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Abstract: The aim of the present study was to assess the transcription of Listeria monocytogenes key
virulence genes, namely sigB, prfA, hly, plcA, plcB, inlA, inlB, inlC and inlJ during subsistence on the
surface of tomato, cucumber and carrot stored at 4, 10 and 30 ◦C for 0, 0.5, 6 and 24 h. Gene relative
transcription was assessed through reverse transcription-quantitative polymerase chain reaction
(RT-qPCR). The results obtained, indicated that the relative transcription of plcA, plcB and inlB was
more affected during subsistence on cucumber surface whereas the relative transcription of sigB,
prfA, hly, inlA and inlC was more affected on tomato surface. Subsistence of the pathogen on carrot
surface had only marginal effect on the relative transcription of the virulence genes assessed in the
present study. In the majority of the cases, the aforementioned effects were dependent on the storage
temperature employed.

Keywords: Listeria monocytogenes; virulence associated genes; liquid medium; tomato; cucumber;
carrot

1. Introduction

Listeria monocytogenes is the etiological agent of foodborne listeriosis, the latest reports
on which mention in the United States of America a total of 32 illnesses, 31 hospitalizations
and 3 deaths (2017 annual report available at https://www.cdc.gov/fdoss/annual-reports/
index.html (accessed on 20 May 2021)) and in the EU a total of 2621 confirmed cases, 1339
hospitalizations and 300 deaths (2019 annual report available at https://www.efsa.europa.
eu/en/efsajournal/pub/6406 (accessed on 20 May 2021)). The virulence potential of this
foodborne pathogen relies on the ability to cross the intestinal epithelial cells, escape from
host defensive responses and disseminate through lymph and blood [1]. This infection
requires the coordinated expression of a series of genes, including hly, plcA, plcB, inlA,
inlB, inlC and inlJ. hly encodes for listeriolysin O (LLO) a cholesterol-dependent pore-
forming toxin that, among several functions, it facilitates internalization into host cells and
escape from host phagosomes through a pore-dependent mechanism [2]. plcA and plcB
encode for phosphatidylinositol phospholipase C and phosphatidylcholine phospholipase
C, respectively. The cooperation of both phospholipases with LLO is required for escape
of the pathogen from the phagocytic vacuole [3]. Internalins InlA, InlB, InlC and InlJ are
necessary for effective invasion. InlA and InlB bind to E-cadherin and the hepatocyte
growth factor receptor, respectively, which are receptors of the eukaryotic cell membrane.
In both cases, bacterial endocytosis is induced [1]. InlC enables cell-to-cell spread of
the pathogen by facilitating the formation of protrusions in the cell membrane of apical
junctions [4]. InlJ is also important, as suggested by the significantly attenuated virulence
capacity of the deletion mutant [5]; however, the mode of action is yet to be identified.
The transcriptional control of these genes has been assigned to the alternative sigma
factor B (σB) and the positive regulatory factor A (PrfA). The alternative sigma factor
B is encoded by sigB and has a key role in L. monocytogenes survival in nature and in
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the gastrointestinal tract. It controls the transcription of more than 200 genes, affecting
substantially L. monocytogenes responses to environmental stimuli and virulence [6]. The
latter is achieved through the transcriptional control of several virulence-associated genes,
including prfA. The latter encodes PrfA that directly regulates transcription of twelve key
virulence genes and indirectly a total of 145 genes. Thus, it possesses a key role in directing
cellular homeostasis and fine-tuning the virulence machinery of L. monocytogenes [7].

The effect that several factors associated with food processing may have on the
transcription of genes related to L. monocytogenes virulence has been studied to some extent.
However, only a few studies address the combined effect that the food matrix, storage time
and temperature as well as strain diversity may have. More accurately, Olesen et al. [8],
Bae et al. [9], Rantsiou et al. [10,11] and Mataragas et al. [12] studied the transcription
of key virulence genes of the pathogen on meat products, Duodu et al. [13] and Pilevar
et al. [14] on fish products, Rantsiou et al. [11] and Alessandria et al. [15] on dairy products
and Hadjilouka et al. [16] and Kang et al. [17] on fruits and vegetables. The significance of
these studies is highlighted by the fact that prior exposure to environmental stimuli affects
invasiveness [18–32] and that upregulation of virulence associated genes observed during
such exposure is correlated with increased invasion efficiency [13,21].

