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Abstract: In neutron transmission spectroscopic imaging, the transmission spectrum of each pixel on
a two-dimensional detector is analyzed and the real-space distribution of microscopic information in
an object is visualized with a wide field of view by mapping the obtained parameters. In the analysis
of the transmission spectrum, since the spectrum can be classified with certain characteristics, it is
possible for machine learning methods to be applied. In this study, we selected the subject of solid–
liquid phase fraction imaging as the simplest application of the machine learning method. Firstly,
liquid and solid transmission spectra have characteristic shapes, so spectrum classification according
to their fraction can be carried out. Unsupervised and supervised machine learning analysis methods
were tested and evaluated with simulated datasets of solid–liquid spectrum combinations. Then, the
established methods were used to perform an analysis with actual measured spectrum datasets. As
a result, the solid–liquid interface zone was specified from the solid–liquid phase fraction imaging
using machine learning analysis.

Keywords: neutron transmission spectroscopic imaging; machine learning analysis; solid–liquid
phase fraction; solidification process; lead-bismuth eutectic alloy

1. Introduction

In neutron transmission spectroscopic imaging (NTSI), microscopic information is
mapped on an object image with a wide field of view by analyzing the transmission
spectrum of each point in two-dimensional imaging data [1–5]. Since the shape of the
transmission spectrum is determined by the neutron total cross-section, which reflects the
microstructure of the object material, it is possible to visualize the spatial distributions of
analyzed microstructural parameters [6]. Since the distribution of statistically averaged
microstructure information deep inside the sample can be visualized with a wide field of
view, its application has been expanded beyond material analysis to include analysis of
the deformation behavior of components [7] and evaluation of the homogeneity of actual
products [8].

In recent years, machine learning (ML) has been used for various spectral analyses,
including neutron science [9–16]. In neutron transmission spectrum analysis, which is the
basis of NTSI method, it is considered that ML can be applied if the obtained spectrum can
be categorized. That is, spectra with various material parameters are learned by ML in
advance and the material parameters of the experimental spectra are determined using the
ML model. When ML is used, it is not necessary to perform a detailed time-consuming
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analysis for each pixel, so it can be expected that the efficiency will be greatly improved, es-
pecially in the case of spectroscopic/energy-dependent imaging with a significant number
of pixels.

However, the issue in this case is the collection of a large number of spectra with a
wide variety of microscopic structures needed to build the ML model. In other words,
it is necessary to collect a number of Bragg-edge spectrum patterns of the solid material
with various different microstructures, which is the main subject in NTSI analysis. Bragg-
edge patterns reflecting various material microstructures can be calculated, for example,
using RITS (Rietveld Imaging of Transmission Spectra) code [6]. However, it is difficult to
calculate all types of microstructures as training spectra; moreover, there are patterns that
cannot be calculated with analysis codes such as RITS. Therefore, we considered building
an ML model for experimental analysis using the experimentally measured Bragg-edge
spectra as training data for the ML.

Our choice as the first trial for such ML analysis was the imaging of solid–liquid
interfaces in motion. When the solid–liquid interface in the solidification process is mea-
sured by neutron imaging, due to the relationship between the measurement time and the
solidification velocity, a zone appears where the solid and liquid phases coexist between
the 100% solid-phase and 100% liquid-phase regions. In this study, we applied ML to the
solid–liquid phase fraction analysis of this solid–liquid coexisting zone. In this case, the
analysis was not used for the microstructure of the solid phase itself directly, so it was easy
to apply ML. In addition, various Bragg-edge data can be collected using the solid-phase
spectrum of the entire solidified sample. From the above, it is considered that the analysis
of the solid–liquid phase fraction is optimal for evaluating the applicability of the ML
analysis method to NTSI as a first step.

In this study, lead-bismuth eutectic alloy (LBE), which our group has experience
in analyzing [17], was used as a sample for imaging the solidification process. LBE is
expected to be used as a coolant and spallation target for next-generation nuclear reactors
(accelerator-driven subcritical reactors), and it is required for evaluating the heat transfer
coefficient by determining the moving velocity of the solid–liquid interface [18–20]. As
it is difficult to analyze the solid–liquid phase fraction of neutron transmission spectra
with high accuracy for LBE due to its complicated crystal phase [21], this is considered an
appropriate application of ML analysis.

