
applied  
sciences

Article

Recirculated Wave Undulators for Compact FELs

Alessandro Curcio

����������
�������

Citation: Curcio, A. Recirculated

Wave Undulators for Compact FELs.

Appl. Sci. 2021, 11, 5936. https://

doi.org/10.3390/app11135936

Academic Editors: Giuseppe Dattoli

and Danilo Giulietti

Received: 28 May 2021

Accepted: 23 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Centro de Laseres Pulsados (CLPU), Edificio M5, Parque Científico, C/Adaja, 8,
37185 Villamayor, Spain; acurcio@clpu.es

Abstract: Particular schemes of Free Electron Lasers (FELs) are designed to exploit wave undulators.
We consider a system employing a recirculated electromagnetic undulator provided by a high-power
laser in a resonator cavity. The aim is to establish from calculations a set of realizable parameters
for such a device. Indeed, novel generation electron accelerators push forward the limits on the
accelerating fields, reducing to the sub-meter scale the length over which the electrons can gain
enough energy for lasing in the VUV/X-ray region of the electromagnetic spectrum. On the other
hand, these innovative technologies do not solve yet the problem associated with the saturation
length and therefore of the undulator length, which can be as long as several tens of meters. The
option of a FEL based on a wave undulator might provide a valid solution in this respect.

Keywords: recirculated undulator; free electron lasers

1. Introduction

Free Electron Lasers (FELs) are indeed one of the most interesting devices belonging
to the realm of the radiation sources [1–14]. Lasers are presently the most diffuse and
best-working radiation sources in terms of brilliance, monochromaticity, coherence, direc-
tionality and polarization. A future perspective would be that of realizing FEL facilities
in the VUV-X region exploiting compact accelerators and short undulator sections. Novel
electron acceleration schemes [15–17] can provide high gradient (GV/m) acceleration. Even
though the latter might solve the problem of the accelerator length, it still does not solve
the issue associated with the saturation length and therefore to the undulator length. Wave
undulator-based FELs might provide a valid solution [18–27]. In the wave undulator
scheme the undulator is replaced by a laser, thus the associated period is much shorter than
that of conventional undulator magnet in existing FELs, paving the way to the reduction
of the saturation length. Another advantage is that the electron beam energy necessary to
reach the short wavelength region scales as the square root of the undulator period: a wave
undulator would permit the operational beam energy to be reduced by several orders of
magnitude, as well as it would lead to a reduction in the accelerator size. The conditions
for FEL operation of a wave undulator have been studied [26] without too much attention
to the laser and electron beams transport. More focus on the laser beam transport has
been given in Ref. [27], where a compact VUV-X FEL device has been proposed consisting
of an electron LINAC and a resonator cavity to recirculate the wave undulator, used for
multiple interactions with the electron beam. Conversely, in this paper we focus on the
electron beam transport in the recirculated undulator, both through the interaction points
and in the magnetic chicane, while considering the same design for the optical cavity used
in [27]. In particular we study the evolution of the longitudinal phase-space during the
beam transport and during the interaction with the wave undulator, leading to the electron
microbunching responsible for coherent FEL power emission. The paper first consists of a
short introduction to the ring cavity design considered for the recirculated wave undulator.
Then, the exact solution of the Liouville equation for the longitudinal dynamics of particle
beams is derived concerning the phase-space evolution in magnetic chicanes [28], adding
corrections due to the emission of synchrotron radiation. The dynamics of relativistic
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electrons undergoing oscillations in the wave undulator is developed by means of the
Hamilton-Jacobi formalism. The electron trajectories are obtained, from which the 1D FEL
equations are derived. Simulation results based on the numerical solution of the 1D FEL
equations via an in-house Python script combined with the Liouville analytic theory for
the electron beam transport in the chicane are shown, in order to demonstrate the electron
microbunching with the subsequent FEL emission, as well as for quantitatively characteriz-
ing the output power from the recirculated undulator under analysis. Finally, an analytic
approach is presented for the wave undulator scaling laws and the FEL power evolution,
showing the pros and cons of exploiting a fully analytic model for the FEL emission while
comparing numerical and analytic results relative to the same scientific case.

