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Abstract: Port water injection (PWI) is considered one of the most promising technologies to actively
control the increased knock tendency of modern gasoline direct injection (GDI) engines, which are
rapidly evolving with the adoption of high compression ratios and increased brake mean effective
pressure levels in the effort to improve their thermal efficiency. For PWI technology, appropriately
matching the spray evolution and the intake system design along with obtaining a high spray
atomization quality, are crucial tasks for promoting water evaporation so as to effectively cool down
the air charge with moderate water consumption and lubricant dilution drawbacks. In the present
paper, a detailed experimental analysis of a low-pressure water spray is presented, covering a lack of
experimental data on automotive PWI systems. Phase doppler anemometry and fast-shutter spray
imaging allowed us to investigate the influence exerted by the injection pressure level and by the
water temperature on spray drop size and global shape, obtaining a complete database to be used for
the optimization of PWI systems. The obtained results evidence how significant benefits in terms of
atomization quality can be obtained by adopting injection pressure and water temperature levels
compliant with standard low injection pressure technologies.

Keywords: water injection; phase doppler anemometry; knock control

1. Introduction

The environmental impact, in terms of global greenhouse effect and pollutant emis-
sions, of the automotive sector is considerable. Hence, severe limitations are in force and
designed for, in particular, the adoption of challenging CO2 emission targets for the next
few years [1–3]. Consequently, the automotive industry is quickly adopting innovative
technologies, globally aiming for a rapid increase in automotive powertrain efficiency. The
leading method followed to improve powertrain efficiency is electrification, with the adop-
tion of a progressively more significant energy storage capacity and electric propulsion
system power. The final stage of this evolution is foreseen to be the battery electric vehicle,
which ensures a zero CO2 local emission operation. In this scenario, the internal combus-
tion engine will still play a significant role for many years [4] due to the complexities and
costs related to the actual implementation of the electrification path. Accordingly, along
with electrification, a significant evolution of the gasoline engine to improve its efficiency is
mandatory. The widespread adoption of gasoline direct injection (GDI) in spray-guided or
pre-chamber configurations, turbocharging coupled with downsizing and downspeeding,
higher compression ratios and application of the Miller cycle seem to be the most interest-
ing innovation lines [5,6]. Unfortunately, many of the aforementioned technologies cause a
drastic increase in the knocking tendency due to the increased charge temperature before
and during combustion, thus restraining the potential benefits in terms of engine efficiency.
As a matter of fact, particularly for high-performance engines, the knock tendency in high
load conditions is currently controlled by reducing the spark advance and by enriching
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the fuel/air mixture, resulting in an efficiency penalty and in a restriction of the catalyst
operating area with an increase of CO2, CO and HC emissions.

In this frame, water injection technology can be used as an alternative way to control
the charge temperature at the end of the intake process and during the combustion phase,
thus reducing the risk of abnormal combustion in downsized and highly boosted GDI
engines. Water injection can potentially enable λ = 1 operation in high-load and high-
speed operation, even adopting high compression ratios [7–17], thereby gaining significant
benefits in terms of engine efficiency while preserving the after-treatment system efficacy
in controlling exhaust emissions.

Water injection can be implemented as low-pressure injection in the intake runners
(PWI), as high-pressure injection in the combustion chamber (DWI) or as direct injection
of a water/gasoline emulsion. Along with the potential benefits in terms of air charge
temperature control, clearly water injection has different potential drawbacks, such as a
possible lubricant dilution due to the liquid’s impact on the cylinder liner. Potentially
catastrophic lubricant dilution can be caused by an incorrect match among the spray’s
global shape with the inlet duct geometry (for PWI systems) or the combustion chamber
(for DWI systems) or, in general, by a slow water evaporation rate. Furthermore, the water
deposition on the duct and cylinder walls limits the air charge cooling effect, increasing
the water flow rate required to effectively control the knock tendency, resulting in water-
to-fuel rate ratios in the range of 0.2–0.5 in full load conditions. Among the possible
different schemes, port water injection (PWI) is currently considered the most attractive
as a compromise between efficacy and cost, being significantly higher for direct water
and water/gasoline emulsion injection systems, including the eventual water recovery
technologies from the exhaust stream [18].