Therefore, the aim of this study was to investigate the possibility of applying ML
analysis to neutron transmission spectroscopy through LBE solid–liquid phase fraction
imaging as an example. For the ML analysis, the solid–liquid phase fraction of each
pixel during solidification was evaluated by the ML model built from the training dataset,
created from 100% liquid-phase and 100% solid-phase transmission measurement data.
We first evaluated the analytical performance of the ML using the neutron transmission
spectral dataset generated by the neutron total cross-section simulation. Then, ML was
applied to the experimental transmission imaging data for the solidification process of LBE,
which solidification process was performed to simulate the coolant solidification event,
and then, solid–liquid phase fraction imaging was performed.

2. Overview and Outline of Machine Learning Analysis
2.1. Application of Machine Learning Methods to Solid–Liquid Phase Fraction Analysis

In this study, to learn the spectra for LBE solids with various crystalline textures
produced by solidification, we assembled training data from the solidified LBE data itself
at the time of the experiment. In addition, the neutron transmission spectrum handled here
was composed of a large number of data points by the neutron time-of-flight (TOF) method,
and the computational cost was too large to be applied to ML in its original form. Therefore,
we first reduced the dimensionality of the spectral data through unsupervised machine
learning and then used the reduced dimensionality data to discriminate the spectral shape
by supervised machine learning in the second stage. The procedure for the analysis was
as follows:
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(1) Measure the solidification process of liquid LBE with NTSI.
(2a) Obtain the solid-phase spectrum and liquid-phase spectrum of LBE from the imaging

data. For the solid-phase spectrum, after the whole sample has solidified, divide
the solid zone into several parts and obtain multiple spectra with various crystalline
textures from each part. For the liquid-phase spectrum, the neutron data for the entire
melted liquid zone are integrated to obtain a liquid-state spectrum.

(2b) Create a training dataset with different crystalline textures and solid–liquid fractions
by adding the liquid-phase spectrum to each solid-phase spectrum acquired in step
(2a) in fractions from 0 to 100%.

(2c) Reduce the dimensionality of the training data in step (2b) using unsupervised ma-
chine learning, then build an ML model using the training dataset through supervised
machine learning.

(3) Reduce the dimensionality of the experimental spectra of step (1) using unsuper-
vised ML.

(4) Apply the supervised machine learning model built in step (2c) to the dimensionality-
reduced experimental spectra in step (3) and obtain the solid–liquid phase fraction.
Visualize the obtained phase fraction at each pixel.

In this study, we built ML programs with python and scikit-learn libraries, which are
commonly used.

2.2. Unsupervised Machine Learning

The purpose of the dimensionality reduction of high-dimensional data such as neutron
transmission spectra can be classified into two main categories. The first of these is data
compression. This can reduce computational costs when using supervised ML, where
datasets tend to be large. The other purpose is data visualization. This can help to convert
high-dimensional data whose characteristics are difficult to recognize into a two- or three-
dimensional diagram. For these purposes, unsupervised ML can be used as a method to
perform the dimensionality reduction of high-dimensional data.

There are various methods for the dimensionality reduction of data using unsuper-
vised ML, including principal component analysis (PCA), latent semantic analysis (LSA),
nonnegative matrix factorization (NMF), latent Dirichlet allocation (LDA), etc. Among
them, PCA is one of the most typical dimensionality reduction methods; it has a long
history and is widely used in various situations [22,23]. There are two main methods used
for the dimensionality reduction: selecting only important variables and not using the
remaining variables, and building new variables from the variables of the original data.
PCA applies to the latter. That is, original data can be explained by lower-dimensional
variables converting high-dimensional data by PCA. In this study, we adopted PCA as a
dimensionality reduction method for neutron transmission spectra.

In PCA, the following procedure is used to obtain the principal components.