2. The Optical Cavity

We consider an optical cavity [29] which is the same as in Ref. [27], composed by
two Flat Mirrors (FM1, FM2), two Parabolic Mirrors (PM1, PM2) and one focusing lens.
The design of such ring cavity is shown in Figure 1.

Figure 1. Design of the ring cavity for the wave undulator. The laser circulates clockwise.

This design allows obtaining two waists of the laser beam along a straight line, which
is as well the direction where an electron beam is injected while counter-propagating
with respect to the laser. The electron beam interacts at the first laser waist w1 and then
at the second waist w2, with the emission of FEL radiation. The length of the cavity is
Lc = 2Ll + 2Ls, the long side being Ll and the short one Ls. A focusing lens is placed
between two parabolic mirrors at a distance Ll/2 from both. Denoting with fp the focal
length of the parabolic mirrors and with fl the focal length of the central focusing lens,
the relative distance between one laser waist and the central focusing lens is d = 2 fl .
Furthermore, the following equation must hold Ll = 2 fp + 4 fl . After the first interaction
the electron beam passes through the magnetic chicane (composed by the four dipoles D1,
D2, D3, D4) during the time Tmc, finally reaching the second interaction point. This time
must be synchronized to the laser pulse in such a way that the two beams can “meet” at the
waist w2, in formulas we obtain cTmc = 2 fp + 2Ls + Ll , with c the speed of light in vacuum.
The strength parameter of the wave undulator is defined as:

a0 =
λ0eEp

2πmc2 (1)

where e is the elementary charge, m is the electron’s mass and λ0 is the period of the wave
undulator. The peak electric field Ep associated with the laser can be expressed in terms of
the laser intensity at the waist:

Ep =
√

2Z0 Ip (2)

where the vacuum impedance has been denoted as Z0 and Ip is the laser peak intensity
calculated as Ip = PL/πw2

0 where PL is the peak power of the laser.
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3. Solution of the Liouville Equation for Longitudinal Beam Dynamics in
Magnetic Chicanes

In this section, we develop the theory that will be used to calculate the phase-space evo-
lution of the electron beam passing from the first to the second interaction point through the
magnetic chicane, as shown in Figure 2 at the end of this section. We study the longitudinal
dynamics of relativistic electron beams in magnetic chicanes [28,30]. The traveling direction
is denoted by z. The 1D Liouville equation describing the evolution of the longitudinal
phase-space of an electron beam is:

∂ρ

dt
(z, pz; t) = L̂ρ(z, pz; t) (3)

where ρ is the longitudinal phase-space density, pz is the electron longitudinal momentum
and the expression of the Liouville operator is:

L̂ =

[
∂H
∂z

∂

∂pz
− ∂H

∂pz

∂

∂z

]
(4)

The Hamiltonian function has been denoted as H and the respective Hamilton equa-
tions are:

dpz

dt
= −∂H

∂z
= Fz

dz
dt

=
∂H
∂pz

= vz

(5)

where Fz is the longitudinal force acting on the electrons and vz = pz/γmc the longitudinal
velocity, with γ the Lorentz factor of the particle. Equation (3) admits the integral solution:

ρ(z, pz; t) = e
∫ t

0 dtL̂ρ(z, pz; 0) (6)

Equation (6) states that the action of the exponential operator exp (
∫ t

0 dtL̂) on the phase-
space density ρ at the initial time t = 0 yields the phase-space density at time t. Moreover,
using Equation (5), Equation (6) can be further reduced to a more explicit form:

ρ(z, pz; t) = e−
∫ t

0 dtFz
∂

∂pz
−
∫ t

0 dtvz
∂
∂z ρ(z, pz; 0) = ρ

(
z−

∫ t

0
dtvz, pz −

∫ t

0
dtFz; 0

)
(7)

