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Abstract: The energy-efficient motion control of a mobile robot fueled by batteries is an especially
important and difficult problem, which needs to be continually addressed in order to prolong the
robot’s independent operation time. Thus, in this article, a full optimization process for a fuzzy
logic controller (FLC) is proposed. The optimization process employs a genetic algorithm (GA) to
minimize the energy consumption of a differential drive wheeled mobile robot (DDWMR) and still
ensure its other performances of the motion control. The earlier approaches mainly focused on energy
reduction by planning the shortest path whereas this approach aims to optimize the controller for
minimizing acceleration of the robot during point-to-point movement and thus minimize the energy
consumption. The proposed optimized controller is based on fuzzy logic systems. At first, an FLC
has been designed based on the experiment and as well as an experience to navigate the DDWMR to
a known destination by following the given path. Next, a full optimization process by using the GA
is operated to automatically generate the best parameters of all membership functions for the FLC.
To evaluate its effectiveness, a set of other well-known controllers have been implemented in Google
Colab® and Jupyter platforms in Python language to compare them with each other. The simulation
results have shown that about 110% reduction of the energy consumption was achieved using the
proposed method compared to the best of six alternative controllers. Also, this simulation program
has been published as an open-source code for all readers who want to continue in the research.

Keywords: differential drive robots; fuzzy logic control; genetic algorithms; optimal control; wheeled
mobile robot control; pymoo

1. Introduction

The Differential Drive Wheeled Mobile Robot (DDWMR) can perform many different
tasks in many fields. To fulfill its series of tasks in different places, the robot has to move
from one place to another place in a known or an unknown environment. Therefore, motion
control problems such as path tracking, “go-to-goal”, “point-to-point”, waypoints tracking,
pose tracking, etc. of a mobile robot are still the crucial and fundamental problems for
the robot operation. These control problems have been widely researched and published,
such as the obstacle avoidance with minimum travel time [1], the go-to-goal control
without obstacle avoidance [2,3], the leader following control [4], the trajectory tracking
control [5–7], the wall-following control [8], the obstacle avoidance [9–11]. For the robot
motion control, both conventional control methods and modern control methods have been
applied. Several well-known controllers such as the controller proposed by Kanayama and
Robins Mathew, the feedback-based controller for the circular path, the Lyapunov-based
controller, the clever trigonometry-based controller, and the Dubins path-based controller,
have been discussed in [12].
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On the one hand, the conventional control techniques such as the back-stepping, the
linearization, the PID, etc. depend largely on precise mathematical modeling. So, the
absence of an accurate analytical model makes it quite difficult to design an appropriate
controller. In practice, robots are nonlinear systems and usually have to operate in un-
structured environments with uncertainties, which leads to even more complex tasks for
the robots. On the other hand, intelligent control algorithms such as the Fuzzy Logic (FL)
control, the neural network control, etc. allow us to drive the DDWMR without a detailed
mathematical model and thus they are preferred over others. The FL control algorithms
can deliver fast and precise dynamic responses, which allows information analysis through
a true-and-false scale, and are generally robust, tolerant to uncertainties and noise in the
input data [13].

It should be mentioned that many different FL control algorithms such as (1) Conven-
tional FL control methods and hybrid fuzzy-PID control algorithms [2,4,6]; (2) Adaptive FL
algorithms, for example, an adaptive fuzzy output feedback control of a Wheeled Mobile
Robot (WMR) [7], an adaptive FL control based on harmony search [14], an adaptive fuzzy
output feedback simultaneous posture stabilization and tracking control [15], a robust adap-
tive fuzzy variable structure tracking control for a WMR [16]; (3) A hybrid fuzzy-neural
network, such as navigation of a WMR using adaptive network-based fuzzy inference sys-
tem [9], an adaptive network fuzzy inference system based navigation controller for mobile
robot [10], a fuzzy-neuro based navigational strategy for mobile robot [11]; (4) Bio-inspired
optimization techniques applied for FL control methods, such as using the particle swarm
optimization [1], the Genetic Algorithm [8,17–21], etc. have been used to control a WMR
so that the robot can perform its different tasks. However, most of the above-mentioned
control algorithms only focus on solving the robot motion control problems, i.e., making
the robot move smoothly, with no or minimum vibration, tire slipping, etc. Currently, just
a few authors have mentioned and solved the problem of robot motion with the minimum
energy consumption criterion [22–28].

It is necessary to reduce the energy consumption of the DDWMR to perform more
missions efficiently with a limited energy supply. Several methods which have been
published are able to deal with the finite energy of batteries, such as focusing on motion
planning to reduce energy consumption [22,23], selecting robot’s components which use
less energy [24], using energy management techniques in the WMR [25], generating speed
profiles to reduce energy consumption, avoiding sudden accelerations and decelerations
of the WMR [26], prolonging the time of operation by increasing the number of batteries
or by diverting the robot back to the charging station [27], or improving the quality of the
battery [28], etc. Among these methods, the optimal path planning to reduce the energy
consumption is more effective and widely applied than the others. In general, the optimal
path is the shortest path with several sharp turns [22]. These sharp turns force the robot
to decelerate and accelerate as required by that path, which leads to the consumption of
extra energy. To tackle that problem, Liu and Sun [22] have used Bézier curves to smooth
the path which will minimize the energy consumption. In [23], Manas Chaudhari et al.
have used Dubins path to smooth the path so that the energy consumption of the robot
is reduced.