(1) Calculate the variance-covariance matrix.
(2) Solve the eigenvalue problem for the variance-covariance matrix to find the eigenvec-

tors and eigenvalues.
(3) Represent data in the direction of each principal component.

Consider a variance-covariance matrix A for the given data:

Ax = λx (1)

where A is an nth-order square matrix and x is an n-dimensional vector. Finding x and
the eigenvalue λ that satisfy (1) is mathematically equivalent to the problem of finding
orthogonal axes that maximize the variance. In PCA, when the eigenvalue problem is
solved for the variance-covariance matrix A, multiple combinations of eigenvalues and
eigenvectors are calculated. The eigenvector with the largest eigenvalue is called the first
principal component, while the eigenvector with the second largest eigenvalue is called
the second principal component. After the third principal component, the eigenvectors
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with the largest eigenvalues are expressed in order. Further, by dividing the eigenvalues
calculated for each principal component by the sum of the eigenvalues, the importance
of the principal components can be expressed as a ratio. This is called the contribution
ratio, and it indicates how much each principal component expresses the data. The sum of
the contribution rates in order from the first principal component is called the cumulative
contribution rate, and this can be used to measure the amount of information lost through
dimensionality reduction. The cumulative contribution rate is discussed in Section 3.2.

2.3. Supervised Machine Learning

There are several supervised ML methods [24] used to carry out regression analysis
on dimensionally reduced data to perform spectral analysis, such as the K-nearest neighbor
(KNN) algorithm, extra tree regression (ETR), and support vector regression (SVR). In
this study, we adopted the KNN algorithm, which requires a lower cost of computation.
KNN is a supervised ML method that can be used for both classification and regression
problems. Supervised ML basically consists of two parts: the training part, which is used
to calculate the optimal parameters from the training data, and the prediction part, which
makes predictions using the calculated training parameters. However, KNN does not have
the part to calculate the optimum parameters from the training data. Since the training
data are learned and predictions are made directly, the computational load is small.

KNN is a simple algorithm that learns the training data they are when training. The
procedure used for solving a regression problem for input data is as follows.

(1) Calculate the distance between the input data and the training data.
(2) Chose K training data from their data points closest to the input data.
(3) Obtain the average value of the indications of the training data and use it as the result

of the regression problem.

In KNN, when predicting a regression problem, the distance between the input data
and the training data is generally calculated using Euclidean distance. When the two
points P and Q—defined by variables pi and qi, respectively—for which we want to find
the distance are represented by P(p1, p2, ..., pn) and Q(q1, q2, ..., qn), the multidimensional
Euclidean distance d(P, Q) is given by the following equation:

d(P, Q) =

√
(p1 − q1)

2 + (p2 − q2)
2 + . . . + (pn − qn)

2. (2)

When KNN handles a large amount of data, the prediction of unknown data takes a
long time because KNN performs a neighborhood search on a large amount of training
data. In addition, since d(P, Q) is used to measure the distance between data, there appears
to be only a small distance difference between data when the number of data dimensions
is large, and it is often impossible to train with a high accuracy. Therefore, KNN is effective
when the amount of data (spectra) is small or when the number of dimensions (channel
number of time-of-flight spectrum) is small. The number of neighborhood training data
points, K, to be acquired when making predictions with KNN is not determined within
the inference or prediction, and K is called hyperparameter. A smaller K leads to a more
complicated decision boundary, therefore overfitting is more likely to occur. Therefore, to
improve the generalization performance, it is necessary to adjust an appropriate K using
training data.