Indeed, in Equation (7) we have used the definition of unitary displacement-operator for
both the coordinate and the momentum subspaces [30]. The power of this solution lays in
the fact that the knowing the single-particle dynamics allows for a complete description
of the whole beam in the phase-space at any time. A magnetic chicane consists of dipole
magnets usually with the same field-strengths and magnetic lengths. For the study of the
recirculated wave undulator under consideration it is preferable to exploit the ponderomo-
tive phase-energy deviation (ψ− δ) space instead than the coordinate-momentum space
(z− pz), where δ = (γ− γr)/γr with γr the Lorentz factor of the reference particle (the
one with energy equal to the beam average energy). The meaning of the ponderomotive
phase ψ will be clearer in Section 5, where the 1D FEL theory is presented. The transfor-
mation matrix associated with a magnetic chicane composed by four dipoles, up to the
second-order in the energy deviation, reads:(

ψ
δ

)
=

(
1 2π

λ0
R56

0 1

)(
ψ0
δ0

)
(8)

where

R56 =
4L

sin θ
(tan θ − θ) + 2d

tan θ2

cos θ
(9)
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is the linear longitudinal dispersion, θ is bending angle, d is distance between the dipoles
and L is the dipole length [31]. These transformations are useful to express the dynamical
shifts of the phase-space density:

∆ψ =
2π

λ0
R56δ0,

∆δ =0,
(10)

The longitudinal phase-space density at the exit of the magnetic chicane, say at the
time t, is calculated by means of Equations (7) and (10):

ρ(ψ, δ; t) = ρ(ψ− ∆ψ, δ− ∆δ; 0) = ρ

(
ψ− 2π

λ0
R56δ0, δ; 0

)
(11)

where t = 0 is the time of entrance into the chicane.

Figure 2. Evolution of the longitudinal phase-space of the electron beam passing from one interaction point to the other.
The evolution through the magnetic chicane is calculated via the analytic solution of the Liouville equation. The longitudinal
phase spaces shown above will be commented in Section 8.

4. Dynamics of Relativistic Electrons Inside an Electromagnetic Undulator

In this section, we calculate the electron trajectories from first principles of relativistic
mechanics when they interact with an electromagnetic plane wave. The formalism of
Hamilton-Jacobi will be adopted here, as in [32]. The four-dimensional form of Hamilton-
Jacobi equation for the interaction of our interest is:

gik
(

∂S
∂xi −

e
c

Ai

)(
∂S
∂xk −

e
c

Ak

)
= m2c2 (12)

where gik is the Minkowski tensor with (1, 3) signature, S the Hamilton function, xi the
radius four-vector. We make explicit the planar symmetry in the argument of the four-
vector potential by setting Ai ≡ Ai(ξ), with ξ = kixi = ω0(t + z/c), where the sign + in
the phase expression stands for the head-on interaction on the z-direction; then we impose
the Lorentz gauge condition:

∂Ai

∂xi =
∂Ai

∂ξ
ki = 0 (13)

that is equivalent to Aiki = 0. To find the Hamilton principal function, we look for a
solution of the kind:

S = −pixi + F(ξ) (14)
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where pi is the four-vector who satisfies the condition pi pi = m2c2, and F(ξ) is an unknown
function to determine. Substituting (14) into (12) yields:

2η
∂F
∂ξ

+ 2
e
c

pi Ai − e2

c2 Ai Ai = 0 (15)

where η = piki. From the above we can infer the expression for F and therefore for S:

S = −pixi − epi
η

∫
Aidξ +

e2

2η

∫
Ai Aidξ (16)

Being ki = (ω0/c, 0, 0,−ω0/c) with ω0 = 2πc/λ0, we obtain η = (ω0/c)(p0 + p3). Ex-
panding the square of pi, we obtain p2

