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Abstract: In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks
that require strict path following and would benefit from collaboration with a human to guide the
motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining
compliant with the human instructions. We propose a dual-loop control structure where the outer
admittance control loop allows the robot to be compliant along a path considering the projection
of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The
inner motion control loop is designed based on a modified sliding mode control (SMC) law. We
evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF
industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is
conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM),
and combined motion with virtual forces (CVF). Results show that the difference of root mean square
error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this
method for various path-tracking applications in compliant human–robot collaboration.

Keywords: path tracking; compliance control; human–robot interaction; sliding mode controller;
manual guidance

1. Introduction

Guidance constraints are a type of active constraints/virtual fixtures, which have been
studied in the field of physical human–robot interaction (pHRI) by many researchers [1–7].
From the work of Rosenberg [1], the concept of perceptual overlay to increase task per-
formance has been explored in different types of human–machine manipulation systems,
such as telemanipulators and cooperative manipulators [3]. These virtual fixtures are often
used to guide the movement of the robot towards desired targets while avoiding obstacles
and preventing the robot from entering predefined forbidden regions. Although reference
paths for the robot are generated in some applications, the accuracy of path following is
not the focus of these techniques. Instead, compliant behavior of the robot that allows
deviation of the path is the main concern of most pHRI studies. However, accurate path
tracking and compliant behavior are not necessarily antinomies. They can be delicately
tailored to meet the requirements for dedicated purposes and achieve better performance.
For example, rehabilitation patients can benefit greatly from practicing with equipment
that is capable of following a path while still being compliant along the path, because it
allows the patient to closely track an optimal path predefined by medical experts, and
progress in different levels of assistance, which has been shown to improve rehabilitation
progress [8–10]. Another important application is in industrial assembly tasks. Many
efforts have been reported in this area towards efficient human–robot collaboration [11–15].
The authors of [13] presented a force-overshoot-free controller for high-accuracy assembly
tasks using an industrial robot. Furthermore, in [14] a collaborative task for a homokinetic
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joint assembly is performed using admittance control. In [15], a method for robotic fixture-
less approach of large flexible panels assembly using compliance force control is presented
and evaluated with an industrial robot. The aim of these approaches is to relieve the
operator from having to manipulate heavy components during the assembly and instead
being able to focus only with the dexterous part of the assembly. Moreover, an important
factor is that in high-precision assembly tasks static fixtures are necessary to keep in place
the parts being joined and task performance depends on these fixtures. These tasks could
benefit from a compliant path-tracking system. Furthermore, other direct application
of path tracking in human–robot collaboration is for educational and physical training
purposes where the robot system can be used as a tool to teach complex tasks that are best
learned by hand-in-hand demonstration. Examples include practicing calligraphy, assisted
hand–motor skills development, and so on [16,17]. In this sense, the robot system acts as
the coach and the user is guided to follow an optimal path that perfectly accomplishes the
task while obtaining different levels of assistance to trace the path, from completely passive
to completely active. Based on these analyses, we found that in many manual guidance
applications, it is beneficial for the robot to follow a path while being compliant along the
path. Consequently, the goal of this paper is to investigate the related techniques.

Path-tracking is an important feature of most robotic systems. From manipulators to
mobile platforms, the ability to follow a path with high accuracy has been investigated
by many researchers [2,18,19]. Moreover, path-tracking in compliant human–robot col-
laboration has been the topic of recent studies. In [4], virtual fixtures were created and
modified through an iterative method based on kinesthetic teaching and Akima splines.
The approach was evaluated in a simulated sanding task using a 3-DOF collaborative robot
and a user study which showed that virtual guide assistance improves the performance
of co-manipulation tasks. Later, Raiola et al. in [20] defined virtual guides as virtual
mechanisms using Gaussian mixtures model (GMM) from multiple user demonstrations,
which can be refined through incremental training. They proposed to establish a library
of multiple virtual guides which can be created, modified and used by the human opera-
tor. The performance was experimentally evaluated with a compliant 3-DOF robot and
a user study. The algorithms in [4,20] concentrated on virtual guides construction and
how to iteratively modify the nominal path, but there was no treatment of the accuracy of
path-tracking. Wu et al. in [21] optimally reshaped the desired robot trajectory using an
adaptive neural network controller to effectively complete co-manipulation tasks with a
robotic exoskeleton. The experimental validation was demonstrated in a 2-DOF motion
case but did not describe extensibility of the method to higher DOFs or to different types of
manipulators. In other words, the research effort was to conceive an algorithm that allows
the human to modify the desired trajectory using shared control; thus, the contributions
focus on the path generation aspect of human–robot collaboration. However, the challenge
of accuracy in human–robot interaction by regulating robot motion in the predetermined
task direction remains.

Previous works on the accuracy aspect for compliant tasks by the use of virtual fixtures
include [5–7], where virtual fixtures were used together with admittance control to allow
for compliant path tracking tasks. A vision-based virtual fixture algorithm for cooperative
manipulation was designed and implemented in [5], where the authors described how to
create hard and soft virtual fixtures for two types of reference targets—point positioning
and curve following—as well as the extensions to virtual geometries such as tubes or cones
to confine motion to a volume for a cooperative system which uses admittance control.
The experimental setup was validated using the “Steady Hand Robot” [22] in macroscale
and microscale planar tasks. The results showed that the addition of vision-based virtual
fixtures assistance increased performance regarding position error and execution time,
and that there is a trade-off between performance and user control. However, the experi-
mental validation consisted in using different fixed levels of admittance, but as covered
in [23] adaptive admittance control has been proven more effective. Moreover, there is no
distinction between the virtual fixture definition and the admittance control parameter
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tuning. This complicates the definition of the virtual fixtures and directly influences the
achievable tracking performance, as shown in their study. In [6], virtual fixtures were used
to control the robot for robotic-assisted surgery. The task was defined and projected into
a space of orthogonal directions that consisted of preferred directions and non-preferred
ones. The authors of [6] explored and compared two types of error compensation—manual
and autonomous—to reduce the path-tracking task error. The results showed that man-
ual compensation was not sufficient for correction of all deviations, particularly when a
translational virtual fixture was defined and the deviation error for orientation occurred,
and vice versa. This was solved with their proposed autonomous compensation method
where the user had control of the system along the preferred directions through the forces
applied, while the robotic system independently compensated deviations. In [7], a frame-
work for compliant path tracking tasks was proposed. The system used a virtual robot
approach to obtain the desired velocities that were treated as the command to the inter-
nal position controller. Motion constraints and task space constraints can be defined in
this framework. The proposed approach was experimentally evaluated using a 7-DOF
KUKA LWR cobot. The results showed that it is easy to define different constraints in the
framework by adjusting the properties and parameters in their algorithm. However, all
parameters were tuned heuristically and specifically for the evaluated task. The authors
of [24] presented a hybrid position-force control oriented to surface treatment tasks, e.g.,
sanding, deburring, polishing, etc. They used sliding mode concepts for the robot force
control to maintain the orientation of the tool always perpendicular to the surface and to
obtain the desired tool pressure on the surface. The lower-priority tracking controller was
designed to follow the desired trajectory where deviations to satisfy safety constraints are
allowed. Finally, redundancy resolution was also included to keep the manipulator near its
home configuration for safety purposes. The method showed increased robustness and low
computational cost, and experimental validation of the approach using a 7R manipulator
proved its applicability and effectiveness.