3. Examination of Machine Learning Analysis Using Simulation Spectra
3.1. Preparation of Simulation Spectra for Evaluation of Machine Learning Analysis Methods

Prior to the solid–liquid phase fraction analysis of the measured spectra, the validity
of the aforementioned analysis procedure was confirmed by simulated LBE Bragg-edge
transmission spectra prepared using computer simulation shown below. The simulated
total cross-section spectrum of the LBE solid phase was calculated using the RITS code [6]
with the systematic variation of the texture information. The parameters considered here
were the direction of the crystal orientation vector (preferred orientation <hkl>) and the
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degree of development of the orientation texture (March–Dollase coefficient, MD). How-
ever, since the ratio of the β-phase is higher than that of the γ-phase in LBE [20], only the
texture of the β-phase was considered here. Sixteen types of texture combinations were
created between four types of preferred orientation vectors (β<100>, β<002>, β<101>,
β<102>) parallel to the neutron transmission direction and four types of MD coefficients
(MD = 0.6, 0.7, 0.8, 0.9). A completely isotropic solid-phase texture (MD = 1.0) was added
and we prepared 17 types of LBE solid-phase spectra in total. The total cross-section spec-
trum of the LBE liquid phase was prepared from the neutron transmission spectroscopic
imaging experiment (see Section 4.2). The simulated transmission spectra of various phase
fractions of the LBE mixed solid–liquid phase were calculated from these cross-sections
according to the next equation:

Tr(λ) = exp
[
−
{

Σsolid(λ)at + Σliquid(λ)(1 − a)t
}]

. (3)

Here, Tr(λ) is the neutron transmission spectrum; Σsolid(λ) and Σliquid(λ) are the macro-
scopic total cross-section of the LBE solid and liquid phases, respectively; and a is the
fraction of the solid phase (0 ≤ a ≤ 1). t is the thickness of the entire sample, and here it was
set to 10 mm according to the experiment. The solid-phase fraction a was changed from 0 to
100% in 1% steps, and one type of 100% liquid phase, which is common to the LBE system,
was added to make a total of 1701 types of spectral datasets for evaluation. Figure 1 shows
an example of the neutron transmission spectrum variation in an LBE solid–liquid mixture
when the texture of the solid phase is isotropic. It can be seen that the Bragg-edges of the
solid phase appear to be relatively clear against the 100% of the liquid phase. Thus, we
prepared neutron transmission spectra of the LBE for various solid–liquid phase fractions
(0 to 100%) and various textures (17 types as mentioned above) of the solid phase.
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Figure 1. Neutron transmission spectra (Gaussian error σ = 0%) of lead-bismuth eutectic alloy (LBE)
simulating the solid–liquid mixed state when the solid phase had an isotropic texture (March–Dollase
coefficient (MD) = 1.0).

Furthermore, in this study, to use the experimentally obtained transmission spectrum
as training data, we also examined the case where the neutron transmission spectrum
included statistical errors. To the simulated spectra created above, errors following a
Gaussian distribution with a standard deviation σ of 1, 2,..., 9, and 10% were randomly
added to the simulated spectra. As an example, Figure 2 shows the neutron transmission
spectra with σ = 5% error in the case of the isotropic solid-phase texture. From this,
when the statistical error included in the neutron transmission spectrum becomes large, it
becomes more difficult for human eyes to distinguish between the solid and liquid phases.
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Figure 2. Neutron transmission spectra with random errors (σ = 5%) simulating the solid–liquid
mixed state when the solid phase had an isotropic texture (MD = 1.0).

3.2. Dimensionality Reduction Using Unsupervised Machine Learning Methods

Figure 3 shows the result of the cumulative contribution evaluation of the transmission
spectrum dataset with σ = 0% created in Section 3.1 to evaluate the amount of information
lost due to the dimensionality reduction of PCA. The horizontal axis of the figure is the
number of principal components after dimensionality reduction by PCA, while the vertical
axis is the cumulative contribution rate explained in Section 2.2. From the cumulative
contribution rate, it is evident that more than 99% of the original data can be expressed
with the first three principal components of the PCA; namely, this dataset can be expected
to be sufficiently analyzed by reducing the number of dimensions to three.

Appl. Sci. 2021, 11, × FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Neutron transmission spectra with random errors (σ = 5%) simulating the solid–liquid 
mixed state when the solid phase had an isotropic texture (MD = 1.0). 

