 1.160 | - | - |
H2O_2 | 5.63 × 10−6 | 0.018 | 2.15 × 105 | 5.140 | 91.3 | 1.328 | +12.6 | 14.5 |
H2O_3 | 5.96 × 10−6 | 0.018 | 2.15 × 105 | 5.449 | 91.4 | 1.408 | +19.2 | 21.4 |
H2O_4 | 5.00 × 10−6 | 0.018 | 1.95 × 105 | 4.531 | 90.6 | 1.291 | +0.0 | 11.3 |
Test Case | Tjet [mN] | [%] | Isp,jet [s] | [%] | [μm] | θxy1 [μm] | [μm] | θzx2 [μm] |
---|---|---|---|---|---|---|---|---|
H2O_1 | 2.801 | - | 56.0 | - | 132.3 | 23.2 | 7.6 | 2.5 |
H2O_2 | 3.247 | +15.9 | 57.7 | +3.0 | 187.2 | 19.9 | 8.5 | 2.5 |
H2O_3 | 3.433 | +22.6 | 57.6 | +2.9 | 174.7 | 9.7 | 6.1 | 2.1 |
H2O_4 | 2.839 | +0.9 | 56.8 | +1.4 | 162.8 | 18.4 | 7.9 | 2.5 |
Test Case | [kg/s] | A* [mm2] | p0 [Pa] | T [mN] | Isp [s] | [-] | [%] | [-] |
---|---|---|---|---|---|---|---|---|
N2_1 | 5.00 × 10−6 | 0.018 | 1.29 × 105 | 2.694 | 53.9 | 1.160 | - | - |
N2_2 | 5.15 × 10−6 | 0.018 | 1.29 × 105 | 2.815 | 54.7 | 1.212 | +3.0 | 4.5 |
N2_3 | 5.29 × 10−6 | 0.018 | 1.29 × 105 | 2.900 | 54.8 | 1.249 | +5.8 | 7.7 |
N2_4 | 5.50 × 10−6 | 0.018 | 1.29 × 105 | 3.028 | 55.1 | 1.304 | +10.0 | 12.4 |
N2_5 | 5.76 × 10−6 | 0.018 | 1.29 × 105 | 3.276 | 56.9 | 1.411 | +15.2 | 21.6 |
N2_6 | 6.24 × 10−6 | 0.018 | 1.29 × 105 | 3.577 | 57.3 | 1.541 | +24.8 | +32.9 |
N2_7 | 5.00 × 10−6 | 0.018 | 1.16 × 105 | 2.744 | 54.9 | 1.314 | +0.0 | +13.3 |
N2_8 | 6.24 × 10−6 | 0.018 | 1.61 × 105 | 3.458 | 55.4 | 1.193 | +24.8 | +2.9 |
Test Case | Tjet [mN] | [%] | Isp,jet [s] | [%] | [μm] | θxy1 [μm] | [μm] | θzx2 [μm] |
---|---|---|---|---|---|---|---|---|
N2_1 | 1.819 | - | 36.4 | - | 170.5 | 19.5 | 8.4 | 2.7 |
N2_2 | 1.927 | +5.9 | 37.4 | +2.8 | 208.0 | 29.7 | 10.2 | 3.1 |
N2_3 | 1.994 | +9.6 | 37.7 | +3.6 | 198.3 | 25.0 | 8.7 | 2.9 |
N2_4 | 2.077 | +14.2 | 37.8 | +3.9 | 217.6 | 20.9 | 8.4 | 2.8 |
N2_5 | 2.291 | +26.0 | 39.8 | +9.3 | 232.6 | 14.9 | 10.2 | 3.1 |
N2_6 | 2.475 | +36.1 | 39.7 | +9.1 | 281.9 | 7.0 | 9.0 | 3.1 |
N2_7 | 1.867 | +2.0 | 37.4 | +2.8 | 206.2 | 18.8 | 7.9 | 2.8 |
N2_8 | 2.416 | +32.8 | 38.7 | +6.3 | 166.5 | 12.2 | 9.3 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanarosa, D.; De Giorgi, M.G.; Ficarella, A. Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle. Appl. Sci. 2021, 11, 5821. https://doi.org/10.3390/app11135821
Fontanarosa D, De Giorgi MG, Ficarella A. Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle. Applied Sciences. 2021; 11(13):5821. https://doi.org/10.3390/app11135821
Chicago/Turabian StyleFontanarosa, Donato, Maria Grazia De Giorgi, and Antonio Ficarella. 2021. "Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle" Applied Sciences 11, no. 13: 5821. https://doi.org/10.3390/app11135821
APA StyleFontanarosa, D., De Giorgi, M. G., & Ficarella, A. (2021). Thrust Augmentation of Micro-Resistojets by Steady Micro-Jet Blowing into Planar Micro-Nozzle. Applied Sciences, 11(13), 5821. https://doi.org/10.3390/app11135821