Since the air charge temperature control potential under water injection is related to the
high latent heat of vaporization of the water, the injected water evaporation rate is a crucial
factor to be considered in PWI systems’ design. In order to promote water evaporation,
an adequate match of the water spray characteristics with the intake system design is
required, and hence, a detailed knowledge of the spray characteristics is mandatory. In
particular, given the moderate air charge temperature (typically in the range of 40–60 ◦C
for intercooled engines) and the short spray residence time in the inlet runner, the water
spray atomization quality is crucial for obtaining complete evaporation.

Unfortunately, in the technical literature, there is a substantial lack of detailed experi-
mental data about low-pressure water sprays’ global evolution and atomization level to
support PWI system design and CFD simulation. In [9], Iacobacci et al. investigated the
potential of a PWI system based on PFI injectors supplied with water at 25 ◦C (Pinj = 4 bar,g),
changing the water/fuel ratio to mitigate the knock tendency at full load. Cordier et al. [10]
tested different water injection technologies on a single-cylinder research engine, obtaining
significant efficiency improvements. For the tested PWI configuration, Pinj was varied
in the range of 5–20 bar,g, but no details about the resulting spray characteristics were
reported. In [12], Paltrinieri et al. experimentally investigated the application of a PWI
system operated at Pinj = 7 bar,g and Tw = 55 ◦C for a single-cylinder research engine with
water-to-fuel ratios up to 60%. Different injector designs and positions along the inlet
duct were used to explore the actuation timing effect. In this analysis, CFD simulations of
the water spray evolution in the intake duct were carried out to investigate the spray–air
interaction, but the effect of the spray characteristics with different operating conditions
was not investigated. In other numerical analyses of water injection systems, the water
spray characteristics, or even its evaporation rate, are assumed to be constant or similar to
fuel sprays generated at the same injection pressure level [13,15,16].

In the present paper, a detailed experimental analysis of a low-pressure water spray is
presented, discussing the effect of both the injection pressure and water temperature in
the rail on the jet evolution and size characteristics. According to the current approach
of the automotive industry for the definition of a PWI system’s architecture, both these
parameters were varied in ranges compliant with standard PFI technology to reduce the
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complexity and cost of key components such as injectors, rails and sensors. The injection
pressure was varied from 5 bar,g to 11 bar,g, covering a pressure range explored by other
Authors for PFI injectors [19]. Correspondingly, the water temperature in the rail was
changed from 20 ◦C to 110 ◦C, approaching flash boiling conditions in order to promote
the spray break-up and drop evaporation [20,21]. The analysis was carried out by a phase
doppler anemometry (PDA) system and by a fast-shutter imaging apparatus in order to
investigate both the drops’ size quality and global spray characteristics obtained in a range
of operating conditions. In the following sections, the experimental set-up and the test plan
will be presented first, and the obtained results will be discussed.

2. Materials and Methods

The PWI injector (Bosch EV14) used for the present analysis was characterized in
terms of the mean injected mass, global spray evolution, drop size and velocity. The
main characteristics of the tested injector are reported in Table 1. The static flow rate
was measured by the dINJ injection analyzer, a Zeuch method-type injection analyzer
specifically designed to operate with low-pressure injection systems [8,22].

Table 1. PWI injector characteristics.

Injector Bosch GS EV14
Holes 4 × 220 µm, symmetric to injector axis

Static Flow Rate 3.5 mm3/ms @Pinj 5 bar,g ; Tw = 20 ◦C
Injector Driver Darlington TIP121, Vsupply 14 V.