3.2. Dimensionality Reduction Using Unsupervised Machine Learning Methods 
Figure 3 shows the result of the cumulative contribution evaluation of the transmis-

sion spectrum dataset with σ = 0% created in Section 3.1 to evaluate the amount of infor-
mation lost due to the dimensionality reduction of PCA. The horizontal axis of the figure 
is the number of principal components after dimensionality reduction by PCA, while the 
vertical axis is the cumulative contribution rate explained in Section 2.2. From the cumu-
lative contribution rate, it is evident that more than 99% of the original data can be ex-
pressed with the first three principal components of the PCA; namely, this dataset can be 
expected to be sufficiently analyzed by reducing the number of dimensions to three. 

 
Figure 3. Cumulative rate of contribution to the number of dimension reductions (Gaussian error 
σ = 0%). 

Figure 4 shows the diagram plotting the distribution of the first three principal com-
ponents of PCA expressing the simulated dataset of σ = 0%. Note that each principal com-
ponent is computationally found and the unit cannot be defined. In the figure, the point 
where each plot line converges is the point of a 100% liquid phase; from there, the point 
of a 100% solid phase appears at the opposite end of the line according to each texture 
state. Then, the data for each phase fraction are plotted on a straight line connecting both 

Figure 3. Cumulative rate of contribution to the number of dimension reductions (Gaussian error
σ = 0%).

Figure 4 shows the diagram plotting the distribution of the first three principal com-
ponents of PCA expressing the simulated dataset of σ = 0%. Note that each principal
component is computationally found and the unit cannot be defined. In the figure, the
point where each plot line converges is the point of a 100% liquid phase; from there, the
point of a 100% solid phase appears at the opposite end of the line according to each texture
state. Then, the data for each phase fraction are plotted on a straight line connecting both
points. This straight line is drawn depending on the solid–liquid phase fraction. The
data groups of different preferred orientation vectors are represented by colors, and the
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black line in the center of the distribution corresponds to the solid–liquid phase fraction
depending on the line of the isotropic texture. These groups are distributed to form fan-
shaped planes in different preferred orientations from the black line. That is, as the texture
develops (from MD = 1.0 to MD = 0.6), the data are plotted farther from the isotropic texture
case (black line). In this way, it was found that by reducing the dimensions with PCA,
it is possible to clearly identify the LBE transmission spectra with different solid–liquid
phase fractions, preferred orientation vectors, and degrees of development of the texture.
With this detailed analysis, it may be possible to obtain not only the solid–liquid phase
fraction but also the texture information for the solid phase depending on the position of
the transmission spectrum in this diagram.
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3.3. Solid–Liquid Phase Fraction Analysis by Supervised Machine Learning Method

To evaluate the performance of the supervised machine learning method, the sim-
ulated dataset was randomly divided into training and testing data groups after dimen-
sionality reduction by PCA. Of the original dataset including 1701 spectra, 1500 were for
the training data group and 201 were for the test data group. The test data group was
analyzed by the ML model built using the training data group, and the difference between
the analyzed solid fraction and the original solid fraction was evaluated by the root mean
square error (RMSE) shown by the equation:

RMSE =

√
1
n ∑n

i=1( fi − yi)
2. (4)

Here, n is the number of spectra analyzed, fi is the solid-phase fraction estimated
by the ML analysis, and yi is the original solid-phase fraction set when the dataset was
created. For the ML analysis, we tested SVR and ETR in addition to KNN. KNN and
ETR showed higher performance than SVR when the training data contained statistical
errors, and KNN had the lowest computational cost, so we adopted KNN in this study. The
computational cost is also important in analyzing more than 10,000 spectra of all pixels of a
two-dimensional detector in NTSI. In KNN, it is necessary to optimize the hyperparameter
K of the training data, and in this study it was determined by 10-fold cross validation (CV).