From the above-mentioned studies, it can be derived that motion planning without
considering the energy consumption of the robot is not efficient planning in the energy
sense. Therefore, a better solution would be to integrate both optimal path planning and
minimum energy robot motion control. If an optimal path has been already planned, an
optimal motion controller is needed for the robot so that it can go to the destination with
the minimum energy consumption.

The main goals of this paper are: (1) To propose an optimal fuzzy logic controller
using the genetic algorithm (GA_FLC) to reduce the energy consumption of the DDWMR
more effectively than the other algorithms; (2) To create a software in Google Colab® and
Jupyter platforms using Python language in order to execute the full optimization process
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for the Fuzzy Logic Controller (FLC); (3) To publish this software as an open-source code
for all the users who want to use and improve it.

The rest of this paper is organized as follows. The problem is described in Section 2.
The optimization of the FLC is introduced in Section 3. Result collection and final discussion
are presented in Section 4. The conclusion is stated in Section 5.

2. Problem Description

Without loss of generality, let us assume that the optimal path has been planned (in this
case, the optimal path is optimized based on the A* algorithm with several waypoints [22],
which is depicted in Figure 1); therefore the energy-efficient motion control problem of the
DDWMR becomes the problem of designing an energy-efficient motion controller so that
the robot can go to the goal through all waypoints efficiently.
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Figure 1. The differential drive wheeled mobile robot tracks the optimal path with several waypoints.

In Figure 1, the differential drive wheeled mobile robot tracks the optimal path
connecting the waypoints from the starting point (x0, y0) to the goal G(xg, yg) through
several waypoints Wk(xwk, ywk), k = 2, 3, . . . , n − 1. (n is the total number of way-
points). The waypoints are determined by the planning layer of the robot (using the
supervisory controller).

Navigating the DDWMR to the goal can be done with help of many different motion
control algorithms. A general motion control system of the differential drive wheeled
mobile robot is depicted in Figure 2. This scheme can be applied to most motion control
algorithms to navigate the DDWMR to a given destination.
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Figure 2. A general mobile robot motion control system.

At first, an FLC is designed to navigate the DDWMR to the goal through all the
waypoints sequentially. Then, a GA-based method is used to optimize the input and
output membership functions for the FLC. To execute the optimization process of the FLC
using the GA, as an optimizer of created Fitness Function (FF) based on simulated FLC
performance, the “pymoo” library is employed.
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A kinematic model and an energy model of the DDWMR are needed to design the
optimal FLC. Thus, the following subsections will present them.

2.1. Kinematic Model of the Differential Drive Wheeled Mobile Robot

The geometry and kinematic parameters of the DDWMR are shown in Figure 3 [12].
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Figure 3. Geometry of a differential drive wheeled mobile robot.

In Figure 3, the DDWMR has the important parameters as follows: v is the robot linear
velocity (m/s); θ is the robot orientation (rad); ωr is the angular velocity of the right wheel
(rad/s); ωl is the angular velocity of the left wheel (rad/s); vr is the linear velocity of the
right wheel (m/s); vl is the linear velocity of the left wheel (m/s); r is the radius of the right
and the left wheels (m); b is the distance between the right and the left wheels (m); Q is
the center of the axis between the right and the left wheels; G is the center of gravity of the
DDWMR; a is the distance between Q and G (m).

Assuming that [12,29]:

- The wheels are rolling without slipping,
- The center of gravity G coincides with the point Q,
- The guidance axis is perpendicular to the robot plane.

Based on Figure 3 and refer to [12,29], it is easy to get the kinematic model of the
DDWMR as follows: 

.
x = v cos θ
.
y = v sin θ

.
θ = ω

(1)

2.2. Energy Model of the Differential Drive Wheeled Mobile Robot

The main energy losses of the DDWMR consist of the losses inside the motors, the
kinetic energy losses, the losses due to friction, and the losses in the electronics [22,28]. The
energy consumed by motors consists of two main parts, which are the energy transformed
into robot kinetic energy and the energy to overcome traction resistance. In practice, the
energy consumption is mainly transformed into robot kinetic energy.

For the design of an energy-efficient controller, it is necessary to have an appropriate
energy model. To simplify the energy consumption model, only the kinetic energy losses
of the robot have been considered. This simplification is based on the hypothesis that
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accelerations and decelerations change the kinetic energy of the robot body. The kinetic
energy of the robot at any time is [12,22,28]

Ekinetic =
1
2

m[v(t)]2 +
1
2

I[ω(t)]2 (2)

where m and I denote the mass and the moment of inertia of the differential drive wheeled
mobile robot respectively; v and ω are the linear velocity and the angular velocity of the
robot at time t.

When implementing movement of the DDWMR in the software, the discrete time is
used. Thus, the kinetic energy of the robot at time ti is calculated by Equation (3). The
difference in kinetic energy between the two states is calculated by Equation (4).