Tomatoes, cucumbers and carrots are very important vegetables, both in terms of
nutritional value (https://fdc.nal.usda.gov/ (accessed on 20 May 2021)) and commer-
cial importance (http://www.fao.org/faostat/en/#data/QV (accessed on 20 May 2021)).
Many authors have studied the prevalence of L. monocytogenes in these commodities. In
cucumbers, it has been reported below 7% [33–35]; however, Arumugaswamy et al. [36],
Poonniah et al. [37] and Ajayeoba et al. [38] reported detection of the pathogen in the
80%, 43.8% and 23.4%, respectively, of the samples assessed. A rather high prevalence has
been reported for tomatoes. More accurately, Vahidy et al. [34] reported 13.3%, Pooniah
et al. [37] 21.9% and Ajayeoba et al. [38] 19.67%. However, many studies have reported its
absence [33,39–41]. Similar is the case of carrots, Ponniah et al. [37] reported a prevalence
of 24.2% while Ajayeoba et al. [38] of 9.02%. On the contrary, Heisick et al. [33], Vahidy
et al. [34] and Odumeru et al. [42] reported absence in the samples assessed.

Outbreaks linked to the consumption of tomatoes and cucumbers usually involve
Salmonella serovars as etiological agents. On the other hand, illnesses related to carrot
consumption have been mostly assigned to Norovirus, Shigella ssp. and botulism (data
retrieved from outbreakdatabase.com (accessed on 20 May 2021)). However, based on
the rather high prevalence values and their widespread and general applicability, their
implication in L. monocytogenes outbreaks would also be reasonable, either through direct
consumption or through cross-contamination. So far, only one recorded outbreak has been
partially linked to tomato consumption. More accurately, Ho et al. [43] reported that the L.
monocytogenes outbreak that took place in 1979 in Boston and involved 23 patients from
eight hospitals, could be assigned to the consumption of celery, lettuce and tomatoes.

The aim of the present study was to provide information regarding the transcriptional
response of L. monocytogenes during subsistence on the surface of tomato, cucumber and
carrot, stored at 4, 10 and 30 ◦C. More accurately, data regarding the relative transcription
of sigB, prfA, plcA, plcB, hly, inlA, inlB, inlC and inlJ could improve the accuracy of risk
assessment studies and enable the development of commodity-specific control strategies.

2. Materials and Methods
2.1. Bacterial Strain, Inoculum and Sample Preparation

L. monocytogenes strain LQC 15257, serotype 4b, isolated from a strawberry sample [44]
was used throughout this study. The strain was stored at −20 ◦C in Nutrient broth (Lab M,
Lancashire, UK) supplemented with 50% glycerol. Before experimental use, the strain was
grown twice in Brain Heart Infusion (BHI) broth (Lab M) at 37 ◦C for 24 h.

The inoculum was prepared as follows: overnight culture of the strain (9 log CFU/mL)
was centrifuged (12,000× g; 15 min; 4 ◦C), washed twice with sterile Ringer’s solution (Lab
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M), resuspended in the same diluent and used to inoculate BHI broth, cucumber, carrot
and tomato samples.

