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Abstract: In this paper, the importance of implementing good acoustic conditions in classrooms
using sound amplification systems is investigated to support more effective English education for
elementary school children. To date, the failure of educating English as a second language at Japanese
schools has been demonstrated by poor English conversation ability of those who completed a
compulsory six-year English language course at Japanese junior-high and high schools (age 12–18).
To amend the situation, teaching English became compulsory at grade three (age 8–9) and above at
most Japanese elementary schools in the 2020 academic year. We conducted acoustic measurements of
two types of sound amplification systems, a pair of PC loudspeakers and another with a loudspeaker
array, in a typical classroom at an elementary school in Japan. We also analysed English listening test
results of 216 Japanese native children (age 11–12) who were learning English in their usual classes in
Japan, to compare the effects of those two systems. Results of logistic regression analysis adjusted
by the discrimination difficulty of word pairs demonstrated the statistically significant association
between correct answer rate of the English tests and classroom acoustic factors. Although, on average,
upgrading the sound amplification system had positive effects on the correct answer rate, it also
had a negative impact when the word pairs had English phoneme contrasts that do not appear in
Japanese phoneme structure. Combined with the acoustic measurements’ results, it was also revealed
that heterogeneous sound fields that depend on seat positions could be compensated using sound
amplification systems with loudspeaker arrays. Our findings suggest that improvement of both
acoustic quality and teaching methods is required for children to acquire English communication
skills effectively in their classroom.

Keywords: classroom acoustics; second and foreign language education; hearing in children; impulse
response

1. Introduction

English language education at Japanese public schools has been criticized. The average
score of Test of English as a Foreign Language in Japan has been around the lowest among
Organisation for Economic Co-operation and Development countries [1]. Many Japanese
people cannot make a simple daily conversation in English after completing a compulsory
six-year English language course in Japan [2]. In April 2020, the age to start teaching English
at most Japanese elementary schools was officially lowered to resolve the matter. Grade
three and four (age 8–10) have some English lessons to get familiar with the language,
whereas grade five and six (age 10–12) learn English as a subject, thus their skills get
evaluated through tests [3].

Previous research has shown evidence of poor acoustics found in school classrooms
and their negative influence on children in various aspects [4–10]. Children are often
too exhausted from trying to comprehend speech contents; subsequently they have little
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energy left to perform any cognitive tasks using the obtained information [11,12]. Not only
language related skills, such as reading, writing, speaking and listening, but also others,
including numeracy, working memory and motivation of children were deteriorated as a
consequence [13–21].

The further the distance between a speaker and a listener, the less speech is heard [22].
In a closed space like a classroom, sound reflection and absorption by the ceiling, floor,
walls, furniture as well as people present, all integrate together with the sound directly
emitted by a speaker to shape diverse characteristics of the sound field [23,24]. Conse-
quently, the intelligibility of a teacher’s speech signals fluctuates depending on where
children are, even in the same classroom [25]. However, such effects on human perception
in real rooms of sizes often seen in classrooms are not well understood [26], compared to
those in large indoor spaces for performance (e.g., concert halls and auditoria).

The length of time in which children are required to listen to their teachers, peers,
or audio materials accounts for the majority of learning time children spend in their
classrooms [9], taking up to 45–75% in total [7,27]. With the teaching style shift towards
what is sometimes called “active learning” [28], children are demanded to listen more
and more in classrooms that are noisier than ever. The introduction of more group work
also leads to children’s learning abilities being more linked with their hearing skills than
ever [29].

It is also important to note that hearing in children is not as sophisticated as that in
adults, especially in noisy environments [14,30]. Thus, adults are often unable to perceive
the hearing difficulties experienced by young children even in the same classroom [7,31].
The way one speaks usually varies under noisy conditions. This, known as the “Lombard
effect”, is recognised to reduce intelligibility but also cause strains on speakers. Such
deteriorated speech signals are inadequate for children to learn anything, especially lan-
guages [32,33]. Moreover, for those aged between 5 and 15 years in particular, it is common
to contract middle ear infectious disease Otitis Media, which causes temporary hearing
loss of up to 40 dB hearing level and often lasts more than one months [8].