Ekinetic(i) =
1
2

m[v(ti)]
2 +

1
2

I[ω(ti)]
2 (3)

∆Ekinetic(i) = EKinetic(i) − EKinetic(i−1) (4)

where: i = 1, 2, 3, . . . , m (m is the number of sampling times).
The robot motion may include acceleration, deceleration, and moving with constant

velocity. It is assumed that kinetic energy is not recuperated and stored in the battery;
thus, every acceleration followed by deceleration leads to energy loss. To sum up all those
energy differences, the state of the robot is inspected and the total energy consumption is
calculated. Therefore, in the simulation, the total energy consumption of the DDWMR is
calculated based on Equations (3) and (4), the kinetic energy changes in the deceleration
phase are considered as a loss.

3. The Optimization of the Fuzzy Logic Controller Used for the Differential Drive
Wheeled Mobile Robot

To carry out the full optimization process for the FLC, first, the initial FLC is created to
navigate the DDWMR to the reference point. Then, the initial FLC will be optimized based
on the GA to automatically tuning the parameters of the Membership Functions (MFs) for
the FLC so that the energy consumption of the robot is minimum.

3.1. Design of the Initail Fuzzy Logic Controller

The movement of the differential drive wheeled mobile robot heading to the waypoint
(W) is depicted in Figure 4.
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From Figure 4 we get:

∆D =

√(
xW − xQ

)2
+
(
yW − yQ

)2 (5)

∆θ = θR − θW (6)

tan θW =
yW − yQ

xW − xQ
(7)

The ∆D is the distance and the ∆θ is the angle that is the difference between the current
robot’s position and the waypoint’s position.

An FLC will be designed to guide the DDWMR from the current robot’s position
Q(xQ, yQ) to the waypoint W(xW, yW). The general structure of a fuzzy logic controller is
shown in Figure 5 [30–32].
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The block diagram of the FLC used for the DDWMR is shown in Figure 6. For this
FLC, two inputs (∆D and ∆θ) are used. Outputs of this FLC are the angular velocity of
the left and the right wheels (ωl, ωr). These outputs are transformed into DDWMR inputs
according to Equations (8) and (9).

v =
1
2
(vr + vl) (8)

.
θ = ω =

1
b
(vr − vl) (9)
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The FLC used for the DDWMR in this study is constructed as follows:

3.1.1. Selecting the Universes of Discourse

The universes of discourse are selected based on the robot parameters, the given path,
the environment, etc. So, based on the parameters of the DDWMR and the given paths
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used in the experiments of this study, the authors have selected the universes of discourse
as below:

The universe of discourse for input_1: ∆D (m) is 0 ≤ ∆D ≤ 10.
The universe of discourse for input_2: ∆θ (rad) is –π ≤ ∆θ ≤ π.
The universe of discourse for output_1: ωr (rad/s) is 0 ≤ ωr ≤ 30.
The universe of discourse for output_2: ωl (rad/s) is 0 ≤ ωl ≤ 30.

3.1.2. Constructing the Membership Functions and Rules

The triangular MFs are considered as a base form of the MFs. For each input and
output, five MFs have been parametrized. The notations for the linguistic variables used to
represent the MFs of input_1 are Very Close (VC), Close (C), Medium (M), Far (F), Very
Far (VF). The notations for the linguistic variables used to represent the MFs of input_2 are
Big Negative (BN), Negative (N), Zero (Z), Positive (P), Big Positive (BP). The notations
for the linguistic variables used to represent the MFs of output_1 are Very Small Right
(VSR), Small Right (SR), Medium Big Right (MBR), Big Right (BR), Very Big Right (VBR).
The notations for the linguistic variables used to represent the MFs of output_2 are Very
Small Left (VSL), Small Left (SL), Medium Big Left (MBL), Big Left (BL), Very Big Left
(VBL). Based on the parameters of the robot, the given path, experiment, and experience,
the parameters of all MFs are determined. These parameters are listed in Tables 1 and 2,
and depicted in Figure 7.

Table 1. Parameters used for inputs of the initial fuzzy logic controller.

The Distance Error ∆D (m)/The Angle Error ∆θ (rad)

Name Notation Parameters

Very Close/Big Negative VC/BN [0 0 2.5]/[–π –π –π/2]
Close/Negative C/N [0 2.5 5]/[–π –π/2 0]
Medium/Zero M/Z [2.5 5 7.5]/[–π/2 0 π/2]
Far/Positive F/P [5 7.5 10]/[0 π/2 π]

Very Far/Big Positive VF/BP [7.5 10 10]/[π/2 π π]

Table 2. Parameters used for outputs of the initial fuzzy logic controller.

The ωr (rad/s)/The ωl (rad/s)

Name Notation Parameters

Very Small Right/Left VSR/VSL [0 0 7.5]/[0 0 7.5]
Small Right/Left SR/SL [0 7.5 15]/[0 7.5 15]

Medium Big Right/Left MBR/MBL [7.5 15 22.5]/[7.5 15 22.5]
Big Right/Left BR/BL [15 22.5 30]/[15 22.5 30]

Very Big Right/Left VBR/VBL [22.5 30 30]/[22.5 30 30]

Based on heuristics, the rules are selected for the FLC to generate each output (ωl, ωr)
of the DDWMR in order to control the DDWMR to move to the waypoint. These rules are
listed in Tables 3 and 4.
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Table 3. The rules of the right wheel angular velocity.