Fresh carrots, cucumbers and tomatoes were purchased from local markets and were
examined for L. monocytogenes occurrence according to EN ISO 11290-1: 2017. Once absence
of the pathogen was verified, they were thoroughly washed with tap water and cut in slices.
Carrot slices of 2.5–3.0 cm diameter and ca. 0.5 cm thickness, cucumber slices of 4.0–5.0 cm
diameter and ca. 0.5 cm thickness and tomato slices of 6.0–7.0 cm diameter and ca. 1 cm
thickness were used for the experiment. The slices were placed in sterile containers (volume
ca. 500 mL) according to the product type, placed at the intended incubation temperature
(i.e., 4, 10 and 30 ◦C) overnight for temperature equilibration and sprayed with 0.5 mL of
pathogen culture previously adjusted to proper concentration. Similarly, BHI broth was
also inoculated with 0.5 mL of the diluted pathogen after temperature equilibration. BHI
broth, cucumber, carrot and tomato samples were inoculated with 7.00–7.50 log CFU/mL
or log CFU/g, respectively. The experiment was performed in triplicate.

2.2. Sampling and Microbiological Analyses

Sampling was performed immediately after inoculation (designated as time 0 h) and
after 0.5, 6 and 24 h of incubation at 4, 10 and 30 ◦C. For microbiological analyses, 10 g of
the vegetable sample was aseptically homogenized with 90 mL sterile Ringer’s solution
with the aid of a Stomacher apparatus (Seward, London, UK). In the case of BHI broth,
1 mL of substrate was aseptically homogenized with 9 mL of sterile Ringer’s solution.
In both cases, Ringer’s solution was previously equilibrated at sample temperature. The
homogenates were serially diluted in the same diluent, plated on Polymyxin Acriflavine
Lithium chloride Ceftazidine Aesculin Mannitol (PALCAM) agar (Lab M) as well as BHI
agar; incubation took place at 37 ◦C for 48 h. L. monocytogenes populations reported refer to
enumeration on PALCAM agar.

2.3. In Vitro and In Situ Gene Transcription Assay

After sample homogenization, 10 mL of the homogenate was transferred in sterile
Falcon® tubes and centrifuged (12,000× g; 1 min; sample temperature). Then, the super-
natant was discarded and the biomass was mixed with 200 µL of RNAlater® solution
(Ambion, Whaltham, MA, USA). RNA was extracted with the NucleoSpin® RNA Kit
(Macherey-Nagel, Dueren, Germany); cDNA synthesis took place with the PrimeScript™
One Step RT-PCR Kit (Takara Bio, Shiga, Japan) using random hexamers. Two reverse
transcription reactions (+RT) and one without the addition of reverse transcriptase (-RT)
were performed for each sample, containing ca. 0.5 µg RNA each. The primers and PCR
conditions were according to Hadjilouka et al. [45]. Real-Time qPCR was performed using
KAPA SYBR qPCR Kit Master Mix (2X) ABI Prism (KapaBiosystems, Boston, MA, USA).
No template controls (NTC) were also included to detect reagent contamination. The Ct
values of the genes under study were processed only if the difference between +RT and
-RT was at least 10 cycles and no amplification was observed in NTC.

2.4. Statistical Analysis

The Ct values of reference and virulence-associated genes were processed according
to Hadjilouka et al. [45] and the calculated fold change was converted to the respective log2
values for further processing. Based on the stability values calculated by NormFinder [46],
IGS was used for normalization. The condition used as control is mentioned in each case.
The relative transcription of a gene was considered as down- or up-regulated when the
log2 value of the fold change (log2FC) was below −1 or above 1, respectively, assessed
through one-sample t-test (p < 0.05). The correlation between the log2FC values of the
genes was assessed by the Pearson coefficient. One-way analysis of variance (ANOVA)
was performed to assess the differences between the population of the pathogen at each
sampling time. All calculations were performed in Statgraphics Centurion XVII.
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3. Results

In Table 1, the dynamics of the L. monocytogenes population during incubation of BHI
broth, carrot, cucumber and tomato at 4, 10 and 30 ◦C, are exhibited. Increase of the L.
monocytogenes population was only observed during incubation of BHI broth at 10 and
30 ◦C as well as during incubation of cucumber at 30 ◦C.

Table 1. L. monocytogenes population dynamics (log CFU mL−1 or g−1) in BHI broth, on cucumber, carrot and tomato during
incubation at 4, 10 and 30 ◦C.