Many teachers have also expressed their discontent with poor acoustics at schools [6,34,35].
Teachers are more likely to report voice disorders than those in any other professions [34].
Absent teachers due to voice related health problems impose non-negligible costs. Since
much information is delivered in speech form in classrooms, good acoustics there would
benefit a much larger population than just children with already-diagnosed hearing im-
pairments.

Although the above mentioned problems have been identified, there is no clear
guidelines regarding the quality of acoustic signals to be presented to children, to protect
and support both children and teachers in Japanese school classrooms, other than the school
building design guidelines [36] written from an architectural perspective. Northern and
Downs stated [31] that solving such problems with acoustics in classrooms is not too hard.
Rather than the absence of funding nor knowledge of its solution, missing awareness of
both the problem and the potentially achievable answers is the main issue. In addition, the
importance of evidence-based education research has been promoted in recent years [37,38].
Education practices should be based on the best available scientific evidence, rather than
tradition, personal judgement, or other influences. However, evidence in the real-life
situations collected at real schools are still not enough.

The aim of this study is to demonstrate the importance of good acoustic conditions in
the second and foreign language education. We present our findings using data collected
in a real-life environment at a typical elementary school in Japan, with help from Japanese
native children who were learning English as their second language. Two kinds of sound
amplification systems are utilised; one is what had been used at the school and another
is what we prepared as an example alternative for a comparative study. By statistically
analysing English listening test results, combined with some acoustic measurements, effect
of more adequately treated classroom acoustics on children’s learning is illustrated.



Appl. Sci. 2021, 11, 6062 3 of 16

2. Methods
2.1. Participants

In total, 216 children from six classrooms at a typical public mixed-gender elementary
school in Japan, aged between 11 and 12 years (grade six), participated over two consecutive
weeks (212 in the week one, and 201 in the week two) in December 2019. The majority of
Japanese elementary schools are public schools. The school was selected after consulting
the local education authorities in a city while searching for a school that can cooperate in
our study. The number of children who attended each lesson is presented in Table 1.

Table 1. Number of children attended each lesson.

Week One Week Two

Day One Day Two Day One Day Two
(Monday) (Tuesday) (Monday) (Tuesday)

Lesson 1 N/A 36 N/A 34
Lesson 2 35 36 34 35
Lesson 3 36 33 35 27
Lesson 4 N/A 36 N/A 36

(N/A: not applicable).

No prior information was available regarding children’s English language skills,
English word familiarity, nor hearing level, apart from the following information:

• At the school, the grade 6 children had been taking three English lessons every
fortnight, taught mainly by a Japanese native teacher in the English learning room,
dedicated for English lessons of the grade five and six, for roughly 17 months before
the current study began.

• They also had an English native teacher assisting in some lessons, typically once
a week.

• Each lesson was 45-min-long.

We also had no knowledge regarding their intellectual abilities nor their socio-economic
characteristics.

2.2. English Listening Test

English listening tests using recorded speech audio signals emitted by two sorts of
sound amplification systems (Figure 1) were given to the participants. Participants were
asked to indicate whether they thought the speech sounds of each word pair were the same
or not by circling their choice between “the same” and “different” (both written in Japanese)
for each question on provided sheets. The task consists of 42 English word pairs, such as
“walk–walk” and “ten–pen”. The questions comprise clear speech recordings of either a
minimal pair or the same word spoken twice with at least one second (s) interval, voiced
by several English native speakers in a randomised order. The speech audio materials
were prepared by editing the sound source provided in the accompanying CDs of the
two books [39,40] with permission of the licensor through PLSclear (Publishers’ Licensing
Services, London, UK), using WaveLab Pro 9.5 (Steinberg, Hamburg, Germany) [41].
Restrictions on letter and word selections were determined according to the availability of
the sound source. The maximum amplitude for each word was adjusted to be the same.
For the speech audio materials, the balance to encompass varieties in terms of vowels vs.
consonants, minimal pair vs. the same word, and male voice vs. female voices was all
decided manually during the preparation period in an attempt to make it fair wherever
possible within all restrictions applied.