∆θ
BN N Z P BP

∆D

VC VSR SR VSR BR VBR
C VSR SR SR BR VBR
M VSR SR MBR BR VBR
F VSR SR BR BR VBR

VF VSR SR VBR BR VBR

Table 4. The rules of the left wheel angular velocity.

∆θ
BN N Z P BP

∆D

VC VBL BL VSL SL VSL
C VBL BL SL SL VSL
M VBL BL MBL SL VSL
F VBL BL BL SL VSL

VF VBL BL VBL SL VSL

This FLC is used to control the DDWMR to move to the goal through all the waypoints
sequentially. The next subsection will present the optimization process using the GA for
this FLC to minimize the energy consumption of the robot.

3.2. Optimization of the Fuzzy Logic Controller Based on the Genetic Algorithm

The FLC design, the shape of the MFs, and the fuzzy rules are built entirely on heuristic
definitions. Such the FLC design is complex, time-consuming, and its performances could
be still poor. This section presents an optimization process defining the optimal parameters
of the MFs for the FLC.

Currently, many researchers are using different heuristic algorithms that are not
just bio-inspired but also based on physical laws [14], or using method cooperation in
optimization process [33]. The computational methods inspired by biology are being used
increasingly to deal with complex problems in robotics, engineering, computer science,
etc. Among them, bio-inspired optimization is a term which covers a wide variety of
optimization approaches. These methods are based on the principles of biological systems,
such as bee colony optimization, bat algorithms, ant colony optimization, etc. Some other
classes of optimization techniques are simulated annealing, neural network methods, and
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evolutionary algorithms including the GA [34]. As a method for the FLC optimization, the
GA has been selected.

A typical GA cycle is shown in Figure 8. The GA is based on following operations:
selection, genetic operations (crossover, mutation), and replacement [20,32,34,35].
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3.2.1. Parameterization of the Membership Functions

Many types of the MFs have been used in fuzzy logic control systems, such as a
triangular function, a trapezoidal function, a Gaussian function, etc. In the WMR field,
the triangular and trapezoidal functions are applied more often than others [36]. Thus,
in this study, the triangular function is selected to represent the MFs of the FLC because
the triangular function is determined by just three parameters. Also, its evaluation is
quite cheap, and the main advantage of the triangular function is the possibility to define
it fully by just three parameters. Such a low number of parameters helps to lower the
dimensionality of the optimization problem.

The triangular functions can be represented in different ways. A set of parameters
defining these MFs is depicted in Figure 9.
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In Figure 9, the (min, base1) is the set of parameters defining the 1st Membership
Function (MF), the (base2, A1, base3) is the set of parameters defining the 2nd MF, the
(base4, A2, base5) is the set of parameters defining the 3rd MF, the (base6, A3, base7) is
the set of parameters defining the 4th MF, and the (base8, max) is the set of parameters
defining the 5th MF. Thus, there is a total 11 parameters (base1, base2, A1, base3, . . . , A3,
base7, base8). Here, min and max are the minimum and the maximum of the universe of
discourse, respectively. A1–A3 and base1-base8 can take any value in the range [min; max]
with the constraint (min < A1 < A2 < A3 < max).

The FLC has two inputs and two outputs as mentioned in the Section 3.1. Each input
and output has five MFs described by 11 parameters, thus there is a total of 44 parameters
for all inputs and outputs of the FLC. Here, the parameters of input_1 are (base1, base2,
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A1, base3, base4, A2, base5, base6, A3, base7, base8), the parameters of input_2 are (base9,
base10, A4, base11, base12, A5, base13, base14, A6, base15, base16), the parameters of
output_1 are (base17, base18, A7, base19, base20, A8, base21, base22, A9, base23, base24),
the parameters of output_2 are (base25, base26, A10, base27, base28, A11, base29, base30,
A12, base31, base32). These 44 parameters are encoded to 44 gens of each chromosome
used in the GA, i.e., each chromosome represents all parameters of the input and output
MFs. The structure of each chromosome can be represented as follows:

Chromosome =

44 gens
{

base1, . . . , base8
}

Input_1

base9, . . . , base16
}

Input_2

base17, . . . , base24
}

Outout_1

base25, . . . , base32
}

Output_2

3.2.2. Fitness Functions Used for the Genetic Algorithm

In the GA, the FF is defined to obtain the FF value for each chromosome and to
determine which one will be reproduced and taken into the next generation. So, with a
particular chromosome, the FF returns a single numerical score, which is proportional to
the ability of the chromosome (in this study, the score is a value of the energy consumption
of the robot). The Equation (2) is used as the FF for the optimization process of the FLC
based on the GA to minimize the energy consumption of the DDWMR.

To design an optimal FLC, first, an initial FLC is designed to navigate the DDWMR
to the goal. Then, a GA process is executed in the Google Colab® by using the Python
language with the help of “pymoo” library to find the optimal parameters of the MFs.