0 − p2
3 − p2

⊥0 = m2c2, where we have denoted by p⊥0
the modulus of the generalized transverse four-momentum: ~p⊥0 is a constant of motion,
and it will be naturally interpreted as the electron initial transverse moment just before
impacting on the photons. It is straightforward to deduce at this point the following
equation:

p0 − p3 =
(ω0

c

) p2
⊥0 + m2c2

η
(17)

Now, by means of the algebra below:

p3x3 − p0x0 =
(p3 + p0)(x3 − x0)

2
+

(p3 − p0)(x3 + x0)

2
(18)

and using Equations (16) and (17), one obtains the following expression for S:

S = ~p⊥0 ·~r⊥ −
cη

2ω0
(ct− z)−

p2
⊥0 + m2c2

2η
ξ − epi

η

∫
Aidξ +

e2

2η

∫
Ai Aidξ (19)

By equating the S derivatives with respect to the ~p⊥0 components and to the η param-
eter to zero, valid for a suitable choice of reference frame, we achieve the useful results for
the electron trajectories:

~r⊥ =
~p⊥0

η
ξ +

e
η

∫
~Adξ

z =

[
c

2ω0
−

p2
⊥0 + m2c2

2η2

(ω0

c

)]
ξ − ω0e

cη2 ~p⊥0 ·
∫

~Adξ +
ω0e2

2cη2

∫
Ai Aidξ (20)

Carrying out the time derivative ∂S/∂t = −γ(t)mc2, yields an expression for the invariant
η, evaluated at the origin of times: η = (ω0/c)(γ0mc + pz0), with γ0 the initial Lorentz
factor. Equations (20) describe the motion of a free electron under the influence of the wave
undulator. In the case of a circularly polarized wave undulator the electron trajectory is
of the kind shown in Figure 3, obtained plotting Equation (20) for arbitrary parameters to
provide a visual example.
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Figure 3. Electron trajectory in a circularly polarized wave undulator (arbitrary units).

5. 1D FEL Equations

In the most of relevant cases pz0 ∼ γ0mc, we obtain η = 2γ0ω0m. Thus, the electron
laws of motion can be recast into:

~r⊥ =
λ0

4π
~θ0ξ +

λ0

4π

1
γ0

∫
~a0dξ

z =
λ0

4π

[
1−

(
1 + γ2

0θ2
0
)

2γ2
0

]
ξ − λ0

8π

~θ0

γ0
·
∫
~a0dξ +

λ0

16π

1
γ2

0

∫
a2

0dξ (21)

where ~θ0 is the vector representing the initial divergence of the electron. For sake of
simplicity in this paper we focus on the 1D FEL model, justified by the condition θ0 << 1
for any electron, i.e., low-divergence beams at the interaction region. Moreover, we consider
a0 << 1 and γ0 >> 1. The laws of motion can be further simplified into:

~r⊥ ' λ0

4π

1
γ0

∫
~a0dξ

z ' λ0

4π
ξ (22)

Given the above equations of motion, and choosing a circularly polarized vector potential,
the one-dimensional FEL equations are finally (see Appendix A for the derivation):

dE
dz

=

(
ea0

4πε0γr

)
ne

〈
e−iψj

〉
dψj

dz
=

(
4π

λ0

)
δj

dδj

dz
=

(
ea0

4γ2
r mc2

)[
E(z)eiψj + E∗(z)e−iψj

]
(23)

where we have introduced the ponderomotive phase ψj = ωz/c + ξ j − (ω0 + ω)t + φj,
i.e., the coordinate identifying the longitudinal position of a particle inside a bucket of
physical size determined by the radiation wavelength λr ∼ λ0/2γ2

r . φj is an arbitrary
initial phase, and we have defined the relative energy deviation δj of an arbitrary j-particle
with Lorentz factor γj:

δj =
γj − γr

γr
=

∆γj

γr
(24)
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The particles’ density of the electron bunch has been denoted as ne. An important quantity
has been introduced as well, which is the bunching factor:

b =
〈

e−iψj
〉

(25)

where the angular brackets indicate the average over the electron ensemble composing
one FEL bucket (more details in Appendix A). The strength parameter K associated with
a circularly polarized wave undulator of intensity Ip and wavelength λ0, in practical
units reads:

K = a0 = 0.85× 10−5λ0[m]
√

Ip(W/m2) (26)

The choice made in this paper of using a circularly polarized wave undulator is based on
the fact that doing so, the strength parameter (a0) is increased with respect to the case of a
linearly polarized wave undulator (a0/

√
2).