Each participant was given four tests in total as illustrated in Figure 2. Each test had
21 questions with approximately four-min-long audio materials. Two tests were integrated
into each lesson, one at the beginning and another at the end of each lesson. Two lessons
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were scheduled over two consecutive weeks, with one week interval in between. The first
test was given usually after an introduction song and a small talk session. After another
small talk, often followed by some group work, the second test was completed with some
closing remarks added by their Japanese native teacher. All lessons were held during their
regular teaching hours in their English room at the school. During the two week period,
lessons were scheduled according to a weekly timetable set by the school. Thus, a class
that had an English lesson on Monday starting at 9:30 in the first week, had another one on
Monday at 9:30 in the following week, for example. Tests were designed so that the same
word appeared twice, once a week, and it was played by both sound amplification systems
one after another over the two weeks. The orders of questions were randomised using a
pseudo random number generator written in Python [42]. The sound amplification system
was alternated after every four questions.

To avoid causing too much stress to the children, it was determined in advance that
roughly 10 min is the maximum length of time allowed for the test procedures in each
lesson in our study. To protect their privacy, we asked each participant to place a sticker
on each answer sheet before starting a test. These stickers came in five colours, signifying
their seat groups (Figure 3, left), determined in advance to be utilised in our analyses.

Figure 1. Two sound amplification systems: System A (left), and System B (right).

            Week 1                                                                                     Week 2

4-min
English test
(1st test)

4-min
English test
(2nd test)

4-min
English test
(1st test)

4-min
English test
(2nd test)

45-min lesson 45-min lesson

one week later

Figure 2. Test Protocol.
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Figure 3. Layouts of the English room with positions of two sound amplification systems: (left) with dimensions and colour
coded seat groups, and (right) with 10 measurement points, shown as numbers in brackets.

2.3. Sound Amplification Systems for a Classroom

Two different sound amplification systems, “System A” and “System B”, were used
for a comparison. System A (Figure 1 left), was a pair of typical PC loudspeakers (S-0264C,
Logitech, Lausanne, Switzerland) which had been used during regular English lessons at
the school for a long time before the current study began. We kept the System A where
it had been placed for their previous English lessons, on the bottom shelf of a metal rack
with a projector on the top (Figure 1 left), placed in the centre front of the room (shown
as “System A” in Figure 3 right). It enabled us to compare between “a regular system”
found at a school and another brought in with a little more care. The System A generates
point-source-like signals, thus direct signals would spread and decay by 6 dB per doubling
the distance in a free filed. Sound emitted by such simple sound amplification systems are
usually deteriorated by their representational features.

System B (Figure 1 right) consisted of a signal processor, an amplifier and a loud-
speaker array (DP-SP3, DA-250F, and SR-H3L, respectively; TOA, Hyogo, Japan). The
System B was placed at the front corner of the room (shown as “System B” in Figure 3 right)
so that the emitted signals could cover the whole room with little interference caused by
sound reflected by the walls whilst maintaining easier installation, smaller additional costs,
and less interruptions to learning activities, compared with many other alternatives. The
System B is designed to realise sound fields that are more evenly spread in a room, and
has a relatively flat response. The advantage of loudspeaker arrays is that emitted acoustic
signals become like a line source as the distance to the listening point widens for a while;
therefore, they would only decay 3 dB per doubling the distance in a free filed.

Levels of both systems were adjusted so that the A-weighted equivalent continuous
sound pressure level over 10 s, denoted by LAeq,10s [43], was 75 dBA at position (0)
(Figure 3 right), using pink noise. This level was determined based on the exposure limit
for young children, suggested by the World Health Organization, as 75 dBA 8-h LEX in
order to protect children from risks of noise-induced hearing loss [44].
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2.4. Acoustic Measurements

Multiple impulse response measurements in the unoccupied furnished English room
were carried out on an additional day, to gain a better understanding of the difference in
the acoustic characteristics realised by the two sound amplification systems. Both systems
were placed in the same ways as where they were during English tests (Figure 3, right).
The measurements were carried out while no lessons in and around the school building
were taking place.