It must be noticed that a single FF evaluation asks for running a complex simulation.
Thus, running a full optimization process could need thousands of simulations. For
such an extensive task, a quite powerful computer is needed. As FF evaluation could be
done independently several FF computations can be run simultaneously. In this case, a
computer cluster supporting distributed computation could help [37]. However, some
kind of benchmarking and selection of several algorithms which promise effectiveness
should be done [38].

The optimization process of the FLC with the help of the genetic algorithm is depicted
in Figure 10.
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Figure 10. The optimization process used for optimization of the fuzzy logic controller.

The FLC is created according to the chromosome, which represents all parameters
of the MFs, and consequently, its behavior is tested by a simulation process. Results of
such simulation are transformed into fitness function value. Such a process of mapping
from the proposed solution to the fitness function result allows the use of optimization
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methods. It is expected that the same mapping applied to the suboptimal solution gives the
wanted FLC.

The “Tuning process (Genetic Algorithm)” block in Figure 10 are executed by the flow
chart of the genetic algorithm depicted in Figure 11 as follows.
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4. The Simulation Results and Discussion
4.1. Simulating and Collecting Results
4.1.1. Simulation Parameters

The parameters of the DDWMR used for the simulation in this study are taken
from [12] that is shown in Table 5.

Table 5. Parameters of the differential drive wheeled mobile robot.

Parameters Value

Wheel’s radius (r) 0.0925 m
Distance between 2 driven wheels (b) 0.37 m

Mass of the robot (m) 9 kg
Moment of inertia of the robot (I) 0.16245 kgm2

Moment of inertia of the rotor (J) 0.01 kgm2/s2

Damping ratio (B) 0.1 Nms.
Electromotive force constant (K = Kt = Ke) 0.01 Nm/A

Electrical Resistance (Ra) 0.1 Ω
Electrical Inductance (La) 0.01 H

Start position of the robot on x axis (x0) 0 m
Start position of the robot on y axis (y0) 0 m

Start orientation of the robot (θ0) 45◦
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Several well-known effective motion controllers used to compare with the GA_FLC
are the expert-based FLC [1], the Thoa-based FLC [6], the Circular-based controller [39],
the energy-saving based algorithm introduced by Manas Chaudhari et al. [22,23], and the
Mohammadian-based FLC_GA [40], the Robins Mathew-based controller [41,42]. Their
coefficients are given in Table 6.

Table 6. Coefficients of the several controllers.

No Coefficients Value

01
Circular-based controller

Coefficient: gain 4.0

02
Robins Mathew-based controller

Coefficient: k1 1.51
Coefficient: k2 45.84

03
Chaudhari-based controller

Minimal rotation radius: radius 0.1 m

Some given paths used for testing the robot motion control in this simulation are a
zigzag path, a square path, a sharp turn path, a straightforward path, and a diamond-
shaped path. These given paths are defined by several given points in a unit of a meter
as in Table 7. In addition, a number eight-shaped path created by (x = 2 + 10 sin(πt/30)
and y = 1 + 5 sin(2πt/30)), and a circle path created by (x = −8 + 8 cos(πt/30) and
y = 4 + 8 sin(πt/30)) are also used to test the ability tracking of the DDWMR when using
the GA_FLC.

Table 7. Parameters of the paths used for simulation.

Paths
Waypoints (x, y)

1st Point 2nd Point 3rd Point 4th Point 5th Point

Zigzag path (0, 0) (10, 0) (10, 10) (20, 10) (20, 20)
Square path (0, 0) (10, 0) (10, 10) (0, 10) (0, 0)

Sharp turn path (0, 0) (10, 0) (5, 10) (15, 10) -
Straightforward path (0, 0) (10, 2) (20, 6) - -

Diamond-shaped path (0, 0) (10, −5) (20, 0) (10, 5) (0, 0)

The rules and the MFs of the several used fuzzy logic controllers are as follows:
For the initial FLC: the rules are shown in Tables 3 and 4. The parameters of the MFs

are shown in Tables 1 and 2.
For the expert-based FLC: the rules are shown in Table 1 of [1]. The parameters of the

MFs are shown in Tables 8 and 9.

Table 8. Parameters for inputs of the expert-based FLC.

The Distance Error ∆D (m)/The Angle Error ∆θ (rad)

Name Notation Parameters

Very Close/Very Big Negative VC/VBN [0 0 1]/[–π –π –π/2]
Near Close/Big Negative NC/BN [0 1 2]/[–π –π/2 –π/4]

Close/Negative C/N [1 2 3]/[–π/2 –π/4 0]
Medium/Zero M/Z [2 3 5]/[– π/4 0 π/4]

Near Far/Positive NF/P [3 5 7]/[0 π/4 π/2]
Far/Big Positive F/BP [5 7 10]/[π/4 π/2 π]

Very Far/Very Big Positive VF/VBP [7 10 10]/[π/2 π π]
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Table 9. Parameters for outputs of the expert-based FLC.