The injector under testing was fed with distilled water statically pressurized with
nitrogen in the range from 5 bar,g to 11 bar,g (up to 15 bar,g only for the flow tests). Pressur-
ized water was accumulated in a 100-cc reservoir, which was used as rail to directly feed
the injector to have negligible pressure fluctuations during the injection event, according to
the rules of JSAE2715. The rail structure was used as a fixture for an electric heater used to
control water temperature. The feedback thermocouple was installed at the injector inlet
in the same position as the Keller PAA M5 HB sensor (20 bar f.s., 50 kHz bandwidth, 1%
accuracy) used to monitor the rail pressure. The injector current time history was acquired
by a Pico TA189 probe (30 A, 100 kHz bandwidth) and averaged over 30 consecutive
injection events. A schematic of the experimental setup is reported in Figure 1.

In each operating condition, the mean injected volume was measured by a preci-
sion balance (Radwag PS 1000/C/2, resolution of 1 mg, accuracy ±1.5 mg) during three
repetitions of a 3000-shot sequence with a 10 Hz injection frequency.

In previous studies (e.g., [8,23]), the effect of the test vessel’s pressure and temperature
on low-pressure water sprays was investigated, concluding that the air temperature’s
variation from ambient to 50–60 ◦C (typical of boosted conditions with an intercooler) has
negligible effects on the spray’s evolution and size. On the other hand, boosted pressure
levels have the similar effect of a corresponding injection pressure reduction, with the
pressure differential across the injector being the main driving force affecting the spray’s
evolution. As a consequence, in this research, the test vessel’s pressure and temperature
were maintained at 1 bar,a and 25 ◦C for all the operating conditions.

In Table 2, the operating conditions used for the flow test are reported, evidencing the
imposed water temperature at the injector’s inlet.

The global spray evolution was investigated by a fast-shutter imaging technique,
applied according to an ensemble averaging approach. The imaging apparatus was based
on a pulsed Nd-Yag laser (Litron Nano L 200–20, 200 mJ/shot, shot duration 6 ns), which
was used as a light source. The laser was synchronized with a fast-shutter, high-resolution
CMOS camera (Dalsa Genie Nano M4020, resolution 3008 × 4112, 12-bit). According to
the ensemble averaging approach, only one image per injection event was acquired at a
given delay from the injection event’s start (the TTL signal enabling the injector driver was
used as a trigger). The statistical analysis of the spray’s global development at an assigned
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delay was carried out by repeating the image acquisition over a series of consecutive
injection events (30 in the present work). The repetition of the aforementioned acquisition
sequence at different delays from the injection start allowed for characterization of the
complete spray development throughout the entire injection event. The acquired images
at the different timings were analyzed off-line by means of a proprietary digital analysis
procedure developed in the LabVIEW™ environment, obtaining the spray tip penetration
curves and global cone angle according to the JSAE2715 prescriptions. More details about
the image analysis procedure are reported in [24,25].
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The test plan used for the global spray analysis by imaging was based on a full-
factorial analysis of injection pressure Pinj levels of 5, 7 and 11 bar,g with water temperature
levels of 20, 55, 90 and 110 ◦C. All spray imaging tests were carried out with an ET of 5 ms
in order to ensure adequate steady flow operation for the injector and evidence the effects
of both the water temperature and the injection pressure.

The effect of the water temperature and injection pressure on the drop size was
evaluated using a phase doppler anemometer (Dantec Dynamics P80) along a measuring
traverse composed of 18 stations. The traverse was positioned at Z = 50 mm downstream
of the nozzle plate and aligned with the projection of two of the four nozzle holes on the
examined plane to evidence the global spray symmetry. In Table 3, the main specifications
for the PDA system used for the tests are reported.

Table 3. PDA system specifications.

Transmitter 60 mm

Receiver HiDense 112 mm

Laser Source Coherent Genesis MX514

Frequency Shift 40 MHz

Focal length (TX/RX) 310 mm/310 mm

Scattering Angle 110◦

Drop Diameter Range 1–400 µm

Drop Velocity Range −5–30 m/s

Ref. System Origin
(X = Y = 0, Z = 0)

Nozzle tip center;
Velocity positive: downward

The drop size and velocity characteristics were investigated in the operating conditions
reported in Table 4. In all PDA tests, an ET of 5 ms was applied, acquiring data in a 30-ms
time window after the start of the ET to capture the entire spray evolution, including its
complete tail. Prescriptions from JSAE2715 were followed during the tests in terms of
spray boundary detection and minimum number of samples per measuring position. The
data were collected during 3000 consecutive shots, operating the injector at 8 Hz in each
examined station.