Temperature (◦C) Time (h)

Substrate

BHI Broth
(log CFU mL−1)

Cucumber
(log CFU g−1)

Carrot
(log CFU g−1)

Tomato
(log CFU g−1)

4 0 7.23 (0.20) a 7.15 (0.22) a 7.23 (0.25) bc 7.11 (0.24) a

0.5 7.35 (0.37) a 7.31 (0.31) a 7.33 (0.37)c 7.17 (0.47) a

6.0 7.34 (0.40) a 7.26 (0.33) a 6.56 (0.42) a 7.23 (0.52) a

24.0 7.42 (0.33) a 6.79 (0.20) a 6.60 (0.24) a b 6.94 (0.59) a

10 0 7.20 (0.10) a 7.22 (0.31) a 7.34 (0.21) a 7.13 (0.19) a

0.5 7.36 (0.11) a 7.09 (0.38) a 7.19 (0.37) a 7.36 (0.14) a

6.0 7.69 (0.13) b 6.92 (0.14) a 7.10 (0.41) a 7.36 (0.51) a

24.0 8.12 (0.22) c 6.99 (0.15) a 6.89 (0.51) a 7.21 (0.38) a

30 0 7.20 (0.13) a 7.52 (0.35) a 7.38 (0.27) a b 7.34 (0.21) a

0.5 7.65 (0.10) b 7.77 (0.12) ab 7.51 (0.33) b 7.44 (0.27) a

6.0 8.19 (0.27) c 8.28 (0.30) b 6.73 (0.39) a 7.20 (0.37) a

24.0 9.00 (0.12) d 8.25 (0.32) b 6.86 (0.40) ab 7.20 (0.40) a

Standard deviation is given in parenthesis. Within a column, for each temperature, different superscript letters denote statistically significant
differences (p < 0.05).

In Figures 1 and 2, the effect of substrate and temperature on the relative transcrip-
tion of sigB, prfA, plcA, plcB, hly, inlA, inlB, inlC and inlJ is exhibited. These results are
summarized in Table 2.

In general, the relative transcription of all genes under study but hly, seemed to be
unaffected by the substrate, since, in the 66.9% of the cases, the log2(FC) value ranged
between −1 and 1 (Table 2), which was not considered as regulation. However, there were
notable exceptions. More accurately, transcription of sigB and plcB were affected on tomato
and cucumber, respectively. sigB was downregulated on tomato at all temperatures assessed
while downregulation of plcB was noted at 4 ◦C and a mixed response, i.e., up- and down-
regulation at different sampling times at 10 and 30 ◦C (Figure 1). Transcription of prfA was
affected on cucumber and tomato. More accurately, in the former case, downregulation was
evident at 4 and 10 ◦C, while in the latter case a mixed response at 4 ◦C and upregulation
at 30 ◦C were observed. In addition, transcription of inlA and inlC was affected on tomato.
In the first case, upregulation was observed at 10 and 30 ◦C and a mixed response at
4 ◦C (Figure 1). On the contrary, upregulation of inlC was observed at 30 ◦C and a
mixed response at 4 ◦C. Finally, downregulation of inlB was observed on cucumber at 4,
10 and 30 ◦C. Regarding the relative transcription of hly, downregulation was observed
on cucumber at 4 ◦C and on cucumber, carrot and tomato at 10 ◦C. On the contrary,
upregulation was observed on carrot at 4 ◦C and on tomato and carrot at 30 ◦C. Finally,
a mixed response was detected on tomato at 4 ◦C and on cucumber at 30 ◦C (Figure 1).
In only two cases the same transcriptomic response was observed in all four sampling
times, namely downregulation of hly and inlB that were observed at 10 ◦C on carrot and
cucumber, respectively.
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Figure 1. Cont.
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Figure 1. Effect of substrate on the relative transcription of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC
and inlJ during subsistence of L. monocytogenes strain LQC 15257 in BHI broth, on tomato, cucumber
and carrot at 4, 10 and 30 ◦C. BHI broth was used as control. If visible, white bars, time 0 h; light
grey bars, time 0.5 h; dark grey bars, time 6 h; and black bars, time 24 h. Error bars represent the
standard deviation of the mean value. Presence of asterisks indicates that the relative transcription
was above 1 or below −1 (the values that were used as threshold) at p value indicated by the number
of asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Figure 2. Cont.
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Figure 2. Effect of temperature on the relative transcription of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC
and inlJ during subsistence of L. monocytogenes strain LQC 15257 in BHI broth, on tomato, cucumber
and carrot at 4, 10 and 30 ◦C. The lower temperature was used as control. If visible, white bars,
time 0 h; light grey bars, time 0.5 h; dark grey bars, time 6 h; and black bars, time 24 h. Error bars
represent the standard deviation of the mean value. Presence of asterisks indicates that the relative
transcription was above 1 or below −1 (the values that were used as threshold) at p value indicated
by the number of asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Table 2. Number of samples under each experimental condition in which the relative transcription of the genes under study
was below, above or within the threshold set. Percentage is given in parenthesis.