The common drawbacks of the cited works are that, in many cases, the accuracy aspect
of path tracking when compliance is combined for co-manipulation tasks was not explored.
Besides, the experimental setup often relies on robots designed to be inherently suitable for
manipulation tasks. Furthermore, kinematic constraints such as singularities, joint limits,
task space limits, etc., if considered, are part of the virtual fixture definition and therefore
task dependent. As a result, the task must be carefully planned to avoid these kinematic
constraints, which imposes restrictions on the task definition. Given these recent references
in the field and considering their contributions and stated drawbacks, we believe the topic
of path tracking is highly relevant to human–robot collaboration applications, and the
study of the associated design strategies is of great importance and value.

In this paper, we aim to achieve compliance of a robot manipulator along a predefined
path, giving the robot the ability to move forward or backward depending on the direction
of an external force applied to the end effector while tracking the path. Figure 1 illustrates
this objective, where a desired path is shown and in the case of an external force is applied,
the robot is compliant only along the path tangential direction, and not compliant along
the normal direction. To accomplish this goal, we propose a dual-loop control structure,
including an inner motion control loop and an outer admittance control loop. A modified
sliding mode controller (SMC) is designed for the inner motion control, which guaran-
tees desirable state tracking performance and robustness while significantly suppresses
chattering. In the outer admittance loop, we define the compliance control problem in the
tangential-normal-binormal (TNB) frame associated with the path to find the projection of
the external force in the tangential direction and develop an atemporal path generation
strategy by parameterizing the path with respect to the arc length to move along the path as
desired by the user. Furthermore, an adaptive admittance law that has been experimentally
verified in [23] is exploited to allow a timely, intuitive, and simple communication between
the human and robot. In addition, the proposed adaptive admittance law considers the
most common kinematics constraints that can appear in manual guidance interaction and
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adapts the admittance parameters appropriately based on the objectives of safety, accuracy,
and comfort. In this approach, kinematic constraints are not task dependent and instead
are configuration dependent, which means that they can be reused in multiple applications.
Furthermore, these constraints are treated simultaneously, considering smooth transitions
among them. Combining the TNB frame projection and adaptive admittance law, the
outer admittance control loop realizes a safe and intuitive human-robot collaboration along
a predefined path while the robust inner motion control loop guarantees that the robot
follows the path accurately.

We validate the proposed approach with two experiments including a linear motion
test to demonstrate the behavior of the robot to the direction of the external force applied
and a general 3D path test. Both tests are performed on a traditional 6-DOF industrial robot
equipped with a force/torque (F/T) sensor on its end effector. No dedicated hardware
is required. We compare three types of motion—free motion (FM), force-applied motion
(FAM), and combined motion with virtual forces (CVF)—to show the performance in both
ends of the assistance range spectrum. FM demonstrates the fully assisted case, where
no force from the user is needed; FAM is the no-assistance case, where the motion of the
robot along the path depends on the force applied by the user; and CVF is the smooth
transition between the previous two cases. To achieve the proposed objective of compliant
human–robot collaboration with accurate path-tracking, the robot follows a reference path
and the tracking error should be small, whether it is subject to external forces or not. Thus,
we evaluate the tracking performance of each type of motion by calculating the root mean
square error (RMSE). The experiments exhibit not only accurate path tracking with desired
compliant behavior but also the applicability of the proposed approach to traditional
industrial manipulators with F/T sensors. Therefore, the main contributions of this work
are as follows:

• Development of a dual-loop control structure that achieves accurate path tracking for
collaborative tasks while maintaining compliance along the path.

• Safe and intuitive human–robot interaction achieved by the outer adaptive admittance
control loop.

• Equivalent path tracking performance guaranteed by the inner modified SMC loop
under various human–robot collaborative scenarios.

• Experimental validation with a traditional 6-DOF industrial robot proving the gener-
ality of the method implementation.

Figure 1. Path tracking for human–robot interaction with compliance along a predefined path.

The paper is structured as follows. Section 2 covers the problem formulation and the
methodology, including the inner motion control loop and the outer admittance control
loop. In Section 3, we describe the experimental setup and tests performed to validate the
proposed approach. Additionally, we present the results and analysis of RMSE, which
is used to evaluate the tracking performance. Finally, the conclusions of the work are
presented in Section 4.
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2. Problem Formulation and Methodology

As we discussed in the previous section, the most effective way to accomplish particu-
lar human–robot collaboration in the fields of rehabilitation, industrial assembly, education,
and physical training is by guiding the user to closely follow an optimal path with robots,
while reserving a certain degree of compliance for safe and smooth human–robot interac-
tion. In these applications, the path is defined in advance by domain experts. The goal of
this paper is to design a controller that confines the end effector of a robot on the path but
allows it to move forward or backward freely along the path depending on the direction
of external forces. If the external force is too weak or null, a virtual force is applied to the
end effector from the controller to track the path autonomously and accurately. In other
words, the proposed control system endows the robot with directional compliance along a
prescribed path, and high stiffness in other directions for accurate path tracking. Moreover,
the degree of compliance is online adjustable according to the applied forces and safety
operation criteria of the robot such that the interaction between the human and the robot is
safe, comfortable, and intuitive.

