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Abstract: Advanced driver-assistance systems (ADAS) are primarily known for their positive impact
in improving the safety of drivers. Previous studies primarily analyzed the positive effects of ADAS
with short-term experiments and accident data without considering the long-term changes in drivers’
safety perception. The human factor is the most dominant among factors that cause traffic accidents,
and safety effect evaluation should be performed considering changes in human errors. To this end,
this study classified the safety effect of ADAS-forward collision warning (FCW) on taxi drivers in
Seoul into behavioral control and attitude change to perform analysis on respective factors. With
regard to behavioral control, virtual driving simulation was used to analyze the reaction time of
drivers and deceleration rate, and for attitude change, autoregressive integrated moving average
(ARIMA) time series analysis was employed to predict the long-term perception change of drivers.
The analysis results indicated that, in terms of behavioral control, ADAS-FCW reduces the cognitive
reaction time of drivers in risk situations on the road, similar to the findings in previous studies.
However, in terms of attitude change, ADAS-FCW has the adverse long-term effect of increasing
violations in maintaining safety distance in the case of nighttime-drivers under 60 years old. As can
be seen from these results, new technologies in the road safety arena can have a short-term effect
of improving safety with behavioral control but may have a negative impact in the long term. The
results of this study are expected to provide a theoretical basis for reference in the safety evaluation
of ADAS and traffic safety facilities.

Keywords: ADAS; IoT platform; dangerous driving behaviors; autoregressive integrated moving
average (ARIMA); safety effect estimation

1. Introduction

Road traffic accidents are events that arise from complex factors, and causes can
be classified into human factors, vehicle factors, and road environment factors [1]. The
human factor accounts for the largest share among the factors of traffic accidents. With
advancements in road design engineering and automotive engineering, traffic accidents
caused by road environment factors and vehicle factors have been decreasing, whereas
accidents caused by human errors do not show such a decreasing trend. Traffic accidents
involving human factors in South Korea accounted for 97.4% of cases in 2019, an increase
from 95.9% in 1996 [2]. One of the reasons for the minimal change in the number of
accidents caused by human errors is the decrease in the physical abilities of older drivers
following the increase in the elderly population [3]. However, we address these issues in
the context of naturalistic challenges on the road.

A leading cause of road accidents related to human error is driver distraction. With
the increasing use of cell phones, most drivers use cell phone applications while driving.
Cell phone applications in the 21st century provide drivers with positive functions such
as route setting and forward traffic information, but they have also been found to have
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the negative effect of distracting attention, such as in the case of using a cell phone and
listening to music while driving [4-6].

Since 2010, there has been another change in the driving environment—vehicles started
being equipped with advanced driver-assistance systems (ADAS) to support drivers while
driving. ADAS technology was developed to improve the safety and convenience of
drivers, starting with the commercial deployment of forward collision warning (FCW) and
lane departure warning (LDW) systems.

In the past, methods of improving drivers’ safety included improvement of road safety
features or developing and implementing training programs for drivers. However, the
introduction of ADAS has emerged as a new way of improving drivers’ safety, and various
types of ADAS have been developed with the increasing rate of ADAS use in vehicles.

Among these different types of ADAS, FCW was the first to be deployed. FCW
provides drivers with a warning via sound and vibration before a collision with a vehicle
or a pedestrian, and collision risk information is presented mainly through sound in South
Korea, the warning time is 2.5 s before the collision). Thus, the positive function of the
technology fitting to the development intention of FCW was the prevention of rear-end
crashes. The results of traffic accident data analysis in the United States indicated that road
accidents were reduced by up to 12% with FCW installation [7]. Additionally, estimation of
the avoidance time of drivers by reproducing the crash situation on test tracks with FCW
installation pointed to an instant decrease of 14.3% in rear-end crashes [8].