Effect of Substrate Effect of Temperature

log2(FC) total cucumber tomato carrot total BHI broth cucumber tomato carrot

sigB

<−1 6 (16.7) 1 (8.3) 4 (33.3) 1 (8.3) 2 (4.3) 0 (0.0) 1 (8.3) 1 (8.3) 0 (0.0)

−1 to 1 30 (83.3) 11 (91.7) 8 (66.7) 11 (91.7) 36 (74.9) 9 (75.0) 8 (66.7) 8 (66.7) 11 (91.7)

>1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 10 (20.8) 3 (25.0) 3 (25.0) 3 (25.0) 1 (8.3)

prfA

<−1 4 (11.1) 3 (25.0) 1 (8.3) 0 (0.0) 7 (14.6) 1 (8.3) 1 (8.3) 5 (41.7) 0 (0.0)

−1 to 1 29 (80.6) 9 (75.0) 8 (66.7) 12 (100) 32 (66.5) 9 (75.0) 10 (83.3) 4 (33.3) 9 (75.0)

>1 3 (8.3) 0 (0.0) 3 (25.0) 0 (0.0) 9 (18.9) 2 (16.7) 1 (8.3) 3 (25.0) 3 (25.0)

plcA

<−1 5 (13.9) 4 (33.3) 1 (8.3) 0 (0.0) 2 (4.3) 0 (0.0) 1 (8.3) 0 (0.0) 1 (8.3)

−1 to 1 27 (75.0) 8 (66.7) 11 (91.7) 8 (66.7) 37 (76.8) 12 (100) 10 (83.3) 10 (83.3) 5 (41.7)

>1 4 (11.1) 0 (0.0) 0 (0.0) 4 (33.3) 9 (18.9) 0 (0.0) 1 (8.3) 2 (16.7) 6 (50.0)

plcB

<−1 9 (25.0) 5 (41.7) 2 (16.7) 2 (16.7) 12 (25.1) 4 (33.3) 4 (33.3) 3 (25.0) 1 (8.3)

−1 to 1 20 (55.6) 4 (33.3) 7 (58.3) 9 (75.0) 26 (54.1) 5 (41.7) 4 (33.3) 6 (50.0) 11 (91.7)

>1 7 (19.4) 3 (25.0) 3 (25.0) 1 (8.3) 10 (20.8) 3 (25.0) 4 (33.3) 3 (25.0) 0 (0.0)

hly

<−1 13 (36.1) 5 (41.7) 4 (33.3) 4 (33.3) 10 (20.8) 3 (25.0) 1 (8.3) 3 (25.0) 3 (25.0)

−1 to 1 13 (36.1) 6 (50.0) 3 (25.0) 4 (33.3) 24 (50.0) 4 (33.3) 9 (75.0) 5 (41.7) 6 (50.0)

>1 10 (27.8) 1 (8.3) 5 (41.7) 4 (33.3) 14 (29.2) 5 (41.7) 2 (16.7) 4 (33.3) 3 (25.0)

inlA

<−1 6 (16.7) 4 (33.3) 1 (8.3) 1 (8.3) 6 (12.5) 1 (8.3) 0 (0.0) 4 (33.3) 1 (8.3)