In this paper, we consider an n-joint robot that carries out tasks in the 3D task space,
where n ≥ 3. An F/T sensor is mounted on the end effector of the robot to measure
external forces. To accomplish the goal of this paper, we propose a dual-loop control
structure as shown in Figure 2. The inner loop is dedicated to precision motion control
in the joint space. Namely, given the desired trajectory in the joint space qd ∈ Rn, the
motion controller in the inner loop calculates the corresponding joint torque such that the
actual joint angle follows qd accurately. qd is determined by the outer admittance control
loop based on the desired task space path and the external force Fext ∈ R3. The filtered
external force fext ∈ R3 is projected to the tangent direction of the path and then converted
to the corresponding task space velocity ṙd ∈ R3 through an admittance function whose
parameters are online adjustable. Then, ṙd is transformed to the joint space to obtain qd. In
the following subsections, we present the details of the techniques used in the proposed
dual-loop control structure.

Figure 2. Block diagram of adaptive admittance control with path tracking.

2.1. Inner Motion Control Loop

The dynamic equation of an n-joint robot is given as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ+ JT(q)Fext (1)

where q, q̇, q̈, τ ∈ Rn, denote the joint angle, angular velocity, angular acceleration, and
torque, respectively. M(q), C(q, q̇) ∈ Rn×n are the inertial matrix, Coriolis, and centrifugal
matrix, respectively. G(q), F(q̇) ∈ Rn are the gravitational torque and frictional torque,
respectively. J(q) ∈ R3×n is the Jacobian matrix of the end effector, and Fext ∈ R3 is the
external force applied to the end effector.
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Given the desired joint space trajectory qd ∈ Rn, we would like to design a robust
motion control law that calculates the required joint torque τ for keeping the tracking
error q̃ = q − qd as small as possible, even in the presence of model uncertainties and
external disturbance. It is well known that SMC has desirable robustness with respect to
matched uncertainties, but high-frequency chattering causes degradation of performance
and should be suppressed carefully. Many variations of SMC have been investigated in
the past for alleviating chattering with minor cost in performance deterioration [25–29].
Among all these techniques, we adopt the modified SMC developed and experimentally
verified by our research group in [30].

Let M0(q), C0(q, q̇), G0(q), and Fo(q̇) be the nominal models of M(q), C(q, q̇), G(q),
and F(q̇), respectively. Then, (1) can be rewritten as

q̈ = −M−1
0 (q)[C0(q, q̇)q̇ + G0(q) + F0(q̇)] + (I +∆M)M−1

0 (q)
(
τ+ JT(q)Fext

)
+ d (2)

where d is the lumped additive model uncertainties resulting from all model parameters in
M(q), C(q, q̇), G(q) and F(q̇). ∆M is the multiplicative model uncertainty of M−1(q). We
assume that ‖∆M‖ ≤ κ < 1 and ‖d‖ ≤ d for all q and q̇.

Define the sliding variable σ ∈ Rn as

σ = [σ1, · · · ,σn]
T = ˙̃q + C1q̃ + η (3)

where C1 ∈ Rn×n is positive definite and η ∈ Rn is an auxiliary vector which will be
determined shortly. The proposed control law is

τ = [C0(q, q̇)q̇ + G0(q) + F0(q̇)] + M0(q)
(
q̈d − C1 ˙̃q +Λ0u1

)
(4)

u̇1 = −Λ1u1 + η (5)

η̇ = −Λ0u1 − Ksσ− ρ (6)

Note that the control law in (4) cancels the nominal nonlinear terms and introduces
an auxiliary control input u1 to enhance robustness. Λ1,Λ0, Ks ∈ Rn×n are constant gain
matrices and

ρ =
[
sgn(σ1)d̄s1, · · · , sgn(σn)d̄sn

]T (7)

where sgn(· ) denotes the sign function, and d̄si = d̄ + κ‖q̈d − C1 ˙̃q +Λ0u1‖, i = 1, · · · , n, is
the bound of the uncertain terms. Each component of ρ switches its sign across the sliding
surface σi = 0 and is used to suppress the model uncertainty. However, the high-frequency
switching behavior of ρ causes significant chattering if it is directly added to the joint
torque, just as the traditional SMC does.

Let Ks be positive definite, if we substitute (4)–(6) into (2), it can be shown that [30]

σTσ̇ ≤ −σTKsσ (8)

This implies that σ→ 0 as t→ ∞. In other words, the system will reach and stay on
the sliding surface σ ≡ 0. Moreover, (5) and (6) can be combined into one equation:

ü1 +Λ1u̇1 +Λ0u1 = −(Ksσ+ ρ) (9)

where Λ1,Λ0 ∈ Rn×n are chosen such that the left-hand side of (9) is a stable system. For
example, Λ1,Λ0 can be chosen as diagonal matrices with positive diagonal elements.

From (4) and (9) we see that, unlike traditional SMC, the switching term ρ does not
appear in the joint torque directly. Instead, it is filtered by (9) before being incorporated
into the joint torque. Therefore, the chattering phenomenon is significantly alleviated.
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Once the sliding surface is reached, i.e., σ ≡ 0, the switching term is equivalent to the
lumped effect of model uncertainty and external disturbance, and the closed-loop system
can be expressed as

ü1 +Λ1u̇1 +Λ0u1 = −ρ (10)

˙̃q + C1q̃ = −η = −(u̇1 +Λ1u1) (11)

For ease of illustration, let us temporarily assume that Λ1,Λ0, and C1 are diagonal
matrices, i.e., Λi = diag(λi1, · · · , λin), i = 0, 1, and C1 = diag(c11, · · · , c1n). Then, the
closed-loop system (10) and (11) can be expressed as Figure 3 below. It is clear from Figure 3
that the closed-loop system is stable. In addition, the switching term, which is equivalent
to uncertainty and disturbance in the sliding mode, is filtered by a second-order system

s+λ1j
s2+λ1js+λ0j

and affects the tracking error through a first-order system 1
s+c1j

. Although

the tracking error is not guaranteed to converge to zero, we can choose appropriate gain
matrices Λ1,Λ0, and C1 such that the tracking error is as small as desired.