The ωr (rad/s)/The ωl (rad/s)

Name Notation Parameters

Very Small Right/Left VSR/VSL [0 0 5]/[0 0 5]
Small Right/Left SR/SL [0 5 10]/[0 5 10]

Near Medium Big Right/Left NMBR/NMBL [5 10 15]/[5 10 15]
Medium Big Right/Left MBR/MBL [10 15 20]/[10 15 20]

Near Big Right/Left NBR/NBL [15 20 25]/[15 20 25]
Big Right/Left BR/BL [20 25 30]/[20 25 30]

Very Big Right/Left VBR/VBL [25 30 30]/[25 30 30]

For the Thoa-based FLC: the rules are shown in Tables 2 and 3 of [6]. The parameters
of the MFs are used the same as the MFs of the initial FLC shown in Tables 1 and 2.

For the Mohammadian-based FLC_GA controller: based on the Mohammadian
method [40], the input MFs and the rules can be used the same as the initial FLC. Moham-
madian et al. have only optimized output MFs. According to them, for optimization of
the MFs it only need to optimize the overlaps between the output MFs [40]. The output
MFs used for the Mohammadian-based FLC_GA controller are represented in Figure 12. In
Figure 12, B1–B4 are overlaps between the output MFs which need to tune. The values of
these overlaps are selected in the range [0 to 7.5].
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For all used controllers here, based on the parameters of the DDWMR and parameters
of the given paths, the linear velocity (v) is limited to the range [0 m/s to 2.0 m/s], and
the angular velocity (ω) is limited to the range [–0.75 rad/s to 0.75 rad/s] because the
movement of a mobile robot will be directly affected by the speed that its actuator can
provide. If the provided velocity is too large, it will cause some difficulty in tracking, a
high energy loss, and a big tracking error. Conversely, if the provided velocity is too small,
the robot will move too slowly, which may affect its performances.

4.1.2. Simulation Open-Course Code

The simulation program of this experiment is published as an open-source code for all
readers. This simulation has been developed by employing of the Google Colab® and the
Python language. The open-source code has been published on Code Ocean (https://doi.org/
10.24433/CO.1867832.v1) (accessed on 2 March 2021) [43], it also has been stored in Colabora-
tory (https://colab.research.google.com/drive/17FUnDR7XNjMsDOFrXfnBNWffqXYntEjF?
usp=sharing) (accessed on 3 May 2021), and in GitHub® (https://github.com/vanthuanhvhq/
GA_FLC) (accessed on 4 May 2021) so that readers can browse, view, run and experiment
with the codes. However, to run this simulation program faster, users should setup their
own cluster then replace the URL address with theirs. Otherwise they will experience
a long run. This program consists of several sections, which have been explained in the
simulation program.

https://doi.org/10.24433/CO.1867832.v1
https://doi.org/10.24433/CO.1867832.v1
https://colab.research.google.com/drive/17FUnDR7XNjMsDOFrXfnBNWffqXYntEjF?usp=sharing
https://colab.research.google.com/drive/17FUnDR7XNjMsDOFrXfnBNWffqXYntEjF?usp=sharing
https://github.com/vanthuanhvhq/GA_FLC
https://github.com/vanthuanhvhq/GA_FLC
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4.1.3. Collecting Results

Firstly, the zigzag path will be used to optimize the FLC by using the GA. Running
the simulation with its default configuration and setting up the population size at 50,
all the results of these experiments in 200th generation for the zigzag path are shown in
Figures 13 and 14 and Tables 10 and 11. Then this GA_FLC will be used to evaluate its con-
trol performance when the differential wheeled mobile robot tracks the other paths. The re-
sults are shown in Figure 15 and in Tables 12–15. The convergence of the FF value is shown
in Figure 16.
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Table 10. Energy consumption and travel distance of the robot when the robot tracks the zigzag path
based on optimizing by genetic algorithm. Bold values are the best in the appropriate column.

Generation Energy Consumption (J) Travel Distance (m)

30 15.93 48.53
50 10.18 50.42

100 8.50 46.27
150 8.49 46.07
200 8.47 46.10

Table 11. Energy consumption and travel distance of the robot when the robot tracks the zigzag path
by the different controllers. Bold values are the best in the appropriate column.

Controllers
Energy Consumption Travel Distance

E (J) E (%) s (m) s (%)

Circle-based controller 17.80 210.15 52.77 122.90
Mathew-based controller 70.14 828.10 42.94 100.00

Chaudhari-based controller 17.91 211.45 52.62 122.54
Thoa-based controller 69.30 818.19 51.90 120.87

Expert-based controller 69.52 820.78 45.25 105.38
Mohammadian-FLC 62.49 737.78 46.15 107.46
Proposed GA_FLC 8.47 100.00 46.10 107.36

Table 12. Energy consumption and travel distance of the robot when the robot tracks the square path
by the different controllers. Bold values are the best in the appropriate column.

Controllers
Energy Consumption Travel Distance

E (J) E (%) s (m) s (%)

Circle-based controller 17.80 210.15 45.80 106.66
Mathew-based controller 70.11 827.75 42.94 100.00

Chaudhari-based controller 17.90 211.33 46.19 107.57
Thoa-based controller 69.11 815.94 44.09 102.68

Expert-based controller 69.51 820.66 43.12 100.42
Mohammadian-FLC 61.83 730.00 43.00 100.14
Proposed GA_FLC 8.47 100.00 43.23 100.68

Table 13. Energy consumption and travel distance of the robot when the robot tracks the sharp turn
path by the different controllers. Bold values are the best in the appropriate column.