−1 to 1 22 (61.2) 8 (66.7) 4 (33.3) 10 (83.3) 32 (66.7) 9 (75.0) 11 (91.7) 3 (25.0) 9 (75.0)

>1 8 (22.1) 0 (0.0) 7 (58.3) 1 (8.3) 10 (20.8) 2 (16.7) 1 (8.3) 5 (41.7) 2 (16.7)

inlB

<−1 9 (25.0) 6 (50.0) 1 (8.3) 2 (16.7) 7 (14.6) 0 (0.0) 3 (25.0) 3 (25.0) 1 (8.3)

−1 to 1 23 (63.9) 6 (50.0) 7 (58.3) 10 (83.3) 36 (75.0) 12 (100) 8 (66.7) 6 (50.0) 10 (83.3)

>1 4 (11.1) 0 (0.0) 4 (33.3) 0 (0.0) 5 (10.4) 0 (0.0) 1 (8.3) 3 (25.0) 1 (8.3)

inlC

<−1 6 (16.7) 4 (33.3) 1 (8.3) 1 (8.3) 10 (20.8) 1 (8.3) 3 (25.0) 3 (25.0) 3 (25.0)

−1 to 1 23 (63.9) 8 (66.7) 6 (50.0) 9 (75.0) 33 (68.6) 10 (83.3) 7 (58.3) 7 (58.3) 9 (75.0)

>1 7 (19.4) 0 (0.0) 5 (41.7) 2 (16.7) 5 (10.6) 1 (8.3) 2 (16.7) 2 (16.7) 0 (0.0)

inlJ

<−1 5 (13.9) 2 (16.7) 2 (16.7) 1 (8.3) 6 (12.5) 0 (0.0) 5 (41.7) 0 (0.0) 1 (8.3)

−1 to 1 30 (83.4) 10 (83.3) 10 (83.3) 10 (83.3) 37 (77.0) 10 (83.3) 5 (41.7) 10 (83.3) 11 (91.7)

>1 1 (2.7) 0 (0.0) 0 (0.0) 1 (8.3) 6 (12.5) 2 (16.7) 2 (16.7) 2 (16.7) 0 (0.0)

Total

<−1 63 (19.5) 34 (31.5) 17 (15.8) 12 (11.1) 62 (14.3) 10 (9.3) 19 (17.6) 22 (20.4) 11 (10.2)

−1 to 1 217 (66.9) 70 (64.8) 64 (59.2) 83 (76.8) 293 (67.7) 80 (74.0) 72 (66.7) 59 (54.6) 81 (75.0)

>1 44 (13.6) 4 (3.7) 27 (25.0) 13 (12.1) 78 (18.0) 18 (16.7) 17 (15.7) 27 (25.0) 16 (14.8)

As far as the effect of temperature on the relative transcription of the genes under study
was concerned, it was not significant in the majority (67.7%) of the cases. More accurately,
transcription of sigB, inlB and inlC seemed to be unaffected by temperature. Transcription
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of prfA, hly and inlA on tomato exhibited a mixed response, i.e., up- and down- regulation
at different sampling times. The same response was observed for plcB transcription in
BHI broth and on cucumber. Transcription on plcA was mostly affected on carrot; in the
majority of the cases temperature increase resulted in upregulation. Transcription of hly
in BHI broth and inlJ on cucumber presented a similar trend. In the first case, the relative
transcription at 10 and 30 ◦C compared to the one at 4 ◦C indicated upregulation but the
relative transcription at 30 ◦C compared to the one at 10 ◦C indicated downregulation.
In the case of inlJ, the opposite was evident; the relative transcription at 10 and 30 ◦C
compared to the one at 4 ◦C indicated downregulation but the relative transcription at
30 ◦C compared to the one at 10 ◦C indicated upregulation. In only one case, the same
transcriptomic response was observed in all four sampling times, namely hly upregulation
in BHI broth at 10 ◦C compared to 4 ◦C.