Figure 3. The jth component of the closed-loop system when the sliding surface σj = 0 is reached,
j = 1, · · · , n.

Besides the chattering attenuation property, another appealing feature of the proposed
modified SMC is that if the initial tracking error is known, we can set η(0) = − ˙̃q(0)− C1q̃(0).
As a result, the system is on the sliding surface as it starts, which eliminates the reaching
phase of the traditional SMC and reduces the transient response time.

Experimental verification conducted in [30] showed that the proposed modified SMC
has the best tracking performance in comparison with traditional first-order SMC (FOSMC),
second-order SMC (SOSMC), and integral SMC (ISMC). Its chattering reduction ability
is much better than FOSMC and ISMC, and similar to SOSMC. However, the proposed
modified SMC does not need to find bounds to the time derivative of uncertainties as
SOSMC does. Therefore, the proposed control law induces less vibration and achieves the
best tracking performance with a simple structure.

2.2. Outer Admittance Control Loop

Suppose that the reference path with respect to an inertial frame in the 3D task space is

rp(s) =
[
xp(s) yp(s) zp(s)

]T (12)

which is parameterized by a single parameter s ∈ [0, 1]. We assume that rp has finite length
and choose the normalized arc length as the parameter s. Thus, s = 0 and s = 1 correspond
to the start point and the end point of the reference path, respectively. Furthermore, we
assume that rp is twice differentiable with respect to s. At any point on rp(s), we can find
the unit tangent vector t(s), unit normal vector n(s) and unit binormal vector b(s) at that
point as follows:

t(s) =
r′p(s)
‖r′p(s)‖

, n(s) =
t′(s)
‖t′(s)‖ , b(s) = t(s)× n(s) (13)

Note that r′p(s) and t′(s) denote the first derivatives of rp(s) and t(s) with respect to s,
and × is the cross product of two vectors. These vectors comprise the TNB frame, which
moves with the end effector along rp. Whenever an external force Fext is applied to the
end effector, they are measured by the F/T sensor equipped on the end effector, and the
measurements are preprocessed to alleviate noise, obtaining fext (see the output of the
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signal conditioning block in Figure 2). If the magnitude of fext exceeds a threshold fth, the
fext is projected to the unit tangent vector of the path. On the other hand, if fext is too weak
or null, i.e., ‖ fext‖ < fth, then a virtual force with magnitude fv > 0 is added along the
tangent direction of the path. In other words,

fproj =

{
( f T

extt(s))t(s), ‖ fext‖ ≥ fth
fvt(s), ‖ fext‖ < fth

(14)

Note that (14) is represented by the mode select block in Figure 2. Then, the desired
velocity of the end effector in the task space, denoted by ṙd, is determined as ṙd = g(t) ∗ fproj,
where ∗ denotes convolution, and g(t) is the impulse response of the desired admittance
function G(s), which has the following first-order form:

G(s) =
1
c

m
c s + 1

(15)

Parameters m and c denote the virtual mass and damping of the end effector, respec-
tively, and they are online adjustable for avoiding common kinematic constraints such as
singularities, joint limits, and task space limits. These constraints are directly related to the
safety of the interaction because it may cause damage to the environment or the nearby
human operators if any of these constraints is violated. Furthermore, providing the robot
with awareness of these constraints and a way to preemptively deal with them relieves the
operator from the mental load required to avoid them, which increases performance of the
task [1,5–7,14,20]. If none of these constraints are going to be violated, the admittance pa-
rameters are adjusted to achieve safe, comfortable, and intuitive human–robot interaction.
The online parameter tuning algorithm will be introduced shortly. Once the desired task
space velocity ṙd is obtained, the desired joint space velocity is calculated by

q̇d = J†(q)[ṙd + K(rd − r)] (16)

where r is the actual position of the end effector and K ∈ R3×3 is a positive definite gain
matrix which guarantees that r → rd as t → ∞. J†(q) is the pseudo-inverse of J(q). We
assume that the reference path rp does not pass through any singularity of the robot;
therefore, J(q) is full rank and J†(q) exists for all points on rp. Existence of singularities is
an inherent limitation for industrial robots, regardless of the method used. However, one
desirable feature of the proposed method is that it forces the robot to stop before reaching
singularities and allows the robot to retract along the path without getting stuck when
guided by the human operator. This is accomplished by the outer admittance control loop.
Therefore, violation of the no-singularities-on-the-reference-path assumption does not fail
the normal operation of the robot. It just restricts its motion on the portion of the reference
path without singularities.

Note that only the tangential component of fext is used to generate ṙd which is in the
tangent direction of rp. In other words, the robot moves along rp when the end effector
is pushed by an external tangential force. However, if a large force, i.e., ‖ fext‖ ≥ fth, is
applied in the perpendicular direction of rp, then fproj is zero. Consequently, ṙd reduces
to zero exponentially with time constant m

c , and the robot stops almost immediately if
the time constant is very small. In this way, the robot rejects perpendicular forces while
complies with tangential forces based on an adaptive admittance law.

The first-order admittance function G(s) is widely used in many compliance control
problems [31–34], but the appropriate admittance parameters are task dependent and are
often set by heuristics. To deal with this problem, we have proposed an online parameter
tuning approach in [23] that considers the safety, comfort, and intuition of manual guidance.
The underlying idea is to reduce compliance without significantly changing the dynamic
behavior of the admittance function whenever the robot is close to constrained areas such
as singularities, joint limits, and task space limits. If no constraints are going to be breached,
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the compliance varies with the external force, allowing the user to guide the motion of
the robot more comfortably and intuitively. In this paper, the desired task space path rp
is defined in advance and the end effector does not deviate from this path; thus, we can
assume that the robot will not pass through or go near any constrained areas. Therefore,
the admittance parameters are adapted based on the applied forces.