Table 4. PDA test plan, with the water temperature measured at the injector inlet.

Water Temperature (◦C)

20 55 90 110
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3. Results
3.1. Flow Test Results

In Figure 2, the results obtained in terms of the mean injected quantity, parametrically
varying both the injection pressure level from 5 to 15 bar,g and the water temperature at the
injector inlet from 20 ◦C to 110 ◦C, are reported. On the left in the same figure, the results
are reported for when Pinj 7 = bar,g was assumed as the reference injection pressure level.
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Figure 2. Mean injected quantity for Tw range 20–110 ◦C and Pinj = 7 bar,g (a) and from 5 to 15 bar,g (b).

From the obtained results, the effect of the water temperature increasing on the injected
mass is evident. For a given injection pressure level, the higher the fluid temperature,
the lower the injected quantity. With the ET at 5 ms and the water temperature changing
from 20 ◦C to 110 ◦C, the mass percentage difference ranged from 5.7 % at Pinj = 7 bar,g to
11.5% at Pinj = 15 bar,g. This is likely to be ascribed mainly to the reduced magnetic force
exerted by the solenoid on the injector needle, caused by the increased coil resistance. As
is reported in Figure 3, for the reference injection pressure level, the injector current was
significantly reduced in high water temperature conditions. Furthermore, the current time
history slope—and presumably the needle rise—was slowed at high water temperatures,
as is suggested by the delayed occurrence of the needle’s fully raised position, evidenced
by the sudden slope change in the current profile around 1.5 ms after the ET started.
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Figure 3. Injector current as a function of the water temperature. Pinj = 7 bar,g, and ET = 8.0 ms.

The effect of the fluid’s temperature on the injector dynamics was particularly evident
for short injection events, during which the injector operated in the so-called “ballistic
regime”. In ballistic operation, the needle did not attain the fully raised position, and
consequently, the flow could not reach a static rate condition. As is reported in Figure 4a,
where the flow results are plotted against the injection pressure level (with ET = 2 ms
and Pinj = 15 bar,g), the injector’s opening phase was drastically altered by high water
temperature levels. In these conditions, the progressively reduced available magnetic force
caused the mean injected mass to be lower at Pinj = 11 bar,g (and equal for Tw = 20 ◦C). Only
for ET values longer than 3 ms was the expected rising dependence of the injected mass
on Pinj obtained, given the presumable attained steady flow conditions and the reduced
significance of the needle’s opening phase with respect to the entire injection process.
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Figure 4. Mean injected quantity vs. injection pressure with water temperatures from 20 ◦C to 110 ◦C. (a) ET = 2 ms and
3 ms. (b) ET = 5 ms and 8 ms.

The obtained flow results seem to suggest that Pinj = 15 bar,g is not a feasible operating
condition for this injector with a high water temperature and will no longer be investigated
in terms of the spray evolution and drop size.

3.2. Spray Global Development

The imaging set-up described in Section 2 was used to investigate the effect of the
injection pressure and water temperature on the global spray’s evolution. For the sake of
brevity, only a short sequence of the spray evolution in the reference condition (Pinj = 7 bar,g,
20 ◦C) is reported in Figure 5 along with pictures of the fully developed spray under high
injection pressure and water temperature conditions (Figure 6).
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Figure 6. Fully developed spray at 4 ms after the ET’s start. Scale tick = 10 mm.

As can be observed in Figure 5, four individual conical flow structures emerged
from the nozzle at the beginning of the injection process, initially composed of relatively
large ligaments. The four structures merged at a distance between 5 and 10 mm from
the injector nozzle. After a short transition zone, at a 10-mm distance downstream, the
primary break-up process seemed to be completed. The spray structure hereafter appears
to be quite uniform and composed of relatively small drops; only in the most advanced
and central part of the spray was the presence of significantly large ligaments clearly
perceivable, probably originating from the initial injection transient when the flow velocity
was restrained by the needle.