The correlation between the transcriptomic responses of the genes under study were
collectively assessed by the Pearson correlation coefficient (Table 3). A total of 36 assess-
ments were performed; no statistically significant correlation was observed in seven cases
and positive correlation was observed in the remaining 29 cases.

Table 3. Pearson product moment (r) correlations between the relative transcription of each pair of
genes.

prfA sigB plcA plcB hly inlA inlB inlC inlJ

prfA r

p

sigB r 0.2548

p 0.0193

plcA r 0.4970 0.3361

p 0.0000 0.0018

plcB r 0.4347 0.2836 0.1373

p 0.0000 0.0089 0.2128

hly r 0.4430 0.0654 0.2050 −0.0811

p 0.0000 0.5545 0.0614 0.4631

inlA r 0.7528 0.2293 0.3497 0.6363 0.1316

p 0.0000 0.0359 0.0011 0.0000 0.2327

inlB r 0.7959 0.2581 0.4265 0.3001 0.4618 0.7264

p 0.0000 0.0178 0.0001 0.0056 0.0000 0.0000

inlC r 0.7218 0.2803 0.4250 0.1368 0.5274 0.5850 0.8322

p 0.0000 0.0098 0.0001 0.2147 0.0000 0.0000 0.0000

inlJ r 0.4045 0.4817 0.3182 0.1934 0.3311 0.3646 0.5134 0.6898

p 0.0001 0.0000 0.0032 0.0780 0.0021 0.0006 0.0000 0.0000
Statistically significant correlations (p < 0.05) are presented in bold.

Weak correlation (0.00 < r < 0.29) was indicated in 5 cases, moderate correlation
(0.30 < r < 0.49) was indicated in 14 cases and strong correlation (0.50 < r < 0.99) in 10 cases.
The strongest correlation (r > 0.70) was indicated between prfA and inlA, inlB, inlC, between
inlA and inlB, as well as between inlB and inlC.

4. Discussion

The pathogenic potential of L. monocytogenes, assessed almost exclusively by invasion
to cell lines, such as Caco-2, THP-1 and HT-29, is affected by abiotic and biotic stimuli
that include exposure to temperature, acid and osmotic fluctuations as well as the food
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matrix and co-existing microorganisms [18–32]. Correlation between the transcriptomic
response of the pathogen to the above stresses with invasiveness, in some cases was
successful [13,21]. Several studies have assessed the transcription of virulence associated
genes during growth of L. monocytogenes on a food matrix at various storage temperatures
and times [8–13,15–17]. The basic conclusions of these studies were that their transcription
was, in the majority of the cases, affected by the experimental conditions (time, temperature,
food matrix) and this effect was strain dependent. Indeed, when more than one strain was
included in a study, substantial differences in gene transcription were reported [8,10–13,15].
In the present study, only L. monocytogenes strain LQC 15257 was employed. The relative
transcription of virulence associated genes of this strain was also assessed on the surface of
rocket and melon [16], on the surface of BHI agar under the effect of lemongrass essential
oil [47], in co-culture with Aspergillus flavus strain 18.4 [48] as well as after in vitro exposure
to human gastric and duodenal aspirates [45]. Thus, a database of responses to various
stimuli has been established, which is enriched with the transcriptomic responses assessed
in the present study.

sigB and prfA possess very important role in homeostasis and virulence capacity of
the pathogen [1]. Moreover, transcription of prfA may be initiated by three promoter sites,
one of which is partially σB-dependent [48]. In the present study, only weak association
of the relative transcription between sigB and prfA was revealed. In addition, relative
transcription of both genes seemed to be unaffected by substrate and temperature, with a
few notable exceptions. Among them, downregulation of sigB was observed on tomato at
all temperatures. However, this was accompanied by up- and down- regulation of prfA at 4
◦C (at different sampling times) and upregulation at 30 ◦C. Downregulation of prfA could
be explained through the effect of the σB-dependent promoter P2prfA, while upregulation
through the effect of the σB-independent promoter P1prfA. The bicistronic plcA-prfA mRNA,
which is initiated by the plcA promoter, should be absent at temperatures below 37 ◦C [49],
i.e., the temperatures employed in the present study. This seems to be partially verified,
considering the only moderate correlation between prfA and plcA, which was indicated by
Pearson correlation coefficient.