To tune the admittance parameters, we first set up the varying range for the virtual
damping c. The maximum allowable motion speed is considered when selecting the limits
of the range for damping c. This ensures that any motion is below the safety relative
speed limit defined in the Annex A of ISO/TS 15066:2016 [35] for transient and quasi-static
contact. Let c ∈ [cmin , cmax], where cmin and cmax are the pre-established minimum and
maximum limits of c, respectively. Then, the projected force fproj is normalized with respect
to an estimated maximum value f̄ , which could be determined either experimentally or
heuristically. Define

f̂ = min
{‖ fproj‖

f̄
, 1
}

(17)

Therefore, f̂ ∈ (0, 1]. The proposed parameter adaptive law is

c = (cmin − cmax) f̂ + cmax (18)

Notice that the largest force f̂ = 1 is mapped to the minimum damping cmin, which
corresponds to the largest DC gain of G(s), while the smallest force f̂ ≈ 0 is mapped to
the maximum damping cmax corresponding to the smallest DC gain of G(s). Consequently,
the user can guide the robot to move faster and reach the destination quickly just by
applying a larger force. On the other hand, the user slows down the robot to accomplish
fine work with high accuracy when a smaller force is applied. Once the virtual damping
c is determined, the virtual mass m is adjusted accordingly to keep the ratio m

c unaltered.
The ratio m

c is the time constant of G(s), which is related to the response time of G(s). Fixed
time constant gives consistent dynamic behavior of the admittance function and allows the
user to quickly get accustomed to the way for operating the robot.

Experimental verification of the proposed adaptive admittance law and comparison
with other parameter tuning methods were conducted in [23] by implementing a 3D
shape tracing task. The admittance laws in comparison included constant parameters
and adaptive virtual damping with fixed virtual mass. Objective evaluation of the test
results was done by analyzing the path length errors and task execution time. Meanwhile,
a subjective evaluation was also conducted by collecting questionnaires that asked each
test user to score the performance of each parameter tuning method in terms of vibration of
the system, required efforts, and ease of completing the task. The results showed that the
proposed adaptive admittance law has the best performance among all compared methods
for both objective and subjective evaluation.

The outer admittance control loop is summarized as Algorithm 1 below.
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Algorithm 1 Compliant path tracking using force projection
Inputs: fext, fv, s
Outputs: ṙd

1: From path rp(s), calculate t(s), n(s), b(s) using (13)
2: Initialize fth, fv, c and ratio m/c
3: for t = 0 to ∞ do
4: if (s ≤ 1) then
5: Select mode to choose force input and project it to the tangent direction.
6: if (‖ fext‖ < fth) then
7: Update fproj = fv t(s) . fv is the task-dependent constant virtual force
8: else
9: Update fproj = ( f T

extt(s))t(s)
10: end if
11: else
12: Robot at goal, stop motion. fproj = 0
13: end if
14: Obtain ṙd from passing fproj through the admittance law (15).
15: Normalize fproj using (17) to obtain f̂
16: Update c using (18) and calculate m to maintain the fixed ratio m/c
17: end for

3. Experiments and Results
3.1. Experimental Setup

The tests are performed using a HIWIN RA605 6-DOF robot arm with a Robotiq 2F-85
gripper attached to the end effector. An ATI Gamma F/T sensor with analog output sampled
at 1 kHz was used to measure the external force applied to the end effector. See Figure 4.

Figure 4. Experimental setup used for the tests showing the robot equipped with the force/torque
(F/T) sensor and a gripper on the end-effector.

In this section, the two experiments conducted to validate the proposed approach are
detailed. They include a linear motion test and a 3D path test. For these tests, the robot
moves with constant orientation. Furthermore, the robot tool actual position is obtained
from the robot joint encoders. The sliding mode control parameters used are summarized
in Table 1. Regarding the admittance law parameters, the limits for damping c were chosen
as cmin = 300 N·s·m−1 and cmax = 1200 N·m·s−1. From these values, the maximum
speed is 266 mm·s−1, which allows us to comply with the relative speed limits defined in
Annex A of ISO/TS 15066:2016 [35] for applications where contact between body areas
and the robot system is possible. In our case, these body areas include the lower arm and
hand/finger, where the speeds are restricted to 1300 and 650 mm·s−1 for transient and
quasi-static contact, respectively, considering an estimated robot mass of 20 kg. In addition,
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the user has an emergency button at hand throughout the experiments conducted. The
time constant of G(s) is the ratio m

c = 0.0167 s. Finally, fth = 1.2 N and fv = 40 N.

Table 1. Sliding mode controller (SMC) parameters.

Parameter Value

Λ0 diag(1936, 3884, 8100, 1764, 6400, 4900)
Λ1 diag(44

√
2, 62

√
2, 90

√
2, 42

√
2, 80

√
2, 70
√

2)
C1 diag(125, 65, 32, 190, 187, 275)
Ks diag(90, 100, 100, 100, 100, 100)

Illustrated in Figure 5 are all the coordinate frames and their corresponding relations
with each other in the environment used for the experiments. In the linear motion test,
we define a horizontal line in front of the robot to demonstrate the behavior as external
forces are applied to the end effector from different directions. The line is defined from
points A = [0.34, 0.45, 0.15]T to B = [0.0, 0.6, 0.15]T in robot base frame, see Figure 5 and
Figure 6a, and parametrized with respect to s as in (19), where

−→
AB = B− A is the 3× 1

direction vector from A to B and s ∈ [0, 1].

r(s) = A + s
−→
AB (19)

Figure 5. Coordinate frames description. Force sensor frame in blue, robot base frame in red,
tangential-normal-binormal (TNB) frame in black, and predefined path in green.

For the second test, the 3D path we chose to demonstrate the path-tracking capability
of our system is a helix, defined in (20)–(22) and parametrized with respect to s ∈ [0, 1],
where s = 0 marks the initial point of the path and s = 1 marks the end point of the path.
R = 0.1 m is the helix radius centered at o = [0.24, 0.45, 0.15]T , n = 2 is the number of
rounds for the helix, bo = 0.05 m is the increase in z per round.

x(s) = ox + R cos(2πns) (20)

y(s) = oy + R sin(2πns) (21)

z(s) = oz + nbos (22)

3.2. Linear Motion Test

We performed a linear motion test to show the behavior of the robot to the external
forces applied from different directions. The detailed data are presented in Figure 6,
including the desired and actual 3D paths in the robot base frame, desired and actual
Cartesian positions, path parameter s, desired velocities in the TNB frame, and external
forces in the robot frame and the TNB frame. Each subfigure of Figure 6 is annotated
with labels using numerals from 1 to 5 to separate the data into regions where forces are
applied in different directions: 1 and 5 for free-motion, 2 for force applied along the y-axis
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of the robot frame, 3 for force applied along the x-axis of the robot frame, and 4 for force
applied along the z-axis of the robot frame. The differences between the desired and actual
Cartesian positions in Figure 6a,b are the tracking errors represented in the task space
which demonstrate the performance of the inner loop SMC controller. Figure 6d shows the
evolution of the s parameter, which defines the position of the robot in the path. In region
1, from t = 0 s to t = 16 s, there is no external force applied to the robot, and the robot
moves to the target point B at s = 1 with a constant velocity based on fv as in (14) and
Algorithm 1, (see also Figure 6c–f). Next, in region 2, from t = 16 s to t = 24 s a negative
external force on the y-axis of the robot frame is applied, see Fy in Figure 6c, which is
reflected in the TNB projected force as Ft and Fb in Figure 6f. This causes the robot to move
backward along the line reaching s = 0 in Figure 6d.