When the operating conditions were changed by increasing the injection pressure
from 7 to 11 bar,g (Figure 6a,b), the spray structure was evidently altered, with an increased
penetration and cone angle. Furthermore, the spray structure appeared to be composed
of smaller droplets, with a reduced presence of large ligaments in the spray’s bulk. Only
in the spray tip were some large blobs originating from the injector’s opening transient
still present.

Conversely, the increase in water temperature (Figure 6c,d) did not seem to pro-
duce dramatic changes in the spray’s overall structure with respect to the corresponding
low-temperature operating condition. This evidence seems to suggest that in the tested op-
erating conditions, flash boiling was not triggered despite the high temperature level at the
injector inlet, possibly due to the progressive cooling of the water inside the injector body.

The complete set of results in terms of the spray tip penetration and spray cone
angle are reported in Figures 7 and 8 for the 12 examined operating conditions, evi-
dencing the effect on the spray’s global development of the injection pressure and water
temperature, respectively.

As reported in Figure 7, the injection pressure had a significant effect on both the
spray tip penetration and global cone angle for all the examined water temperature levels.
Globally, 5 ms after the ET’s start, changing the injection pressure from Pinj = 5 bar,g to
Pinj = 11 bar,g led the spray tip penetration to increase by 11% at Tw = 20 ◦C and by 12% at
Tw = 110 ◦C. The spray tip penetration slightly increased from 5 bar,g to 7 bar,g, with this
trend being more evident in the final part of the spray evolution and at a higher water tem-
perature. When the injection pressure was raised to 11 bar,g, the final penetration increase
was more evident, despite the relatively high injection pressure tending to slow the injector
opening transient, consequently leading to the initial spray tip velocity being smaller. As
a result, the spray penetration for Pinj = 11 bar,g was smaller than for Pinj = 7 bar,g up to
1.5 ms after the ET’s start, in which time the initial penetration gap was recovered. The
effect of the injection pressure on the spray cone angle was even more evident; for all the
examined water temperature conditions, the spray diffusion angle progressively increased
with higher injection pressure levels, obtaining almost parallel trends for this quantity. It
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is also interesting to observe how the monotonically decreasing trend for the spray cone
angle changed its slope after the injector closure around 5.8 ms after the ET’s start.

The effect of the water temperature at the injector inlet on the spray evolution is
analyzed in Figure 8. As can be observed, only marginal effects were exerted by the
water temperature on the spray’s global structure for all the examined injection pressure
levels. To be detailed, an unclear tendency was observed in terms of spray penetration for
Pinj = 5 bar,g, while the effect was negligible for higher injection pressure levels. In terms of
the spray cone angle, the increase in water temperature seemed to decrease the spray cone
angle up to 90 ◦C, while a further increase to 110 ◦C seemed to attenuate or revert the trend.
Globally, a moderate effect of the water temperature on the spray evolution was observed.

3.3. Spray Drop Size and Velocity

The PDA raw data for the measuring station corresponding to the injector axis projec-
tion on a plane at 50 mm from the nozzle (coordinates of X = Y = 0; Z = 50 mm) are reported
in Figure 9a,b for the reference operating condition Pinj = 7 bar,g and Tw = 20 ◦C. In these
plots, all the records relevant to 3000 consecutive injection events are reported (blue dots),
along with the average values computed in 0.1 ms time bins (red dots). The ET’s start was
used as a time reference.
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Figure 7. Effect of the injection pressure on the spray tip penetration and cone angle. (a) Tw = 20 ◦C; (b) Tw = 55 ◦C;
(c) Tw = 90 ◦C; and (d) Tw = 20 ◦C.