First, the result of the solid-phase fraction analysis by KNN is shown in Figure 5.
In this case, the Gaussian distribution error was not added to the simulated spectrum
dataset (σ = 0%). Here, K = 2 was used due to optimization. The horizontal axis of the
diagram is the original solid-phase fraction, and the vertical axis is the solid-phase fraction
estimated by KNN. The analyzed results of the test data shown by the red circle are in
good agreement with the ideal values shown by the black line. In the figure, we also show
the analysis results of the training data (blue triangles) in order to see how accurate the
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analysis can be when analyzing the data used for training. Although this depends on
the type of ML algorithm used, if there is a difference between the training and test data
distributions there is a possibility that overlearning is occurring. In this case, there appears
to be no problem.
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Figure 5. Results of solid–liquid phase fraction analysis by K-nearest neighbor algorithm (KNN) for
the simulated spectral dataset without Gaussian errors (σ = 0%) for both the training and testing data.

Next, we analyzed simulated datasets with Gaussian distribution errors (σ = 1, 2, 3, ...,
9, 10%) using the ML models built by the training spectra, including the errors, which is the
subject of this research. For example, the ML analysis results for the dataset that included
an error of σ = 5% were divided and analyzed as mentioned above and shown in Figure 6.
Here, the hyperparameter K = 10 was the optimal value. As can be seen from the figure, the
variance of both the training and test data groups increases around the black line, which is
the set value of the solid-phase fraction. However, the estimated values follow the black
line as a whole and the solid-phase fraction is considered to give results with a certain
accuracy. Since the variances of the training and test data groups are about the same, note
that our ML model did not fail with regard to overlearning.
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with random errors (σ = 5%) for both the training and testing data.

Figure 7 shows the difference in RMSE when the ML models were built from each
dataset created by changing the simulated statistical error, σ. The horizontal axis of the
diagram is the magnitude of the statistical error σ in the test data and the vertical axis is
the RMSE. This figure shows the difference in RMSE depending on the statistical error
(<5%) of the training data. If the statistical error contained in the test data is small, it is
more accurate to perform the analysis using an ML model built using the training data of
small σ. However, looking at more than 5% of the horizontal axis shown in the diagram
(statistical error of the test (analyzed) data), we found that the accuracy of the analysis was
almost the same even when the statistical error of the test data was larger than the error in
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the training data. In other words, it is more profitable to obtain the training data with the
same or better statistical accuracy than the analyzing data.
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Figure 7. Difference in analytical performance (root mean square error (RMSE)) for the test data with
random errors (σ = 0−10%). The training data with random errors (σ = 0−5%) were used to build
the machine learning (ML) model using KNN.

4. Machine Learning Analysis Based on Actual Measurement Data
4.1. Overview of Neutron Transmission Spectroscopic Imaging Experiments of LBE Solidification

The NTSI experiments during the solidification process of LBE were performed using
the energy-resolved neutron imaging system RADEN in the Materials and Life Science Ex-
perimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC) [25]
with the neutron wavelength resolution of = 0.25%. The details of these experiments are
already reported [26,27]. The LBE sample had a solidified volume 80 mm in vertical length,
80 mm in width, and 10 mm in thickness, and it was contained in a 304 stainless steel
container with 1-mm-thick walls. The entire container was covered with glass fiber for heat
insulation. A heater block at the top of the container and a heat sink at the bottom were
installed. The sample temperature was checked using thermocouples inserted in seven
locations around the container. A gas electron multiplier (GEM)-type detector (nGEM, Bee
Beans Technologies [28]) was used as the neutron time-of-flight (TOF) imaging detector,
covering a 100 mm × 100 mm detection size. The pixel resolution was 0.8 mm in length
and there were 128 × 128 pixels in total. In the experiment, the sample was heated for
60 min at first until about half of the top of the LBE sample reached a temperature higher
than 124.7 ◦C, which is the melting point of LBE. Then, while holding the initial state, the
first neutron transmission TOF imaging measurement was performed for 60 min. After
that, the heating was stopped and the gradual solidification process from the downward
direction of the sample was measured over 270 min as time-accumulated measurements
every 30 min.