Likewise, from t = 24 s to t = 35 s a positive external force on the y-axis of the
robot frame was applied to move the robot forward along the path. During this interval
there was a pause from t = 29 s to t = 31 s where no force was applied, and the slope
of the s parameter changed to the same value as in the previous free-motion interval, see
Figure 6c–f. For region 3, from t = 35 s to t = 59 s, the same tests were repeated but this
time applying the external force on the x-axis of the robot frame showing a similar behavior
in the s parameter, see Fx in Figure 6c and Ft, Fb in Figure 6f. In region 4, from t = 59 s
to t = 78 s, an external force normal to the path along the z-axis of the robot frame was
applied three times with alternating signs, see Fz in Figure 6c and Fn in Figure 6f. As
expected, the applied force was not considered for robot motion because the projection to
the tangent direction of the path is null. This can also be seen in Figure 6d where three stair
patterns are created, meaning the s parameter remained constant during the three periods
where the perpendicular force was applied, see Figure 6c,f. For region 5, from t = 78 s to
t = 84 s, no force was applied to the robot; thus, the robot moved towards the goal with
constant velocity obtained from the virtual force fv until s = 1.

(a)

1 2 3 4 5

(b)

1 2 3 4 5

(c)

1 2 3 4 5

(d)

1 2 3 4 5

(e)

1 2 3 4 5

(f)
Figure 6. Linear motion path tracking test. Numerals 1–5 are used to separate regions where forces are applied in different
directions: 1 and 5—free-motion, 2—force applied along y-axis of robot frame, 3—force applied along x-axis of robot frame,
4—force applied along z-axis of robot frame. (a) Desired and actual 3D path in robot base frame. (b) Desired and actual
Cartesian positions. (c) Forces in robot frame. (d) Parameter s. (e) Desired Velocities in TNB frame. (f) Forces in TNB frame.



Appl. Sci. 2021, 11, 5914 13 of 18

This linear test proves the capability of our proposed method to customize the compli-
ance behavior of the robot for a path tracking task. Furthermore, for clear presentation, the
tracking performance of the modified SMC controller in both the joint space and task space
is summarized in Table 2.

Table 2. Linear motion task tracking root mean square error (RMSE).

Joint RMSE (mrad) Cart. Pos. RMSE (mm)

1 0.4102 x 0.3458
2 0.4793 y 0.4253
3 2.9438 z 1.4255
4 0.7535
5 4.5410
6 2.0088

3.3. 3D Path-Tracking Tests

Three tests were executed using the helix path for comparison to show the behavior
of the proposed algorithm in both ends of the assistance range spectrum, namely, fully
assisted motion or free motion (FM), and not assisted motion, i.e., force-applied motion
(FAM). The combined motion with virtual forces (CVF) is the smooth transition between
FM and FAM. Note that for the FAM test we defined fv = 0 N to test the case of no
assistance individually. This causes that at any instant when there is no external force
applied, the robot stops and maintains the last position, meaning that only the user can
make the robot move in this case. Moreover, the proposed virtual force scheme provides
the means for a smooth transition between FM and FAM. The detailed data of the tests
are shown in Figure 7a–i, including the external forces in the TNB frame, the s parameter
variation throughout the task, and the desired velocity ṙd in the TNB frame obtained from
the constant virtual force fv.

3.3.1. Free Motion (FM)

For this test as shown in Figure 7a–c, the robot follows the defined helix path, without
external forces applied to the end effector as presented in Figure 7a. This demonstrates the
case of fully-assisted interaction because the robot moves from the starting point s = 0 to
the final point s = 1, see Figure 7b. This case serves as the reference to evaluate the error in
the results of Section 3.4. The desired velocities ṙd in Figure 7c, which are used in (16) to
obtain the desired joint velocities, are calculated from passing the constant virtual force
fv projected to the tangent direction of motion of the path through the admittance law as
described in Section 2.

3.3.2. Force-Applied Motion (FAM)

Figure 7d–f illustrates this test, which consists of applying an external force, see
Figure 7d, to the robot end-effector to move it along the predefined helix path. This force is
projected to the tangential direction of the path, which gives the magnitude of the desired
velocity in task space to start or stop robot motion, see Figure 7f. No virtual force is
generated for this case because the magnitude of fv = 0 N. In this test, the robot moves
from the initial point s = 0 to the final point s = 1 in a nonlinear way opposed to the FM
case because the desired velocity depends on the external force applied to the end effector,
as can be seen in Figure 7e,f.

3.3.3. Combined Test Using Virtual Forces (CVF)

In this test, we merge the two previous cases to demonstrate the capabilities of
the proposed algorithm for multiple applications and the smooth transition between
collaborative and non-collaborative interaction. The robot will track the helix path with
constant velocity obtained from fv if no external forces are applied, moving from the initial
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point s = 0 to the final point s = 1. This can be seen from t = 0 s to t = 30 s in Figure 7g–i.
At any point of this free motion towards the goal, the user can apply an external force that
will cause the robot to retract or advance while tracking the path, as seen in Figure 7g,h
from t = 34 s to t = 46 s. If the user stops applying the external force, the robot will
continue to move to the goal in FM case as shown in the same figures from t = 46 s to
t = 49 s. The desired velocity in each step of the test in the TNB frame is calculated
accordingly, see Figure 7i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 7. Helix path-tracking test detailed data for free motion (FM), force-applied motion (FAM), and combined motion
with virtual forces (CVF) in the TNB frame. (a) External Forces-FM. (b) Parameter s-FM. (c) Desired Velocities-FM.
(d) External Forces-FAM. (e) Parameter s-FAM. (f) Desired Velocities-FAM. (g) External Forces–CVF. (h) Parameter s–CVF.
(i) Desired Velocities-CVF.