These positive functions of FCW have led South Korea to mandate the installation of
FCW for commercial vehicles since 2018. However, unfortunately, there was no decrease
in traffic accidents of commercial vehicles. The reason for no decrease in the number of
accidents despite the introduction of new safety technology may be the adverse function
of human factors following the adoption of the technology. In a survey of drivers of
vehicles fitted with ADAS including FCW, it was found that owing to reduced physical
requirements during driving with ADAS installation, drivers paid less attention while
driving [9].

Through various long-term studies, it was found that, unlike the case of road safety
features in which the effects apply to nonspecific multitudes of drivers passing through
a specific point and where only the positive functions of reducing traffic accidents are
presented [10-12], ADAS differed in terms of the method and scope of its impact on drivers,
as outlined in Table 1.

Table 1. Differences between conventional road environment improvements and ADAS on road safety.

Classification Road Environment Improvement ADAS Effect
Target Stationary Dynamic
Effect Behavioral control Behavioral control and perception change
Method Affect all vehicles passing the point of improvement Installed in a vehicle to affect a single driver

ADAS is installed in vehicles to enable quick detection of dangerous situations for a
single driver and supports vehicle control to avoid accidents. In the long run, it may not
provide only the positive functions of reducing traffic accidents to drivers and may have
different effects depending on the characteristics of drivers. For further development of
ADAS technology, it is necessary to evaluate the effect of ADAS on drivers’ routine driving
behavior in the long term as well as the short-term impacts.

In this paper, FCW, the system with the highest use among ADAS, was used as a target
technology, its safety effect was comprehensively evaluated from various perspectives, and
an evaluation methodology for new ADAS technology is presented.

2. Classification of Effects Depending on FCW Installation Based on TPB

Before analyzing the short-term and long-term effects of FCW installation, a theoretical
look at the human factors is necessary. Although human behavior can be attributed to vari-
ous causes, it can be classified into three types according to the theory of planned behavior
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(TPB) [13]. As shown in Figure 1, a person’s behavior is determined by the combined
actions of attitude, norm, and behavioral control factors. In the field of transportation, a
driver’s attitude is influenced by perceptions such as habits and education [14,15], and be-
havioral control is changed by facilities such as speed bumps, equipment, and devices [16].
The norm is affected by laws, regulations, and deterrence [17].

Attitude toward Behavior

Subjective Norm Behavior Intention Behavior

Perceived Behavioral Control

Figure 1. The theory of planned behavior (TPB).

Warning of collision risk by FCW is included in behavioral control and can be classified
as a short-term effect on a dangerous situation on the road. As shown in Table 2, changes
in drivers’ habits due to FCW installation can be classified as long-term effects on attitude
changes, and because FCW installation is not related to laws, regulations, and deterrence,
the norm is excluded from the classification.

Table 2. Classification of ADAS effect by theory of planned behavior (TPB) factor.

TPB Factors ADAS Effect Range of Effect

Attitude Toward Behavior (ATB) Driving habits, perception Persistent, long-term
Subjective Norm (SN) -

Perceived Behavioral Control (PBC) Vehicle control under

. . Instant, short-term
dangerous situations

As shown in Equation (1), behavior occurs with combined effects from the respective
factors of ATB, SN, and PBC.

B; = ATB; + SN; + PBC; )

where,

B;: performing a specific behavior i

ATB;: attitude or perception toward a specific behavior i
SN;: subjective norm for a specific behavior i

PBC: behavioral control for a specific behavior i

In this study, there was no effect of FCW on the subjective norm, and FCW only affected
the attitude toward behavior and perceived behavioral control. Because ATB and PBC have
different and independent influence ranges, only the participants (analyzed subjects) were
matched, and the analysis methods and analysis items were independently applied.

As shown in Table 3, PBC analysis involved a front-end collision scenario through
driving simulation and analyzed the instantaneous effect at a critical moment. PBC analysis
allowed us to analyze the effect of reducing cognitive response time, which is the positive
function of FCW.