4.2. Creation of Training Data and Building Machine Learning Model

Figure 8 shows one of the neutron transmission images during the LBE solidification
process as an example of the data measured. The figure shows a neutron wavelength-
resolved radiogram with a neutron wavelength of 0.530~0.537 nm near the β(101) Bragg-
edge of LBE. The relatively uniform zone at the bottom of the figure is considered the zone
where the sample did not melt during the first 60 min of heating. Upward from there, the
zone where black and white vertical shades can be seen is considered the zone that was
solidified through the solidification process. The slightly darker gray zone in the upper part
(surrounded by a red frame) is estimated to be the zone where the solid–liquid interface
moved during the 30 min integration measurement, and the uppermost uniform zone is the
LBE melt. Although the approximate location of the solidification interface can be estimated
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from the obtained images, it is necessary to evaluate the solid–liquid phase fraction to
investigate its location in detail. The target of this study was to determine the rate at which
this red zone moves from the bottom to the top during the solidification experiment.
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Figure 8. Neutron transmission imaging (80 mm × 80 mm) of the LBE sample during solidification
(neutron wavelength: 0.530–0.537 nm; measurement time: 30 min). The red frame in the figure was
considered the solid–liquid interface zone.

The training spectral dataset used for the ML analysis was created from neutron trans-
mission spectra from TOF imaging experiments. For obtaining the liquid-phase spectrum
shown in Figure 9, we averaged the entire zone where the liquid-phase was judged to
be 100% in the first 60-min measurement, identified by the temperature information with
the thermocouples inserted in the sample. For the spectrum of the solid phase, the data
after the entire sample was solidified were picked out in a 45 horizontal pixel × 2 vertical
pixel section, avoiding the thermocouple insertion area, and these pixels were integrated
and averaged together. Then, eventually, 50 types of solid-phase spectra were sampled for
every two vertical pixels. Figure 10 shows some of the spectra obtained. The solid-phase
spectra obtained from the different points show differences in texture. The effect of the
sample container was removed as a background during these procedures.
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Figure 10. Example of neutron transmission spectra of 100% solid-phase LBE obtained from different
points. The colors of the spectra are just for the visibility.

Using the spectra for the 100% liquid phase (1 kind) and 100% solid phase (50 kinds),
prepared as described above, we created a training dataset of LBE neutron transmission
spectra for solid-phase fractions from 0 to 100% in 1% increments following the procedure
described in Section 3.1. Since we prepared 50 types of solid-phase spectra, the total number
of neutron transmission spectra in the created training dataset was 5001. These spectra
were then dimensionally reduced to 3 by PCA, and 5001 of these spectra were trained to
build an ML model for the KNN.

4.3. Principal Component Imaging by PCA of Solidified Sample

As an example of the PCA result of the LBE spectra in the solidified sample obtained
in the experiment, the first through fifth principal components are shown with the neu-
tron transmission image in Figure 11. Different images were obtained for each principal
component. The first principal component closely resembles the neutron transmission
image, while the images of the second through fourth principal components are images
that emphasize the solidification texture. It can also be seen that the higher the principal
component is, the more information is lost in the image. The image shows an almost
uniform noise distribution in the fifth principal component. Although these images do not
directly correspond to physical quantities, PCA can visualize points of interest in the shape
of the neutron transmission spectrum. Note that the sample container and thermocouples
are clearly visible in the lower-order principal components.
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4.4. Solid–Liquid Phase Fraction Imaging of LBE Using Supervised Machine Learning Analysis