3.4. RMSE Evaluation and Comparison

Following our objective of accurate path tracking in human–robot collaboration tasks,
we evaluate the error between the reference path and the actual recorded path. It is
important for the robot to continue tracking the path accurately, despite forces being applied
or not during the human–robot interaction. In this context, the addition of directional
compliant motion should have as small influence as possible on path tracking accuracy.
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Thus, we must ensure the error difference is small among the proposed cases that represent
the interaction assistance range.

Figure 8 shows the reprojection of the RMSE residuals to the 3D helix path calculated
between the reference helix path rp(s) in black dashed line and the recorded test data r(s)
in red solid line, also green dotted lines connect the points from r(s) to rp(s) to display
the error every 10 samples. Figure 9 presents for each of the three evaluated cases, the
RMSE values in green dashed line and the tracking error between the actual and reference
samples in solid blue line. For every joint position data collected in the test, we find the
shortest distance dp,i⊥rp between the ith point and the reference curve rp(s), which was
sampled from (20)–(22) to have the same number of points as the test data, see (23). Then,
we find the RMSE as in (24), where pj,i is the ith test point of the jth component, j = x, y, z,
and N is the total number of points in the test.

dp,i⊥rp = min
s

(√
(rp,x(s)− px,i)2 + (rp,y(s)− py,i)2 + (rp,z(s)− pz,i)2

)
, s ∈ [0, 1] (23)

RMSE =

√√√√∑i=N
i=1

(
dp,i⊥rp

)2

N
(24)

In Table 3, we can see that the RMSE values obtained between the FM and FAM
motion have a very small difference of 0.021 mm. This shows path tracking has a good
performance even when external forces are applied to guide the motion. In the other case
for the combined test with virtual forces, the error difference with the free motion test is
slightly higher, 0.038 mm; however, it is still less than 0.1 mm, which is the pose accuracy
value reported for commercial robots used in collaborative applications [36–38].

(a) (b) (c)
Figure 8. Helix path tracking. rp(s)-black dashed line, r(s)-red solid line, distance from each point of r(s) to rp(s)-green
dotted line. (a) FM. (b) FAM. (c) CVF.
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Figure 9. RMSE and distance error plot for each test. (a) FM. (b) FAM. (c) CVF.
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Table 3. RMSE error differences among cases: FM vs. FAM, and FM vs. CVF.

Cases Compared Error Difference (mm)

FM vs FAM 0.021
FM vs CVF 0.038

4. Conclusions

We successfully achieved compliant path tracking motion using an industrial 6-DOF
robot manipulator by employing the proposed dual-loop control structure including an in-
ner motion control loop and an outer admittance control loop. The safety of the application
is guaranteed by adhering to the constraints presented in our previous work [23], which
include singularity avoidance, joint limits, and workspace limits. Additionally, the modi-
fied SMC designed and implemented as the inner motion controller showed a satisfactory
tracking performance. A linear motion test successfully demonstrated the system ability to
modify the robot compliance with respect to the external force direction applied to the end
effector. The results from this linear test show the capability of our proposed method to
customize the compliance behavior of the robot for a path tracking task. Furthermore, a
3D helix path was used to test the path-tracking performance and display the generality
to many applications such as rehabilitation, assisted drawing, assisted hand–motor skills
development, and so on. For this test, three cases were compared depending on the level of
the interaction; FM, FAM, and CVF motion. The error difference between cases is less than
0.1 mm, which is suitable for path tracking applications where the user can dynamically in-
teract with the robot. Our future research directions include testing the framework in more
specific applications such as rehabilitation or assisted hand–motor skills development as
well as in different types of robot manipulators, given that our framework implementation
can be easily ported to other manipulators with the addition of an F/T sensor. Moreover,
a user study will be carried out to further explore the perceived performance in each
specific application.
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7. Žlajpah, L.; Petrič, T. Virtual Guides for Redundant Robots Using Admittance Control for Path Tracking Tasks. In Advances in
Service and Industrial Robotics; Aspragathos, N.A., Koustoumpardis, P.N., Moulianitis, V.C., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 13–23.

8. Barri, M.H.; Widyotriatmo, A.; Suprijanto. Path Reference Generation for Upper-Limb Rehabilitation with Kinematic Model.
In Proceedings of the 2018 IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems
(Robionetics), Bandung, Indonesia, 8–10 August 2018; pp. 38–43. [CrossRef]

9. Wang, W.W.; Tsai, B.C.; Hsu, L.C.; Fu, L.C.; Lai, J.S. Guidance-control-based exoskeleton rehabilitation robot for upper limbs:
Application to circle drawing for physiotherapy and training. J. Med. Biol. Eng. 2014, 34, 284–292. [CrossRef]

10. Zhao, Y.; Liang, C.; Gu, Z.; Zheng, Y.; Wu, Q. A new design scheme for intelligent upper limb rehabilitation training robot. Int. J.
Environ. Res. Public Health 2020, 17, 2948. [CrossRef] [PubMed]

11. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and
applications. Mechatronics 2018, 55, 248–266. [CrossRef]

12. Lefebvre, T.; Xiao, J.; Bruyninckx, H.; de Gersem, G. Active compliant motion: A survey. Adv. Robot. 2005, 19, 479–499. [CrossRef]
13. Roveda, L.; Pedrocchi, N.; Beschi, M.; Molinati Tosatti, L. High-accuracy robotized industrial assembly task control schema with

force overshoots avoidance. Control Eng. Pract. 2018, 71, 142–153. [CrossRef]
14. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human-robot

interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]
15. Peng, Y.C.; Chen, S.; Jivani, D.; Wason, J.; Lawler, W.; Saunders, G.; Radke, R.J.; Trinkle, J.; Nath, S.; Wen, J.T. Sensor-Guided