The ATB analysis aggregated the number of FCW alerts per day using IoT devices
mounted on vehicles. Through this, you could check the change in driving behavior
after installing FCW. Through ATB analysis, it was possible to quantitatively analyze the
adverse effects of FCW in terms of human factors, such as attention decline and changes in
driving habits.
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Table 3. Analysis contents and data for each TPB factor.
TPB Factors Analysis Contents Measure of Effectiveness Analysis Data
Estimation of instantaneous effects in ps N . -
L . Cognitive reaction time, Four scenario driving results for
PBC collision risk situations using . . -
. . . deceleration, collision each participant (total of 70 people)
virtual simulation
Daily IoT log data from September
2017-August 2018
Estimation of the number of changes Number of forward (for forecasting)
ATB : . . - . L
in dangerous driving behaviors collision warnings Annual log statistical data from

September 2018-August 2020
(for verification)

3. PBC Analysis Method and Result
3.1. Reasons for Analysis Using Virtual Driving Simulation

To analyze the effect of FCW on vehicle control for the driver during at-risk situations,
an experiment was conducted using a driving simulator. Virtual driving simulation is a
preferred means in empirical studies in transportation research because it can reproduce a
situation according to the design of the researchers and can prevent safety accidents that
may arise from real-world experimentation.

Virtual driving simulations have been used in previous studies on smartphone-based
ADAS effect [18] and comparisons before and after ADAS installation [19-21]. For PBC
analysis, the experimental results from the cases of previous studies can be referred to, but
in this study, for comprehensive evaluation of the effect of FCW by using the same analysis
targets for ATB and PBC, and to reflect the characteristics in the driving of Korean drivers,
the experiment was performed using virtual driving simulation.

3.2. Equipment Used for Virtual Driving Simulation Experiment

The hardware used in the experiment was I-drive 3ch., 2DOF MP, as shown in Figure 2.
It is composed of a personal computer-based image generator (PCIG), 32-inch 3-channel
LCD monitor, 1/4 vehicle shape cabin with 100% real vehicle parts, control force and
loading system (CFLS), and active steering wheel system (ASWS) logic. The software
used was Uc-Win/Road Ver. 13.0, and analysis was performed by saving basic data (e.g.,
driving speed, driving time, collision status, mileage, and driving coordinates of drivers
participating in the experiment) at 0.02-s intervals.

Figure 2. Driving Simulator used in the experiment.

3.3. Scenario Design

The experimental scenario was designed for independent effect analysis for each
element. The selected effect measures for effect analysis of FCW were as follows: cognitive
reaction time (s), deceleration from the start of the breaking until the end of breaking
(m/s?), and number of collisions with the front vehicle (times) as shown in Figure 3.
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Guide to drive in Recognize a vehicle ahead The time taken to start breaking after
the second lane S < the braking of the front vehicle
-

-

Cognitive reaction time (s)
L = =
( The time taken to start breaking after the Deceleration until the end of breaking
Deceleration analysns (m/SZ) braking of the front vehicle (calculate time and distance)
Collision (times)

Figure 3. The measure of effectiveness of PBC analysis.

At the start of the scenario, the study participants drove on a road with a speed limit
of 50 km/h, and the driving lane was maintained on the second lane. The reason why the
speed limit was selected as 50 km/h was to be the same as the speed limit on the roads in
Seoul where the study participants normally drive. The Seoul Metropolitan Government
has implemented the “Safety Speed 5030” that sets the speed limit for roads in the city to
50 km/h for main and auxiliary arterial roads and 30 km/h for collector roads.