6. Discussions on the Recirculated Wave Undulator FEL Scheme

As already discussed and demonstrated in Ref. [27], a CO2 laser (λ0 = 10.6 µm),
with an intensity Ip = 4.2× 1018 W/m2, corresponding to an energy per pulse of 40 J
delivered in 300 ps (PL = 130 GW) over an effective area Σ0 = πw2

0 ∼ π × 10−8 m2 would
be enough to provide a wave undulator with sufficiently large K to support the FEL SASE
operation [33–35]. The value for the strength parameter under these operational conditions
is K ∼ 0.186. This K value is too low for standard FEL, but sufficiently high for the emission
of coherent radiation in the wave undulator scheme. The energy for the electron beam we
consider is around 35 MeV corresponding to a γr ∼ 70. We choose an electron current value
Ie = jeΣe = 3 kA, where Σe = 0.075Σ0, which means that the electron beam is focused more
tightly than the laser beam: this can allow a greater output flux of X-ray photons and eases
the spatial overlap of the two beams practically speaking. Moreover, the initial relative
energy spread is 10−4. Even if the considered energy of the electron beam is quite low
and the beam focusing rather tight, space charge effects can be neglected. The extension
of the interaction region Zi is evaluated as the minimum between two times the Rayleigh
length ZR = πw2

0/λ0 and the laser pulse length cτ where τ is the FWHM pulse duration.
In formulas:

Zi = min
{

cτ, 2ZR
}

(27)

In our case 2ZR/cτ << 1, so the interaction region is determined by the Rayleigh length.
The number of periods per wave undulator both in the waist w1 and w2 are 2ZR/λ0,
which is many hundreds. As anticipated in the previous section, the working principle
of the compact FEL based on the wave undulator is the following: the electron beam
is injected into the ring cavity interacting at the laser waists w1 and w2. The electron
bunches are microbunched at the radiation wavelength’s period which is in our case
λr ∼ 1 nm, falling in the soft X-ray region. When this occurs, coherent radiation power
is emitted. A further and important aspect to discuss is the interaction between the
electron beams and the wakefields in the machine. The laser can circulate in the ring
cavity and interact with the electrons thanks to hollow parabolic mirrors, while the beam
passing through the holes generates wakefields (only the first mirror encountered by the
electron beam is significant). Given the shortness of the electron bunches considered here,
a single bunch of electrons might be not able to efficiently interact with the wakefields.
On the other hand, the wakefields might interact with trailing bunches for a certain time
structure of the electron bunches in the machine. For facing this issue, the use of dielectric
mirrors to suppress the effect of wakefields might be more favorable than metallic-coated
optics. Furthermore, for the parameters considered here, the laser diameter at the hollow
parabolic mirror is expected to be about 10 cm, therefore the hole would not need to be
extremely small.
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7. Coherent Synchrotron Radiation

To take into account for the Coherent Synchrotron Radiation (CSR) emitted in the
magnetic chicane and to which extent this affects the longitudinal electron beam dynamics,
the longitudinal phase-space density at the exit of the magnetic chicane must be expressed
with a correction term:

ρ(ψ, δ; t) = ρ(ψ− ∆ψ, δ− ∆δ; 0) = ρ

(
ψ− 2π

λ0
R56δ0, δ− κδ0; 0

)
(28)

which is different than Equation (11) because of the factor κ which explains the relative
energy losses due to the emission of CSR. The synchrotron radiation spectrum at low
frequencies is proportional to the ω1/3 where ω is the angular frequency of the photons.
The total CSR energy ECSR emitted by a bunch with gaussian envelope over one full circle
is calculated as:

ECSR =
N2

e e2

4πε0c

∫
e−ω2τ2

e

(
ωR

c

)1/3
dω = Γ

(
2
3

)
N2

e e2

8πε0cτe

(
R

cτe

)1/3
(29)

where Γ(x) is the Gamma function, τe is the rms electron bunch length, Ne is the number of
electrons in the bunch and R is the bending radius. The total beam energy is calculated as
Ebeam = Neγrmc2. The CSR correction is therefore found to be:

κ =
ECSR
Ebeam

=
4θ

2π
Γ
(

2
3

)
Nee2

8πε0τeγrmc3

(
R

cτe

)1/3
(30)

where the factor 4θ/2π takes into account for the fact that the CSR emitted in the four
bending magnets composing the chicane corresponds to a total bending angle which is
smaller than the full circle. For a better evaluation of the κ parameter the microbunching
should be taken into account beyond the bunch envelope (in this case gaussian), nev-
ertheless this is not relevant for the design considered here since the critical energy of
the synchrotron radiation spectrum falls in a range of frequencies much lower than the
microbunching frequency.

8. FEL Radiation: Numerical Simulations

We have developed a numerical code in Python for solving the 1D FEL Equation (23)
and to propagate the electron beam from one interaction point to the other self-consistently
via Equation (28). This choice has been made (instead of using other available codes) to
have more control on the approximations done in the model and in such a way to easily
extend it for the forthcoming works where the design will be reconsidered including further
effects towards an even more realistic description of the machine. In this section we report
on simulation results, in particular showing the longitudinal phase-space evolution of the
electron beam while interacting with the electromagnetic undulator and with the magnetic
chicane. The parameters used for the chicane considered in this paper are Lc = 2.1 m,
fp = 150 mm, fl = 300 mm, Ls = 150 mm, B = 1.16 T and θ = 72◦. The chosen length of
the dipoles has been d = 200 mm and the reciprocal distance L = 100 mm. Considering an
electron bunch of duration 300 fs and charge 1 nC the correction due to CSR is κ = 1.6%,
which is not fully negligible, and it has been implemented in the Python code. The effect
of the energy losses due to CSR in the magnetic chicane onto the bandwidth of the wave
undulator FEL spectrum is not the main goal of the present paper, but it shall be addressed
in a future work. The first result is given in Figure 4, showing the randomly distributed
initial longitudinal phase-space relative to one bucket of ponderomotive phase (top-left),
the bunched longitudinal phase-space after the interaction with the laser at the waist w1
of Figure 1 (top-right), the emitted FEL power during the interaction with the CO2 laser
over one Rayleigh length (bottom-left), and finally the evolution of the bunching factor
over the same length (bottom-right). The pixel level in the top-left and top-right figure is in
arbitrary units but the two plots are normalized on the same scale.
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Figure 4. Simulation results with FEL1D code in Python, concerning the first interaction point of Figure 2.

Figure 5 shows the longitudinal phase-space of the electron beam after passing through
the magnetic chicane. In order to calculate it, the top-right phase-space of Figure 4 has been
propagated according to Equation (28), i.e., for every particle individuated by the pair (ψ, δ)
the relative energy deviation has been shifted due to CSR and the ponderomotive phase has
been shifted by a quantity depending on the element R56. The result is shown in Figure 5,
where it is possible to observe that the electron microbunching is preserved to some extent.
The last simulation result is reported in Figure 6, showing the same distribution in Figure 5
(top-left), the bunched longitudinal phase-space after the interaction with the laser at the
waist w2 of Figure 2 (top-right), the emitted FEL power during the interaction with the
CO2 laser over one Rayleigh length (bottom-left), and finally the evolution of the bunching
factor over the same length (bottom-right). The second interaction is evidently more
efficient in terms of the FEL power emitted. This is essentially due to the preservation of
some order in the longitudinal phase-space after the magnetic chicane which favors the
FEL mechanism at the interaction point w2 even more than at w1. The laser is considered
essentially not affected by the roundtrip, since the cavity losses are reasonably supposed
negligible. Nevertheless, the presence of two interaction points is overall of great advantage
since it increases the average output power. Indeed, the time structure of the FEL radiation
is a two-pulse structure, and it is worth noting that the fact of having two interaction points
does not affect the peak power, but only the average one.
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Figure 5. Simulation results with FEL1D code in Python, at the entrance of the second interac-
tion point.