The Exponential Sine Sweeps (ESS) method [45] was used. Signals were recorded by
using a microphone of a calibrated class two sound level meter [46] (NL-42, RION, Tokyo,
Japan) set at a height of 1 m with a portable recorder (PCM-D100, SONY, Tokyo, Japan), and
sampled at 44.1 kHz, 16-bit. ESS signals (30 Hz to 22 kHz, also sampled at 44.1 kHz) were
played and recorded several times at each of 10 positions ((0) to (9) in Figure 3, right). Albeit
imperfect, the method with averaging and deconvolution in the frequency domain was
adopted to obtain each impulse response, calculated with Python, so that non-linear and
time-variant behaviours of both the room acoustics and the systems were compensated to a
certain extent [47]. The transfer function as well as Reverberation Time (RT) for each octave
band and Speech Transmission Index (STI) were estimated by Systune pro (AFMG, Berlin,
Germany) [48] in accordance with ISO 3382-2 [49] and IEC 60268-16 [50], respectively.
STI is often included in guidelines or standards for classroom acoustics [27], and it was
developed as an objective method to predict speech intelligibility due to transmission
channels [51]. T60 is estimated from the decay time found between −5 dB and −25 dB
(T20), whereas STI is calculated as a weighted average of seven coefficients corresponding
to seven octave bands, with centre frequencies from 125 Hz to 8 kHz [52]. Note that these
measurement results including STI have known limitations and they only help prediction
of true speech intelligibility, which should only be quantified via listening tests employing
human perception [50].

The unoccupied noise level was measured in the furnished room, and calculated using
the same sound level meter as above.

2.5. Statistical Analyses

The English test results were analysed after the following pre-processing steps. Firstly,
data of children who were absent in any lessons were removed. Secondly, weekly numbers
for the data, obtained in week two of the study from children who were absent in the week
one, were replaced by those from week one in order to separately examine the impact of
children getting used to the type of tests after week one.

To evaluate the discrimination difficulty of the word pairs for Japanese native children,
the correct answer rate pc of each word pair was estimated as the percentage of the
correct answers. The question difficulty levels were defined as shown in Table 2 and were
employed for adjustment in the following analyses.

Both univariate and multivariate logistic regression analyses [53] were used to evalu-
ate the associations between the correct answer rate pc and independent factors, such as
question difficulty level, habituation effects (repetition of tasks), type of the sound ampli-
fication system and seat group (Table 3). In the multivariate logistic regression analysis,
the Akaike Information Criteria (AIC) was used for variable selection. To estimate the
bias due to overfitting (called “optimism”), we also carried out bootstrap validation of the
multivariate models using 200 repetitions of bootstrapping from the original data [54]. As
a performance metric, we used C-statistic, defined as the area under the receiver operating
characteristic curve for the prediction of the correct answer of a task. The optimism for the
C-statistic was estimated as the difference between the mean C-statistic of the bootstrap
sample based models and that of the original model. The optimism-corrected C-statistic
was given by subtracting the optimism from the original C-statistic.

The relationship between seat positions and acoustic characteristics realised by the
two sound amplification systems (System A and System B) was explored using yet another
sub data set using difficulty level 1 to 3 words. In this analysis, English test score (expressed
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in percentages) of each participant who attended both lessons were used. Seat groups were
categorised into two groups for simplicity: Front (Seat Group 1–3) and Back (similarly, 4–5).
Normality of the English test scores in each sub set was assessed using the Shapiro–Wilk
test. Because the test score distributions showed non-normality, the Wilcoxon signed-rank
test was applied for paired comparison of medians, and the Mann–Whitney U test for
unpaired comparison. As a multiple comparison correction method, Bonferroni-corrected
p-values were employed.

p < 0.05 was considered to be statistically significant. All statistical analyses were
performed by using R 3.6.0 [55].

Table 2. Question Difficulty.

Question Difficulty Level Correct Answer Rate pc

Level 4 pc ≤ 40%
Level 3 40% < pc ≤ 60%
Level 2 60% < pc ≤ 80%
Level 1 80% < pc

Table 3. Explanatory variables assumed in the study.