As shown in Figure 4 below, when the distance between the unexpected vehicle and
the participant’s vehicle becomes 100 m, the unexpected vehicle changes lanes from the
first lane to the second lane (Step 1). The unexpected vehicle accelerates slowly at 0.41 m/s?
until it reaches a safe distance of 50 m after 15 s of the lane change. After completion of
acceleration there is a hold time of 5 s (Step 2). The safety distance of 50 m was calculated
based on the driver’s cognitive reaction time. For the cognitive response time, the 85th
percentile driver value of 2.5 s is applied, but in an unexpected event, the cognitive response
time increases by 35% [22]. By applying a cognitive reaction time of 3.5 s, a safe distance of
50 m at a driving speed of 50 km/h was set. As the length of the safety distance increases,
the number of collisions decreases. If the safety distance is short, unnecessary deceleration
of the driver occurs before an unexpected situation occurs, which may affect the overall
experimental results (cognitive reaction time, deceleration, number of collisions). The
safety distance was selected with a leisurely 50 m based on the 85th percentile driver value.

Driving Vehicle
(Velocity 50 km/h)

Step 1.
Approach

Step 2.
Sudden
appearance

Step 3.
Reaction

Unexpected vehicle
(Velocity 40 km/h)

Distance : 100m
(Based on reaction time of 7 s)

(Based on reaction

~

time of 3.5 s

Analysis of reaction time, decelerationand collision

Figure 4. Driving simulation scenario.



Appl. Sci. 2021, 11, 6045

6 of 15

The unexpected vehicle performs an emergency stop, and the participant’s cognitive
reaction time, deceleration, and collision status were analyzed at the emergency stop of
the unexpected vehicle (Step 3). Scenarios were divided into day/night, and a total of
4 experiments were conducted per study participant when FCW was installed and when
FCW was not installed. Weather conditions were based on sunny days, and environmental
variables that could affect driving such as weather conditions and road pavement were
not considered.

3.4. Study Participants

The drivers who participated in the experiment were 70 taxi drivers from Seoul who
had installed and used FCW since 2017. They were affiliated with a taxi business corpo-
ration in Seoul and worked in alternating shifts of daytime (06:00-18:00) and nighttime
(18:00-06:00). The PBC analysis participants were the same as those of the ATB analysis.

As shown in Table 4, in terms of the usual working hours, the study participants
comprised 37 daytime drivers and 33 nighttime drivers. In terms of age, there were
30 drivers aged 60 or above and 40 drivers aged under 60. A total of 70 study participants
participated in all 4 PBC experiment scenarios.

Table 4. Descriptive statistics of study participants” age and working hours.

. Daytime Drivers Nighttime Drivers
Age Range of Participants

No. Percentage (%) No. Percentage (%)

Thirties 2 5.4 4 12.1

Forties 5 13.5 9 27.3

Fifties 12 324 8 242

Sixties 18 48.6 12 36.4

Sum 37 100.0 33 100.0

3.5. Results of PBC Effect Analysis in FCW Installation
3.5.1. Effect on Cognitive Reaction Time

Without FCW installation, in the rear-end crash scenario, the cognitive reaction time
from the start of the scenario and deceleration was 1.66 s during daytime, as shown in
Figure 5, but in the case with FCW installation, the reaction time decreased to 1.46 s. In the
case of nighttime, the reaction time also decreased from 1.95 s without FCW installation
to 1.66 s with FCW installation. This confirms that FCW sends the stimuli to the driver
in advance in case of a dangerous situation, which leads to a faster cognitive reaction
time. As for comparisons between drivers aged under 60 and drivers aged 60 or above,
the default (without FCW installation) cognitive reaction time of drivers aged under 60
was shorter than that of drivers aged 60 or above. With FCW installation, the cognitive
reaction time decreased by 14.5% during daytime and by 17.5% during nighttime for
drivers aged 60 or above, showing a larger decrease than that of drivers aged under 60,
whose cognitive reaction time was reduced by 10.4% during daytime and by 13.3% during
nighttime. The sample size was 70, and the variances were analyzed as 0.35, 0.27, 0.33, and
0.25 for each scenario.