Figure 12 shows an example of a single-pixel spectrum used for analysis. It was
estimated to be the liquid phase from the thermocouple measurement until 30 min after
the solidification process started. The statistical error is large for one-pixel data. Such
a spectrum was created pixel by pixel from the TOF transmission image data, and the
solid-phase fraction was quantitatively obtained by KNN analysis. Figure 13 shows an
example of the result of quantifying the solid-phase fraction, performed on the entire
detection area. The linear shadows shown by the blue arrows are thermocouples. To
exclude the influence of the background caused by such devices, the solidification process
was evaluated in the zone indicated by the red frame. Note that, once the spectral dataset
for analysis is prepared, the KNN analysis can be completed in a few minutes, so the effect
of time efficiency is extremely high.
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Figure 13. An example of solid–liquid phase fraction imaging (80 mm × 80 mm) results obtained
by ML analysis (at the beginning of the solidification process). The black shadows at the blue
arrow positions in the figure are the thermocouples in the sample. To eliminate the influence of the
thermocouples and the insulation material around the sample container, the data inside the red frame
were used for the analysis to determine the movement of the solid–liquid interface.
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Some examples of the solid-phase fraction map and average in the horizontal direction
inside the red-frame zone are shown in Figure 14. In the average diagram on the right in
the figure, the horizontal axis is the solid-phase fraction and the vertical axis is the distance
from the top of the sample. Initially, the lower zone of the image corresponds to 100% solid
phase and the upper zone to 100% liquid phase. In the average diagram, the analyzed
results of the solid- and liquid-phase zones do not show perfect 100% and 0% values, but
this may be due to the influence of statistical errors and residual background components.
However, as shown in the diagram, each zone shows moderately constant values and can
be used to determine the solid- and liquid-phase zones. In addition, there is a zone of
gradual change in phase fraction between these two zones, which is considered the zone
where the solid–liquid interface moved within 30 min. This interfacial zone moves to the
top over time, until eventually the whole area becomes solid.
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Subsequently, the average solid–liquid interfaces were estimated by the position of
the 50% solid-phase fraction for all analyzed images. The results are shown in Figure 15.
The horizontal axis shows the time since the solidification process began, and the vertical
axis shows the position from the top of the sample. The results are relatively consistent
with the time dependence results of a previous study [26,27] estimated from neutron
transmission images. Based on the results, we estimated the solidification velocity during
the experiment, and this is shown in Figure 16. The result of this study shows a tendency
for the solidification velocity to gradually increase with time, which may be reasonable
considering the decrease in the liquid-phase volume over time, i.e., the decrease in heat
storage capacity.
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5. Conclusions

In this study, the application of ML to neutron transmission spectroscopic imaging
(NTSI) was investigated using solid–liquid phase fraction analysis as an example. The
target of the analysis was the evaluation of the solid–liquid interface movement during the
solidification process of LBE. In supervised ML, creating training data can be an issue, but
in this study we assembled the training dataset using actual experimental data with a wide
variety of solid–liquid phase fractions and crystalline textures of the solid phase without
model calculation.

For the ML analysis, we adopted two steps—the dimensionality reduction of neutron
transmission spectrum by PCA and spectrum pattern analysis by KNN—with the goal
of reducing the computational cost as much as possible. For the examination of this ML
analysis, the evaluating spectrum dataset was created by first setting the phase fraction
between the simulated solid spectra and experimental liquid spectrum. Then, the ML was
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examined with a dataset that contained Gaussian distributed random errors to simulate
statistical errors. As a result, it was found that PCA can evaluate the solid–liquid phase
fraction of LBE with principal components up to several dimensions, while KNN can
evaluate the fraction with the same accuracy as that found for the training data.

As a result of applying this ML analysis to the actual experimental data, it was possible
to evaluate the solid-, liquid-, and mixed-interface zones quantitatively based on the phase
fraction. The average position of the solid–liquid interface was generally consistent with
the results of a previous study [26,27]. The ML analysis introduced here was for the simple
problem of shape recognition about the mixture of the spectra of solid- and liquid-phases,
which have clearly different shapes. To extend ML to general spectrum analysis, there are
many issues such as accumulation of training data. We are considering applying ML to
NTSI spectral analysis by limiting the number of parameters of the crystal texture.

Thus, the application of ML analysis to NTSI seems to have potential. In unsuper-
vised ML, the visualization of PCA results is also expected to be a bridge to detailed
crystallographic analysis because it can clearly show the characteristics of the transmission
spectrum. Further, the result that the measured spectra can be used as the training data in
supervised ML is advantageous to the NTSI, which can collect the number of spectra with
multiple pixels on a two-dimensional detector. The effectiveness of the use of experimental
spectra for training data, as revealed in this study, shows the potential of ML analysis using
large databases of previous experimental data for new experimental data.
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