Figure 6. Simulation results with FEL1D code in Python, after the second interaction point.

9. FEL Radiation: Comparison with the Analytic Model

In this section, we finally review a fully analytical approach to the FEL power evolu-
tion [27], in order to make a comparison with the numerical approach used above while
highlighting the main differences. The FEL intensity evolution is ruled by the so-called
Pierce parameter, which, for the purposes of this paper, can be cast in the following form:

$ =
8.36× 10−3

γe

(
je[A/m2]λ2

0[m]K2
)1/3

(31)
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where je is the electron beam density current. The saturation length can be roughly
expressed in terms of a few gain lengths. The “full saturation” condition on the emitted
power is usually achieved after several times the gain length, the latter given by:

Lg =
λ0

4π
√

3$
(32)

The saturation power is:
PF =

√
2$Pe (33)

where Pe = γrmc2 jeΣe/e. As a consequence of the previous equations, the FEL saturated
power reads:

PF(MW) = 1.7× 1016 (γr$)4

Ip[W/m2]λ0[m]4
Σe[m2] (34)

Beside the scaling formulas above, a more complete and analytic description of the SASE
intensity growth can be specified by the following logistic-like function:

P(z) =
P0

9
B(z)

1 + P0
9PF

B(z)
(35)

B(z) = 2

[
cosh

(
z

Lg

)
− ez/2Lg cos

(
π

3
+

√
3z

Lg

)
− e−z/2Lg cos

(
π

3
−
√

3z
Lg

)]
(36)

The radiated FEL power analytically calculated by Formulas (35) and (36) under the
same operational conditions used for the numerical simulations in Section 8 is shown in
Figure 7. For the sake of rigor, Figure 7 should be compared to the bottom-left plot of
Figure 4, since it is related to the assumption of no initial correlation (or bunching) in the
phase-space. Therefore, the power level and the power trend after the first interaction point
analytically calculated is in good agreement with the one numerically simulated. The same
cannot be said at the second interaction point, since the pre-bunching preserved after the
magnetic chicane makes the analytic model not longer comparable to the bottom-left plot
of Figure 6. In conclusion, the above presented analytic model can be used for evaluating
the power emitted at the first interaction point, but to be reliable as well at the second
interaction point should be generalized to a situation of pre-bunching, which is not in the
focus of this paper. In Ref. [27] the FEL emission was studied only analytically and the
free parameter P0 was set to an arbitrarily small value to obtain reasonable output power.
On the other hand, in the current paper we have managed to fix this free parameter to a
value (P0 = 21 kW) such that the analytic model coincides in terms of final output power
with the more rigorous numerical approach. Therefore, here we demonstrate that actually
the performance of the proposed design can be higher than the one already shown in [27].
At the same time we show the limitation of the analytic approach, which cannot be used
for more than one interaction point (unless for the case that the pre-bunching is completely
destroyed by the chicane), since it does not consider the effects related to the pre-bunching.
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Figure 7. The FEL radiated power versus the propagation distance inside of the wave undulator.