Assembly of Segmented Structures with Industrial Robots. Appl. Sci. 2021, 11, 2669. [CrossRef]
16. Tsumugiwa, T.; Yokogawa, R.; Hara, K. Variable impedance control based on estimation of human arm stiffness for human-robot

cooperative calligraphic task. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington,
DC, USA, 11–15 May 2002; Volume 1, pp. 644–650. [CrossRef]

17. Bingham, G.P.; Snapp-Childs, W. Training children aged 5–10 years in manual compliance control to improve drawing and
handwriting. Hum. Mov. Sci. 2019, 65, 42–50. [CrossRef]

18. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path smoothing techniques in robot navigation: State-of-the-
art, current and future challenges. Sensors 2018, 18, 3170. [CrossRef]

19. Hsiao, T.; Huang, P.H. Iterative Learning Control for Trajectory Tracking of Robot Manipulators. Int. J. Autom. Smart Technol.
2017, 7. [CrossRef]

20. Raiola, G.; Restrepo, S.S.; Chevalier, P.; Rodriguez-Ayerbe, P.; Lamy, X.; Tliba, S.; Stulp, F. Co-manipulation with a library of
virtual guiding fixtures. Auton. Robot. 2018, 42, 1037–1051. [CrossRef]

21. Wu, X.; Li, Z.; Kan, Z.; Gao, H. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-
Robot Co-Manipulation. IEEE Trans. Cybern. 2020, 50, 3740–3751. [CrossRef] [PubMed]

22. Taylor, R.; Jensen, P.; Whitcomb, L.; Barnes, A.; Kumar, R.; Stoianovici, D.; Gupta, P.; Wang, Z.X.; DeJuan, E.; Kavoussi, L.
Steady-hand robotic system for microsurgical augmentation. Int. J. Rob. Res. 1999, 18, 1201–1210. [CrossRef]

23. Reyes-Uquillas, D.; Hsiao, T. Safe and intuitive manual guidance of a robot manipulator using adaptive admittance control
towards robot agility. Robot. Comput. Integr. Manuf. 2021, 70, 102127. [CrossRef]

24. Gracia, L.; Solanes, J.E.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero, J. Adaptive Sliding Mode Control for Robotic
Surface Treatment Using Force Feedback. Mechatronics 2018, 52, 102–118. [CrossRef]

25. Hung, J.Y.; Gao, W.; Hung, J.C. Variable Structure Control: A Survey. IEEE Trans. Ind. Electron. 1993, 40, 2–22. [CrossRef]
26. Tseng, M.L.; Chen, M.S. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control

2010, 12, 392–398. [CrossRef]
27. Bartolini, G.; Pisano, A.; Punta, E.; Usai, E. A survey of applications of second-order sliding mode control to mechanical systems.

Int. J. Control 2003, 76, 875–892. [CrossRef]
28. Capisani, L.M.; Ferrara, A.; Magnani, L. Design and experimental validation of a second-order sliding-mode motion controller

for robot manipulators. Int. J. Control 2009, 82, 365–377. [CrossRef]
29. Pan, Y.; Yang, C.; Pan, L.; Yu, H. Integral Sliding Mode Control: Performance, Modification, and Improvement. IEEE Trans. Ind.

Inform. 2018, 14, 3087–3096. [CrossRef]
30. Wang, P.H. Comparisons of a Novel Low Chattering Sliding Mode Control and Other Sliding Mode Controls with Application to

Trajectory Tracking of a 6-Axis Robot Manipulator. Master’s Thesis, National Chiao Tung University, Hsinchu City, Taiwan, 2019.
31. Lecours, A.; Mayer-St-Onge, B.; Gosselin, C. Variable admittance control of a four-degree-of-freedom intelligent assist device. In

Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012;
pp. 3903–3908. [CrossRef]

32. Ficuciello, F.; Villani, L.; Siciliano, B. Variable Impedance Control of Redundant Manipulators for Intuitive Human-Robot Physical
Interaction. IEEE Trans. Robot. 2015, 31, 850–863. [CrossRef]

33. Reyes-Uquillas, D.A.; Hsiao, T. Online motion adjustment using compliance control for a multi-axis robot manipulator. In
Proceedings of the 2017 International Automatic Control Conference (CACS), Pingtung, Taiwan, 12–15 November 2017; pp. 1–6.
[CrossRef]

34. Dimeas, F.; Moulianitis, V.C.; Aspragathos, N. Manipulator performance constraints in human-robot cooperation. Robot. Comput.
Integr. Manuf. 2018, 50, 222–233. [CrossRef]

http://dx.doi.org/10.1109/ROBIONETICS.2018.8674676
http://dx.doi.org/10.5405/jmbe.1663
http://dx.doi.org/10.3390/ijerph17082948
http://www.ncbi.nlm.nih.gov/pubmed/32344651
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1163/156855305323383767
http://dx.doi.org/10.1016/j.conengprac.2017.10.015
http://dx.doi.org/10.1016/j.rcim.2015.12.007
http://dx.doi.org/10.3390/app11062669
http://dx.doi.org/10.1109/robot.2002.1013431
http://dx.doi.org/10.1016/j.humov.2018.04.002
http://dx.doi.org/10.3390/s18093170
http://dx.doi.org/10.5875/ausmt.v7i3.1410
http://dx.doi.org/10.1007/s10514-017-9680-7
http://dx.doi.org/10.1109/TCYB.2019.2933019
http://www.ncbi.nlm.nih.gov/pubmed/31484148
http://dx.doi.org/10.1177/02783649922067807
http://dx.doi.org/10.1016/j.rcim.2021.102127
http://dx.doi.org/10.1016/j.mechatronics.2018.04.008
http://dx.doi.org/10.1109/41.184817
http://dx.doi.org/10.1002/asjc.195
http://dx.doi.org/10.1080/0020717031000099010
http://dx.doi.org/10.1080/00207170802112591
http://dx.doi.org/10.1109/TII.2017.2761389
http://dx.doi.org/10.1109/ICRA.2012.6224586
http://dx.doi.org/10.1109/TRO.2015.2430053
http://dx.doi.org/10.1109/CACS.2017.8284253
http://dx.doi.org/10.1016/j.rcim.2017.09.015


Appl. Sci. 2021, 11, 5914 18 of 18

35. International Organization for Standardization. ISO/TS 15066:2016; International Organization for Standardization: Geneva,
Switzerland, 2016.
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