In terms of the statistical test, as shown in Table 5, for both types of normality verifica-
tion (Shapiro-Wilk and Kolmogorov-Smirnov tests), the p-values (significance probability),
the test statistic, were below 0.05. The p-value of the corresponding samples for the dif-
ference between with and without FCW installation was 0.00, indicating that the effect of
reduced cognitive reaction time was achieved owing to FCW installation for both daytime
and nighttime.
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Figure 5. Cognitive reaction time values before and after the installation of the FCW system.

Table 5. Result of reaction time(s).

Daytime Nighttime
Classification
Non-FCW FCW Non-FCW FCW
Degree of freedom 69 69 69 69
Sample mean 1.66 1.46 1.95 1.66
95% confidence Lower limit 1.58 1.39 1.87 1.60
interval of mean Upper limit 1.75 1.52 2.03 1.72
Median 1.73 1.51 1.97 1.66
Variance 0.12 0.07 0.11 0.06
Standard Deviation 0.35 0.27 0.33 0.25
Normality verification Ii}(;iigo::.\gxl,lfsﬁxi,iii 0.001 0.020 0.002 0.008
& 0.001 0.097 0.010 0.058
p-value
Correspondence sample f-test p-value 0.000 0.000

3.5.2. Effect on Deceleration

As shown in Figure 6, the mean value of deceleration was 5.05 m/s? for daytime and
5.15 m/s? for nighttime without FCW installation. When FCW was installed, the mean
deceleration was 4.76 m/s?* for daytime and 4.68 m/s? for nighttime, indicating a decrease
in deceleration by 5.7% and 9.1%, respectively. The decrease at nighttime was larger than
that of daytime and, in particular, the decrease of drivers aged 60 or above at nighttime
was the largest at 10.2%. This is correlated with the cognitive reaction time, and it can be
judged that because the cognitive reaction time was reduced, the time margin up to the
time of collision also increased, which also affected deceleration. The sample size was 70,
and the variances were analyzed as 0.26, 0.27, 0.30, and 0.27 for each scenario.

In the statistical test, as shown in Table 6, the effect of reduced deceleration with FCW
installation was observed both in the daytime and nighttime.

3.5.3. Number of Collisions

Considering the cognitive reaction time and deceleration of the driving simulation
scenario, when the distance to the front vehicle is analyzed from the start of the scenario
with a timetable, as shown in Figure 7, the distance to the front unexpected vehicle con-
tinues to decrease up to the point of the perception of a dangerous situation (cognitive
reaction time), and the vehicle brakes after the perception of the dangerous situation. In the
case without FCW installation at nighttime, one event of collision occurred, but after FCW
installation, no events of collision occurred. After FCW installation, the safety distance
from the front of the vehicle increased during both daytime and nighttime, confirming
highly effective accident prevention due to FCW installation.
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R
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Day-front collision Night-front collision

Figure 6. Deceleration values (m/s?) in a dangerous situation before and after installation of the FCW system.

Table 6. Result of Deceleration (m/s?2).

Daytime Nighttime
Classification
Non-FCW  FCW  Non-FCW  FCW
Degree of freedom 69 69 69 69
Sample mean 5.05 4.76 5.15 4.68
95% confidence Lower limit 4.98 4.69 5.08 4.61
interval of mean Upper limit 5.11 4.82 5.23 4.74
Median 5.07 4.72 513 4.67
Variance 0.07 0.07 0.09 0.07
Standard Deviation 0.26 0.27 0.30 0.27
Normality verification I‘il(:;ﬂgo;)\i\(/)l\l}lfs;i:;;l:;i 0.014 0.139 0.013 0.185
& 0.043 0.189 0.040 0.200
p-value
Correspondence sample f-test p-value 0.000 0.000
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4. ATB Analysis Method and Result
4.1. Reasons for Time Series Analysis of IoT LOG Data

Previous studies on ATB analysis mainly relied on surveys [14,15], but owing to the
development of IoT technology, driver behaviors can be tracked in real time, enabling
the acquisition of more accurate results. In this study, based on IoT log data, time series
analysis was implemented to investigate ATB according to FCW installation status.