Internalins InlA, InlB, InlC and InlJ are necessary for effective invasion. Indeed,
deletion mutants exhibited significantly attenuated virulence capacity [5,50–52]. In the
present study, based on the times that log2(FC) value indicated lack of regulation, the
relative transcription of inlA, inlB, inlC and inlJ was generally not affected by substrate and
temperature. However, in several cases, effect of substrate and temperature on internalin
genes relative transcription was observed. The substrate mostly affected inlA, inlB and
inlC relative transcription and only marginally the one of inlJ. Subsistence on tomato
affected inlA and inlC relative transcription more than subsistence on cucumber did. On
the contrary, cucumber affected inlB relative transcription more than tomato did. In nearly
all cases, subsistence on cucumber resulted in downregulation, while subsistence on tomato
in upregulation; carrot had only marginal effect. Regarding the effect of temperature, this
was more pronounced on tomato and cucumber and the genes mostly affected were inlA,
inlB and inlC in the first case, and inlC and inlJ in the second. All the above suggest that
transcription regulation of inlA, inlB and inlC is related. Indeed, inlA and inlB form the
operon inlAB, the transcription of which is controlled by both σB and PrfA; transcription of
inlC is controlled by PrfA, while transcription of inlJ by none of the above [53]. The effect
of prfA on the relative transcription of inlA, inlB and inlC was also verified by the high
(above 0.7) Pearson correlation coefficient. On the contrary, only a moderate correlation
was exhibited between prfA and inlJ as well as between sigB and all four internalins.

The role of hly in virulence has been adequately highlighted; it encodes for (LLO),
the absence of which has been reported to result in avirulence [54,55]. However, Phelps
et al. [52] reported that LLO-dependent internalization did not occur in the case of cy-
totrophoblasts and endothelial cells, which indicates that LLO deficient strains avirulence
is tissue dependent. Relative transcription of hly seemed to be substantially affected by
substrate and temperature. More accurately, subsistence on tomato seemed to affect more
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than carrot, which in turns affected more than cucumber. This effect was mostly observed
at 4 and 10 ◦C. In the latter temperature, hly was downregulated in all cases, while in
the former, hly was upregulated in the majority of the cases. Transcription of hly may be
initiated by three promoter sites, two of which are PrfA-dependent since they contain a
PrfA box [56]. In the present study, activation of the third promoter site is indicated, taking
into consideration the moderate correlation between prfA and hly transcription revealed by
Pearson correlation coefficient.

plcB also holds a very important role in pathogenesis [57]. Subsistence of the pathogen
on cucumber affected plcB relative transcription more than tomato and carrot did. In the
majority of the cases, a mixed response, i.e., up- and down-regulation at different sampling
times, was observed. Regarding the effect of temperature, this was more pronounced on
cucumber, followed by BHI broth and tomato. The effect of temperature on carrot was only
marginal. As in the previous case, a mixed response was evident. Transcription of plcB
is PrfA-dependent [58]. However, the data obtained in the present study revealed only a
moderate correlation between prfA and plcB transcription.

5. Conclusions

Subsistence of the pathogen on carrot surface had only marginal effect on the relative
transcription of the virulence associated genes assessed in the present study. On the
contrary, the relative transcription of sigB, prfA, hly, inlA and inlC was more affected on
tomato surface, while the relative transcription of plcA, plcB and inlB was more affected on
cucumber surface. In the majority of the cases, this effect was dependent on the storage
temperature employed. These results constitute a significant input to the ongoing effort to
elucidate the physiology of the pathogen during subsistence in food matrices, which may
concomitantly enable targeted virulence-attenuation approaches.
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