Controllers
Energy Consumption Travel Distance

E (J) E (%) s (m) s (%)

Circle-based controller 17.76 209.68 43.82 129.42
Mathew-based controller 53.04 626.21 33.86 100.00

Chaudhari-based controller 17.85 210.74 45.09 133.17
Thoa-based controller 51.91 612.87 45.93 135.65

Expert-based controller 52.25 616.88 37.30 110.16
Mohammadian-FLC 51.53 608.38 38.32 113.17
Proposed GA_FLC 8.47 100.00 39.93 117.93
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Table 14. Energy consumption and travel distance of the robot when the robot tracks the straightfor-
ward path by the different controllers. Bold values are the best in the appropriate column.

Controllers
Energy Consumption Travel Distance

E (J) E (%) s (m) s (%)

Circle-based controller 17.66 211.24 21.39 101.18
Mathew-based controller 18.89 225.96 21.36 101.62

Chaudhari-based controller 17.76 212.44 21.39 101.76
Thoa-based controller 38.95 465.91 21.08 100.29

Expert-based controller 35.37 423.09 21.03 100.05
Mohammadian-FLC 35.76 427.75 21.02 100.00
Proposed GA_FLC 8.36 100.00 21.29 101.29

Table 15. Energy consumption and travel distance of the robot when the robot tracks the diamond-
shaped path by the different controllers. Bold values are the best in the appropriate column.

Controllers
Energy Consumption Travel Distance

E (J) E (%) s (m) s (%)

Circle-based controller 17.80 207.94 51.29 108.57
Mathew-based controller 52.21 609.93 47.24 100.00

Chaudhari-based controller 17.92 209.35 51.03 108.02
Thoa-based controller 69.07 806.89 50.39 106.67

Expert-based controller 69.53 812.27 48.49 102.65
Mohammadian-FLC 70.88 828.04 48.30 102.24
Proposed GA_FLC 8.56 100.00 49.84 105.50
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4.2. Discussion
4.2.1. When the Robot Tracks the Zigzag Path

For the optimization of the FLC with the use of the GA, the population size is set
to 50 and the number of generations to 200. Those parameters have been found as a
good trade-off between the fast optimization process and behavior of the resulted FLC.
Experiments show that a smaller population leads to a worse FLC. Specifically, when using
the population size is 10 and 45, the energy consumption increases 257.6% and 19.5%,
respectively in comparison with the case of using the population size is 50. These are quite
high energy consumptions. In contrast, when using the population size is greater than 50,
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that leads to a slower optimization process, and the energy consumption also increases
in comparison with the case of using the population size 50. For example, the processing
time increases 21.1% and the energy consumption also increases 15.6% when using the
population size is 55 in comparison with the case of using the population size is 50.

Figure 16 and the simulation results clearly indicate that the value of the fitness
function is rapidly reduced during the optimization process (from the 1st generation to
the 40th generation). Then the value of this fitness function is slightly decreased from the
41st generation to the 53rd generation. From the 54th generation onwards the value of the
fitness function converges to E = 8.47 J and remains at this value. As this experiment is
based on random behavior and it has been executed repeatedly, it can be concluded that
the fitness function has converged and reached a stable suboptimal value.

Table 10 shows the values of the energy consumption and the travel distance collected
after the different generations (30th, 50th, 100th, 150th, 200th), when the optimization of
the FLC using the genetic algorithm to track the zigzag path with the size of the initial
population is 50. Table 10 shows that the minimum value of the energy consumption has
been obtained at the 200th generation (E = 8.47 J), and the smallest value of the travel
distance has been obtained at the 150th generation (s = 46.07 m). However, this study
mainly aims to minimize the energy consumption. Thus, the best results (in terms of
fitness function value) which have been obtained are (E = 8.47 J) and (s = 46.10 m) at the
200th generation.

Figure 13 and Table 11 serve as the base for a comparison between the proposed
controller (GA_FLC) with other previous published controllers. When the differential
drive wheeled mobile robot is controlled by the GA_FLC to track the zigzag path, the
energy consumption of the robot is much lower than the energy consumption of the robot
controlled by any other used controller. In this case, the GA_FLC has saved more than
110.1% energy in comparison with the other controllers.

In addition, Figure 13c,d also show that the linear velocity and the angular velocity
of the robot controlled by the Circle-based controller, the Mathew-based controller, the
Chaudhari-based controller, the Thoa-based controller, the Expert-based controller, and the
Mohammadian-FLC have oscillated over time, which has led to the vibrations and jerks
of the robot. However, this problem has been fixed quite well when the GA_FLC is used.
Figure 13c shows that when the GA_FLC is used, the linear velocity is almost not changed,
i.e., the linear velocity of the robot is almost constant during the movement, even when the
robot moves through the corner. Moreover, Figure 13d also shows that the angular velocity
of the robot controlled by the GA_FLC only changes the value at the time when the robot
turns at each corner of the path, i.e., the robot only changes its orientation at the corner
of the path. Therefore, the issues about the robot vibration and the robot jerk have been
solved quite well by the GA_FLC.