With regard to IoT log data, ADAS-FCW had been installed in the vehicles of the
taxi drivers who participated in the PBC analysis since 2017, as shown in Figure 8, and
information on the collision risk with the front of the vehicle was continuously recorded.
The recorded information was transmitted to the IoT platform in real time.

o

. —  ADAS log and vehicle driving information transmitter
o . - . . .

. @ ‘ Audiovisual warning display for drivers
o .

(@ — GPS device

Figure 8. ADAS-FCW data on dangerous driving behaviors.

Prior to analyzing the collision risk information collected as above for one year, it was
necessary to understand the characteristics of drivers” perceptions and behavioral changes.
Factors that affect drivers’ perceptions, such as education, do not have a persistent effect of
changing the behaviors of drivers but require periodic training and stimulation [23]. This
is because the effect returns to a certain value after a certain time [24].

The IoT log data collected in this study were also collected over a limited period
of one year, so prediction of the future behavioral changes was required. The estimate
techniques included linear and non-linear regression, historical average algorithms [25],
smoothing techniques [26,27], and autoregressive linear processes [28-32]. It has been
reported that a time series analysis-based technique such as autoregressive integrated
moving average (ARIMA) is one of the most precise methods for the prediction of driving
behaviors compared to the other available techniques mentioned above [33,34]. Therefore,
time series analysis using the ARIMA model was performed for analysis of the effect of
FCW on ATB.

4.2. Data and Classification

For the collection of IoT log data, information on vehicle number, time, speed, GPS
coordinates (X,Y), ADAS code, and shift time were collected, as outlined in Table 7, and
information was tabulated on a daily basis for each driver.

The data collection period was September 2017-August 2018 (1 year), and the 70 PBC
study participants were divided into 4 groups, as shown in Table 8. The number of
participants in each group was allocated according to their actual age and working hours.
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Table 7. Sample of IoT log data.
Vehicle . . GPS X GPSY .
ID Number Corporation Date Time Coordinate  Coordinate ADAS_CODE Speed Shift
A-2509437 6831 A-Sang 20180410 5347 37.65004 127.0555 Forw‘ifirgﬁgmm 90 Night
A-2509438 6831 A-Sang 20180410 5356 37.65187 127.0552 Right-lane departure 85 Night
A-2509440 6831 A-Sang 20180410 10,007 37.65899 127.0532 Collision Warning 65 Night
A-2509441 6831 A-Sang 20180410 10,045 37.65179 127.0553 Left-lane departure 83 Night
A-2512363 6831 A-Sang 20180427 35436 37.65553 127.0549 Forw‘f\fairiﬁgmon 96 Night
A-2512365 6831 A-Sang 20180427 35,728 37.66279 127.0449 Right-lane departure 76 Night
A-2518297 6836 A-Sang 20180414 224,138 37.63483 127.024 Pedestrian collision 10 Night
warning
Table 8. Working hours and number of people in the ATB analytics group.
Group Working Hours No. of Participants

Daytime drivers aged under 60 06:00~18:00 19

Daytime drivers aged 60 or above 18:00~06:00 18

Nighttime drivers aged under 60 06:00~18:00 21

Nighttime drivers aged 60 or above 18:00~06:00 12

Sum 70

4.3. Model Development
4.3.1. Model Development Process

The ARIMA model was used for analysis and prediction of the univariate time series
data of ATB with uniform interval.

6(B)
¢(B)

Wtz]/l+ a;

where,

t: the indexes time

W;i: the response series

y: the mean term

¢(B): the autoregressive operator
6(B): the moving average operator
a;: the independent disturbance

The analysis was performed in three stages. In the first stage, the identification stage,
the stationary status of the time series data was confirmed, and all four groups (daytime
drivers aged under 60, daytime drivers aged 60 or above, nighttime drivers aged under
60, and nighttime drivers aged 60 or above) were fixed in the first differences (stationary).
One or more models were tentatively selected using data on the occurrence of a dangerous
event while driving for the period of one year. Accurate estimates of the parameters of the
models were then obtained with the least-squares method.