Appl. Sci. 2021, 11, 5980 10 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

trend being more evident in the final part of the spray evolution and at a higher water 
temperature. When the injection pressure was raised to 11 bar,g, the final penetration in-
crease was more evident, despite the relatively high injection pressure tending to slow the 
injector opening transient, consequently leading to the initial spray tip velocity being 
smaller. As a result, the spray penetration for Pinj = 11 bar,g was smaller than for Pinj = 7 
bar,g up to 1.5 ms after the ET’s start, in which time the initial penetration gap was recov-
ered. The effect of the injection pressure on the spray cone angle was even more evident; 
for all the examined water temperature conditions, the spray diffusion angle progres-
sively increased with higher injection pressure levels, obtaining almost parallel trends for 
this quantity. It is also interesting to observe how the monotonically decreasing trend for 
the spray cone angle changed its slope after the injector closure around 5.8 ms after the 
ET’s start. 

(a) (b) 

 
(c) 

Figure 8. Effect of the water temperature on the spray tip penetration and cone angle. (a) Pinj = 5 
bar,g; (b) Pinj = 7 bar,g; and (c) Pinj = 11 bar,g. 

The effect of the water temperature at the injector inlet on the spray evolution is an-
alyzed in Figure 8. As can be observed, only marginal effects were exerted by the water 
temperature on the spray’s global structure for all the examined injection pressure levels. 
To be detailed, an unclear tendency was observed in terms of spray penetration for Pinj = 
5 bar,g, while the effect was negligible for higher injection pressure levels. In terms of the 
spray cone angle, the increase in water temperature seemed to decrease the spray cone 
angle up to 90 °C, while a further increase to 110 °C seemed to attenuate or revert the 
trend. Globally, a moderate effect of the water temperature on the spray evolution was 
observed. 

0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8

Sp
ra

y 
Co

ne
 A

ng
le

, d
eg

Sp
ra

y 
Ti

p 
Pe

ne
tr

at
io

n,
 m

m

Time from ET start [ms]

Penetration&Cone Angle - Pinj 5 bar

Tw 20°C
Tw 55 °C
Tw 90 °C
Tw 110 °C

0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8

Sp
ra

y 
Co

ne
 A

ng
le

, d
eg

Sp
ra

y 
Ti

p 
Pe

ne
tr

at
io

n,
 m

m

Time from ET start [ms]

Penetration&Cone Angle - Pinj 7 bar

Tw 20°C
Tw 55 °C
Tw 90 °C
Tw 110 °C

0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8

Sp
ra

y 
Co

ne
 A

ng
le

, d
eg

Sp
ra

y 
Ti

p 
Pe

ne
tr

at
io

n,
 m

m

Time from ET start [ms]

Penetration&Cone Angle - Pinj 11 bar

Tw 20°C
Tw 55 °C
Tw 90 °C
Tw 110 °C

Figure 8. Effect of the water temperature on the spray tip penetration and cone angle. (a) Pinj = 5 bar,g;
(b) Pinj = 7 bar,g; and (c) Pinj = 11 bar,g.

As can be seen, the drops’ diameters and Z-velocity time histories evidence how the
spray approached the considered measuring station about 4 ms after the ET’s start. The
main part of the spray structure flowed through the considered measuring station between
4 and 8 ms. During this time window, the drops’ velocity ranged between approximately
5 and 22 m/s, while the observed drops’ diameter range was predominantly between
15 and 150 µm. A significant number of drops with diameters up to 350 µm was also
observed, possibly related to the defective primary break-up in the first part of the injection
process, as was observed in the spray images. The presence of even such a restricted
number of relatively large drops inherently had a non-marginal effect on the resulting
Sauter mean diameter.

After 8 ms from the ET’s start, the velocity data rapidly decreased to values around
2–3 m/s for the drops pertaining to the spray tail. This part of the spray’s structure
was composed of very small droplets (diameter values below 40 µm) featuring reduced
momentum which continued flowing through the observed position for a long time.