Besides, Figure 13a and Table 11 show that when controlling the differential drive
wheeled mobile robot by the GA_FLC, the tracking error is quite small. This error is
the smallest in all, except the error tracking of the robot when it is controlled by the
Mathew_based controller. Furthermore, Figure 13e,f also indicate that the energy con-
sumption of the DDWMR when it is controlled by GA_FLC is the smallest and it increases
insignificantly from about 2 s to 40 s.

As mentioned previously, the optimization of the FLC using the GA based on mini-
mizing energy consumption criterion would be the prime objective of this study, thus from
the analyses above, it can be concluded that the proposed controller (GA_FLC) is the best
one. In other words, the GA_FLC is much better than others in terms of energy-saving and
the other performances of motion control are still good.

4.2.2. When the Robot Tracks the Other Different Paths

In order to investigate operating ability of the GA_FLC, it has been used to control
the DDWMR to move in several typical different paths. In this case, the DDWMR is
controlled by the GA_FLC (optimized and taken from the previous experiment) to track
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the square path, the sharp turn path, the straightforward path, and the diamond-shaped
path sequentially. Figure 15a–d and Tables 12–15 indicate that the performance of the
motion control is still good when the robot is controlled by the GA_FLC compared to
the others in all given paths. Specifically, 110.2%, 109.7%, 110.3%, and 107.9% reduction
of the energy consumption was achieved using the proposed method compared to the
best of six alternatives studied when the robot tracks the square path, the sharp turn
path, the straightforward path, and the diamond shaped path, respectively. Especially, the
limitations of the other controllers such as the vibration and the jerk have been solved by
the GA_FLC. So, it can be also concluded that the GA_FLC is the best controller for the
differential drive wheeled mobile robot on the different given paths.

In addition, Figure 15e,f indicate that the robot still tracks the number eight-shaped
path and the circle path tightly. In these cases, the energy consumption of the differential
drive wheeled mobile robot is also quite low (E = 8.73 J for the number eight-shaped path,
and E = 8.75 J for the circle path).

4.3. Future Work

In a future research, the work will be focused on: (1) both the energy consumption
and the travel distance will be taken into account when optimizing the FLC. (2) both
the parameters of all MFs and the rule base will be considered to optimize the FLC.
(3) robustness of the proposed GA_FLC will be analyzed to clarify the control performance
of the robot. The robustness of the GA_FLC is a complex and difficult issue, which needs
to be thoroughly addressed. So, this issue will be comprehensively presented in our future
work. For more detail about the robustness of an FLC, refer to [44–46].

5. Conclusions

In this paper, the FLC has been introduced and successfully applied for the DDWMR
control for robot movement on the given path. However, it is too complex and time-
consuming to manually search for the proper parameters of the MFs, and its performances
of motion control are still poor. To tackle such problems, an optimal FLC (GA_FLC) has been
found with the use of the GA and the minimum energy consumption criterion. In many
studies, scientists have only optimized the output MFs. However, in this study, the GA
automatically tunes all the parameters of input/output MFs of the FLC. Such an approach
leads to fast and effective tuning. For the optimal parameters’ identification of the MFs
for the FLC, the zigzag path has been used in the optimization process at first. The fitness
function has been derived from the energy consumption and after that minimized. Also,
the length of the traveled path has been considered. Finally, the performance of suboptimal
FLC has been tested on the benchmark paths and its results have been compared to the
results of several controllers based on another approaches. The comparisons have shown
that the GA_FLC is much better than all used well-known controllers in terms of energy
consumption while the other performances of the motion parameters are still good.

To keep all experiments reproducible, the GA_FLC and several well-known controllers
including the Circle-based controller, the Mathew-based controller, the Chaudhari-based
controller, the Thoa-based controller, the Expert-based controller, and the Mohammadi-
based FLC controllers have been successfully implemented in the Google Colab® by using
the Python language and made freely available for all the readers who are interested
in them.
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Abbreviations

List of Abbreviations
DDWMR Differential drive wheeled mobile robot
FF Fitness function
FL Fuzzy logic
FLC Fuzzy logic controller
GA Genetic algorithm
MFs Membership functions
PID Proportional integral derivative controller
WMR Wheeled mobile robot
List of Variables
b The distance between the right and the left wheels (m)
m The mass of the robot (kg)
I The moment of inertia of the robot (kgm2)
r The radius of the right and the left wheels (m)
t0 The initial time (s)
tn The final time (s)
θ The robot orientation (rad)
v The robot linear velocity (m/s)
vr The linear velocity of the right wheel (m/s)
vl The linear velocity of the left wheel (m/s)
ω The robot angular velocity (rad/s)
ωr The angular velocity of the right wheel (rad/s)
ωl The angular velocity of the left wheel (rad/s)
∆T The sampling time (s)

∆D
The distance error between the current robot’s position and

(m)
the waypoint’s position

∆θ
The angle error between the current robot’s position and

(rad)
the waypoint’s position
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