Second, the ARIMA model was applied on the estimation stage and the accuracy of
the model was tested based on diagnostic statistics. The optimal model was selected based
on the following diagnosis.

(i) Low Akaike information criteria (AIC). AIC is estimated by AIC = (—2log L + 2(p + q),
where “p” is the autoregressive parameter and “q” is the moving average parameter.
“L” is the likelihood function.

(ii) Insignificance of autocorrelations for residuals. If a model is an adequate representa-
tion of a time series, it should capture all the correlations in the series, and the white
noise residuals should be independent of each other.

(iii) Significance of the parameters. Significance tests for parameter estimates indicate

whether some terms in the model might be unnecessary.



Appl. Sci. 2021, 11, 6045

11 of 15

Third, in the forecasting stage, future values of the time series after one year
were forecasted.

4.3.2. Model Evaluation

The mean absolute percent error (MAPE), as defined below, was used as a measure of
the accuracy of the models:

MAPE = 100 x ( S YVY))

n

Yr: forecasted variable
Y: actual variable
n: number of variables

SAS 9.4 software (SAS Institute, Inc.) was used for time series analysis and developing
ARIMA models and forecasting.

4.3.3. Building ARIMA Models

The “p” and “q” parameters were identified based on the significant spikes in the
plots of the partial autocorrelation function (PACF) and the autocorrelation function (ACF)
of the different time series. While identifying the best fit ARIMA models, appropriate
values of “p” and “q” were chosen corresponding to a minimum value of the selection
criterion, that is, AIC and Schwarz-Bayesian information criteria (SBC). The results are

shown in Table 9.

Table 9. Optimized ARIMA model by driver group.

Parameters ARIMA Model AIC SBC

Daytime drivers aged under 60 (1,1,1) 346.6 356.3
Daytime drivers aged 60 or above (1,0,1) 144.3 154.2
Nighttime drivers aged under 60 (1,1,1) 279.2 287.1
Nighttime drivers aged 60 or above (1,1,0) 317.2 331.8

4.4. Results of ATB Effect Analysis in FCW Installation

As shown in Table 10, the daily average number of front collision warnings changed
differently depending on the driver group after FCW was installed for driving. In the
case of the daytime drivers aged under 60 and daytime drivers aged 60 or above groups,
a decrease in the number of warnings was observed over the long term. Conversely, in
the case of the nighttime drivers aged under 60 group, the number of warnings actually
increased over the long term, and there was no change in the nighttime drivers aged 60 or
above group.

To verify the accuracy of the model, the actual value of the average number of forward
collision warnings for each period September 2017-August 2018, September 2018-August
2019, and September 2019-August 2020 was compared with the predicted value. As a
result of verification, there was an error within £5%, and the MAPE value was analyzed to
be less than 5.41.

The predicted daily number of forward collision warnings is shown as a graph in
Figure 9. As with the change in the average value per period, it can be seen that warnings
to the drivers under the age of 60 at night continued to increase.



Appl. Sci. 2021, 11, 6045 12 0f 15
Table 10. Results of prediction of changes by driver group.
Parameters Period Actual Values Forecasted Values Error in Prediction MAPE
Davtime drivers September 2017-August 2018 2794 2884 3.1%
a }; d under 60 September 2018-August 2019 2744 2738 —0.2% 5.41
8 September 2019-August 2020 2538 2435 —4.2%
Davtime drivers September 2017-August 2018 2894 2950 1.9%
a e}cli 60 or above September 2018-August 2019 2513 2481 —1.3% 2.32
& September 2019-August 2020 2113 2013 —5.0%
Nichttime drivers September 2017-August 2018 2864 2804 —2.1%
ag od under 60 September 2018-August 2019 3321 3379 1.7% 417
& September 2019-August 2020 3499 3567 1.9%
Nighttime drivers September 2017-August 2018 1943 1951 0.4%
a i d 60 or above September 2018-August 2019 1991 2043 2.5% 2.99
8 September 2019-August 2020 1967 1997 1.5%
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Figure 9. Changes in dangerous driving behaviors after the installation of the FCW system.