When the injector’s water temperature was raised to 110 ◦C, the drops’ velocities and
sizes time histories for the same measuring station, reported in Figure 9c,d, were obtained.
Marginal effects due to the applied rise in temperature were observed in terms of both
the drops’ velocities and size ranges for the bulk spray evolution during the 4–8 ms time
window, while a significant shift in the mean values was observed below 15 m/s and
toward 50 µm.
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Figure 9. Effect of the water temperature on the drops’ sizes and velocities. Raw data in X = Y = 0, Z = 50 mm, Pinj = 7 bar,g.
(a) Drops’ velocity for Tw = 20 ◦C. (b) Drops’ diameter for Tw = 20 ◦C. (c) Drops’ velocity for Tw = 110 ◦C. (d) Drops’
diameter for Tw = 110 ◦C.

In Figure 10, the results obtained with four different water temperature levels at the
injector inlet are reported for the complete measuring travers at Z = 50 mm and crossing
the entire spray structure. In these plots, both the mean and Sauter mean diameter values
are included, along with the mean velocity and relative drop count. All these quantities
were computed with data relevant to the entire 30-ms time-window to have a full portrait
of the spray quality in the examined positions.

The effect of the water temperature on the drops’ sizes, which was already commented
on for the X = Y = 0 and Z = 50 mm position, was substantially confirmed for the entire
measuring traverse; a significant but not dramatic effect from 20 ◦C to 110 ◦C was observed,
with size reductions ranging between 8 and 15 µm in terms of the SMD and between
4 and 9 µm in terms of the MD. Minor consequences of raising the water temperature
were observed in terms of the drop count and mean velocity, which were proven to
change only for the central positions of the spray structure. As was observed when
commenting on the spray images in the same operating conditions in Section 3.2, the water
temperature’s rise at the injector inlet from 20 ◦C to 110 ◦C, assumed to be compatible with
standard PFI technology (e.g., injector body, rail and pressure sensor), was not adequate to
trigger a net flash boiling mechanism for the injection process. Consequently, the injection
process resulted in a spray with a basically unaffected shape but appreciably improved
atomization quality. Nevertheless, the drops’ size improvement was not as significant as
was presumably attainable in the case of completely developed flash boiling conditions [25].
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Figure 10. Effect of the water temperature on the drops’ sizes and velocities over the measuring traverse at Z = 50 mm.
Pinj = 7 bar,g. (a) Drops’ mean diameter. (b) Drop count and velocity.

A similar analysis is presented in order to separately analyze the potential effects
exerted by an increase of the injection pressure in terms of the spray evolution and at-
omization quality. In Figures 11 and 12, the results obtained in terms of raw data for the
measuring position X = Y = 0 and Z = 50 mm and in terms of the mean for the entire
examined traverse are reported.

The injection pressure’s effect on the drops’ sizes is evident from the comparison
of Figure 11b,d, with the Pinj = 9 bar,g drop size consistently reduced for the spray bulk
(from 4 to 8 ms) for time bin mean values close to 50 µm for a large part of the considered
time window. Higher values were observed only for the very initial part of the injection
process and around 7 ms when, presumably, the drops produced during the injector’s
closing phase approached the measuring station. Both the initial and final transients were
characterized by a severe channel flow restriction, with consistent flow velocity reduction
and drops breaking up the process penalization. For Pinj = 5 bar,g, relatively large drops
were attained at the Z = 50 mm measuring station with an almost constant velocity during
the bulk spray time window, suggesting a moderate drag effect by the surrounding air.
Conversely, with the higher injection pressure, the mean drops’ velocities showed initially
lower values, possibly due to a consistent drag exerted on the finely atomized drops, with
the mean velocity rising only later when, presumably, the core of the completely developed
spray attained the measuring station.