10. Conclusions

In this paper, we have considered an unconventional scheme of wave undulator FEL.
The system we have proposed employs a radiation pulse serving as undulator provided
by a high-power laser. A feasibility study has been reported with particular focus on
the electron beam dynamics. The device is compact, and the relevant technology will
be available in the next future. We have faced the aspects related to the electron beam
transport in the wave undulator design previously proposed in Ref. [27]. It has been found
that the interaction in the first interaction point is efficient, but the interaction in the second
point can be even more efficient provided that the electron beam dynamics in the magnetic
chicane is properly controlled to preserve the microbunching to some extent. Conceptual
tools for the electron transport have been here provided, also considering losses due to
coherent synchrotron radiation. A more realistic design of the whole machine will be topic
for a future work, including effects related to the electron beam optics, to the transport of
the transverse and longitudinal phase spaces together, to the beam interactions with the
wakefields and to the evaluation and optimization of the FEL radiation spectral features.
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Appendix A. Derivation of the 1D FEL Equations for the Wave Undulator

The wave equation for the electric field E generated by a current density j is:

1
c2

∂2E
∂t2 −

∂2E
∂z2 = −µ0

∂j
∂t

(A1)

where the electric field is assumed complex and scalar (this can still cover the case of circular
polarization) and the current density is considered along the field polarization direction.
With a standard procedure, assuming slowly varying envelope, a forward propagation of
the electromagnetic wave and a single-mode oscillation such that ∂t << c∂z, Equation (A1)
can be reduced to:

∂E
∂z
∼ iµ0c

2ω
e−iψ(t) ∂j

∂t
(A2)

In the same framework of assumptions above, we average the current density over a period
of rapid oscillation of the radiation field, i.e., within one FEL bucket, while considering
γr >> 1:
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e−iψ(t) ∂j
∂t
∼ iω2

2π

∫ π
ω

− π
ω

je−iψ(t)dt = − ieω2a0

4πγrΣe

Ne

∑
j=1

∫ π
ω

− π
ω

e−iψ(t)δ[z− zj(t)]dt ∼ − ieω2a0

2πγrΣe

Ne

∑
j=1

e−iψ(tj) (A3)

where for the last passage we have used the second of Equation (21). We recognize
ne = Neω/Σec, therefore:

e−iψ(t) ∂j
∂t
∼ − iωa0neec

2πγr

〈
e−iψ(tj)

〉
≡ − iωa0neec

2πγr

〈
e−iψj

〉
(A4)

where Ne is the number of electrons in the FEL bucket and the angular brackets denote an
average over the particles composing the temporal slice of width 2π/ω. Thus, the first of
Equation (23) is obtained combining Equations (A2) and (A4). The second and third of
Equation (23) are the so-called pendulum equations, which are derived as shown below.
First, we set the equation for the ponderomotive phase evolution recalling that ω ∼ 2γ2

r ω0:

dψj

dz
=

ω

c2

dzj

dt
+

ω0

c
+

ω0

c2

dzj

dt
− ω0 + ω

c
+

dφj

dz
= (ω + ω0)

β j

c
− ω

c
∼ ω0

c

(
1− γ2

r

γ2
j

)
(A5)

Since γ2
r /γ2

j = (δj + 1)−2 ∼ 1− 2δj for δj << 1, the ponderomotive phase obeys to:

dψj

dz
=

ω0

c

(
1− γ2

r

γ2
j

)
∼ 2

ω0

c
δj (A6)

which coincides with the second of Equation (23). Concerning the energy deviation:

dδj

dz
=

1
γr

dγj

dz
=

1
γrmc2

dWj

dz
(A7)

Where, by means of the first of Equation (21), the energy exchange rate dWj/dz is given by:
dWj

dz
= − e

c
d~r⊥
dt
· Re

[
~E(z)eiψj

]
∼ − ea0

2γr
Re
[

E(z)eiψj
]
= − ea0

4γr

[
E(z)eiψj + E∗(z)e−iψj

]
(A8)

Finally, by combining Equation (A8) with Equation (A7) it is possible to obtain the last
of Equation (23).
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