5. Discussion

After FCW installation, there were positive effects in PBC and ATB in terms of safety

on daytime drivers. However, for nighttime drivers aged under 60, their usual driving
behavior changed with FCW installation, and the risk of traffic accidents increased over
the long term.

Although FCW reduces the possibility of accidents in dangerous situations by affecting
the PBC of drivers, in the long term it can affect the ATB and increase the risk of traffic
accidents. This result can be interpreted that in the case of nighttime drivers, they tend to
be overly reliant on FCW, which leads to an increase in their dangerous driving behaviors,
and this situation requires additional countermeasures for improvement in the attitude
and habits of nighttime drivers.

Distraction and inattention of drivers can be judged to have an impact on their safety,
and the results of recent studies indicate that driver distraction has a more negative effect on
safety than other factors such as alcoholism and fatigue [35,36]. In particular, in the case of
young drivers, when driving for a long period, their attention is greatly reduced compared
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to that of older drivers, and the cause of this decreased attention is their confidence in
driving ability [37]. As FCW improves the driving ability for each driver, it can actually
have a detrimental effect on driver attention. In fact, in 2016, there was an accident that led
to the death of a Tesla driver from a crash with a large trailer, due to ADAS sensor error,
when the driver had the autonomous driving mode (ADAS highway autopilot function)
on for driving. The driver in the accident was negligent of the driver’s basic duty to safety
while heavily relying on the vehicle function.

In comprehensive consideration of the study results and accident cases, ADAS in-
cluding FCW can improve safety in situations of collisions by improving driving ability
in direct aspects such as driver cognitive reaction time and steering ability. However, in
the long run, ADAS may have a negative impact on the driving habits of drivers and
cause accidents.

6. Conclusions and Outlook

The effect of FCW installation varies depending on driver-specific characteristics
and, thus, in some cases FCW can actually have negative effects. Taking into account
the ADAS functions suitable for each driver’s driving ability and usual driving habits,
considerations should be made on driver-specific safety support functions, ADAS training
for improvement in driving habits, and additional safety devices.

In the PBC analysis of this study, environmental variables (weather conditions, road
pavement conditions) that may affect the behavior of drivers were not reflected. There
was a technical limitation in reflecting the conditions of rain and snow, which are highly
likely to cause a traffic accident while driving, in the simulation without any difference
from reality. In the future, it is necessary to conduct research that can optimize and apply
weather conditions and road pavement conditions in simulations.

In the ATB analysis, due to the Personal Information Protection Act, only detailed IoT
logs for one year could be used in this study, and only the average data for each period was
available for the data for the next two years. In the future, if the scope of data utilization is
expanded in research for public interest, detailed analysis will be possible.

Also, road information (road geometry, weather, pavement quality, road operation
status) could not be reflected, owing to limitations in the data collection methods in this
study. In South Korea, an IoT pavement quality management system (PQMS) platform
is under development, as shown in Figure 10. This new PQMS platform will enable the
collection of road information that could not be incorporated in this study. With the
incorporation of road information collected through the developed platform in further
studies, a high-quality effect evaluation will be achieved.

Weather, temperature, humidity, raw
material condition, construction state,
current status, vehicle operation
information, etc.

loT—-based road operation
information

loT PQMS platform
loT-based road geometry ® 3

management N 09 o®

i @ @Q’g?&jo
XS o ad.

loT-based pavement quality Cloud/big data platform
management

Figure 10. Data connection and analysis by using the IoT platform in fields ranging from road
construction to operation.
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The comprehensive evaluation method proposed in this study can change the evalu-
ation method for newly developed technologies, thereby ensuring the effectiveness and
safety of the research and development results of these techniques.
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