The analysis in Figure 12 confirmed the significant effect exerted by the injection
pressure on drops’ characteristics. The pressure increase from 5 to 11 bar,g caused a
reduction of the SMD in excess of 20 µm in several stations, with minor effects in the spray’s
periphery. Smaller and more uniform effects were observed in terms of the mean diameter.
The drops’ mean velocities consistently increased for all the measuring stations as a direct
consequence of the injection pressure’s increase. As was observed in Figure 11, the velocity
increase was observed mainly in the second part of the 4–8 ms time windows, when the
fully developed spray crossed the measuring station. It is also interesting observing how,
with Pinj = 5 bar,g, the drop count profile was clearly asymmetrical, suggesting incipient
off-design operation for the used injector. Correspondingly, the drops’ atomization quality
in the low-count region was particularly poor.
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Finally, in Figure 13, the diameter probability density function (PDF) for the droplet
population is reported for the examined ranges of the injection pressure and water tempera-
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ture. As can be observed, both the temperature and pressure variations caused a significant
improvement of the atomization quality, with a consistent reduction in the PDF values
for the intermediate diameter values (50–150 µm), while only marginal effects were ob-
tained for the few very large drops produced during the initial part of the injection process.
To be more detailed, it is interesting to point out how increasing the injection pressure
(Figure 13b) from 5 to 11 bar,g also increased the PDF values in the range of 35–50 µm,
confirming the modest atomization quality obtainable with low injection pressure values.
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4. Conclusions

Water injection is promising technology for the mitigation of the knocking tendency of
high-power density spark ignition engines, simplifying the adoption of high compression
ratio levels and reducing the necessity for mixture enriching and spark retarding. The final
goal is fully exploiting the efficiency potential of highly downsized, turbocharged spark
ignition engines that have been rapidly spreading on the market in recent years.

The mixture temperature’s control potential is related to the water’s high latent heat
of vaporization, and hence, despite the specific technology used to implement water
injection, either injected directly in the combustion chamber or in the inlet runner, the water
spray evaporation rate is crucial. To be more detailed, rapid and complete water spray
evaporation enables controlling the mixture’s temperature without significant drawbacks,
such as excessive water consumption (water/fuel ratios in the range of 0.2–0.5 are quite
common for full load operation) or potentially destructive lubricant oil dilution.

Port water injection (PWI) is currently considered the best compromise among system
cost, complexity and efficacy. In the present paper, a deep analysis of the effects of both
the water injection pressure and temperature on the resulting spray evolution and sizing
characteristics was carried out separately. The ranges for both the pressure and temperature
were chosen in order to be fully compliant with the low-pressure injection technology, with
the water temperature and injection pressure below 110 ◦C and 11 bar,g, respectively. The
obtained results can be summarized as follows:

• The injected mass per shot was significantly affected by the injected water’s temper-
ature. Increasing the water temperature from 20 ◦C to 110 ◦C caused a decrease of
about 7% for the injected mass, depending on the injection pressure level and injection
duration. This evidence seems to suggest the possible necessity of redesigning the
injector coil in the case of high-temperature operation.
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• In terms of the global spray evolution, no dramatic changes were observed for the
spray tip penetration or cone angle in the examined injection pressure and tempera-
ture ranges which, in the present analysis, did not trigger flash boiling phenomena.
Complete flash boiling development, with injection in sub-atmospheric conditions
presumably not relevant for water injection operation, would require water tempera-
ture levels possibly not compatible with the standard injection components’ integrity
or durability.

• The spray atomization quality was sensibly affected by the water temperature’s
increase, with a benefit in terms of the Sauter mean diameter between 8 and 15 µm
in the examined conditions. At the same time, the observed injection pressure effect
was more significant, with the Sauter mean diameter reduction being approximately
20 µm and the injection pressure increasing from 5 bar,g to 11 bar,g.

The obtained results seem to confirm that there is still significant potential in the
optimization of the water spray characteristics, mainly in terms of the atomization quality.
To be more detailed, adequate water temperature control could assist the increase of the
injection pressure in obtaining an adequate sizing level to speed up the evaporation process,
contributing to water injection technology spreading.
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Abbreviations
GDI Gasoline direct injection
ET Energizing time (ms)
MD Mean drop diameter (µm)
SMD Sauter mean drop diameter (µm)
PDF Probability density function
PFI Port fuel injection
PWI Port water injection
Tw Water temperature (◦C)
Pinj Injection pressure, gauge (bar,g)
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