Explanation of the Explanatory Variable

Difficulty Level (1, 2, 3, 4) difficulty of word pair in question
Test Identifier (1st, 2nd) habituation effects within each lesson

Week (1, 2) habituation effects over two weeks
Sound Amplification System (A, B) acoustic characteristics

Seat Group (1, 2, 3, 4, 5) Seat position defined in Figure 3

2.6. Ethical Notes

The English listening test study at the school was conducted with the approval of the
Human Research Ethics Committee of the Graduate School of Engineering Science, Osaka
University (protocol code R1-16, 3 December 2019). The participation of the study was
agreed by the school’s head teacher and the guardians of children were informed about the
study in advance.

3. Results and Discussions
3.1. Acoustic Measurements

In the classroom, the measured unoccupied noise level, LAeq,10s, was 31.3 dBA with
the air conditioners turned off. Occupied noise level varied around 40 dBA to 50 dBA
during English tests with no one speaking inside the room although lessons in other rooms
and playground were carried on. The American Speech–Language–Hearing Association
recommends to ensure unoccupied classroom noise level ≤35 dBA [56]. Correspondingly,
the Japanese school building guidelines [36] recommend LAeq,T ≤ 40 dBA, where T
indicates the measurement period that can be determined depending on the situation.

Table 4 shows the estimated RT and STI, calculated by the methods explained in
Section 2.4. Likewise, the recommended RT for unoccupied furnished classrooms is 0.6 s
at maximum, as average values over octave bands with centre frequencies of 500 Hz,
1 kHz, and 2 kHz (according to the American standard [56,57], for classrooms ≤ 283 m3)
or similarly for octave bands with centre frequencies of 500 Hz and 1 kHz (according
to the Japanese guidelines [36], for classrooms ≤ 200 m3 approximately). Unlike the
common practice of simply measuring the room reverberation and STI, often seen in
architectural acoustics, the results we obtained informs us the combined characteristics of
the unoccupied furnished room and either of the utilised sound amplification systems. As
shown in Table 4, the RT values of both systems are almost within the recommended range
with little variation between the two sets although System B is slightly better than System
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A. The STI, on the other hand, are better with the System B at all measurement positions,
compared to that with System A. According to an indication provided in the standard [50],
STI > 0.76 observed at all positions with System B imply “Excellent intelligibility”, but
STI > 0.66 observed at all positions except at position (2) with System A imply “High
speech intelligibility”, and STI > 0.62 at position (2) with System A still implies “Good
speech intelligibility”.

Table 4. RT (s) for octave bands with centre frequencies 500 Hz, 1 kHz, and 2 kHz (in accordance with
the American standard [57]), and STI for the two systems. The measurement positions are indicated
in Figure 3 (right).

System A

Position 500 Hz 1 kHz 2 kHz STI

(0) 0.66 0.48 0.41 0.794
(1) 0.57 0.44 0.39 0.762
(2) 0.6 0.48 0.41 0.622
(3) 0.6 0.52 0.41 0.717
(4) 0.53 0.46 0.42 0.736
(5) 0.64 0.47 0.41 0.702
(6) 0.6 0.47 0.42 0.745
(7) 0.6 0.48 0.42 0.775
(8) 0.61 0.51 0.42 0.715
(9) 0.67 0.46 0.41 0.739

System B

Position 500 Hz 1 kHz 2 kHz STI

(0) 0.57 0.45 0.41 0.848
(1) 0.58 0.48 0.42 0.775
(2) 0.56 0.48 0.43 0.781
(3) 0.53 0.49 0.44 0.801
(4) 0.57 0.5 0.43 0.814
(5) 0.55 0.51 0.44 0.784
(6) 0.67 0.55 0.63 0.792
(7) 0.57 0.52 0.43 0.805
(8) 0.59 0.53 0.43 0.796
(9) 0.57 0.5 0.45 0.797

In comparison with that in RT values, the difference in transfer functions between
the two systems was more clearly observed as depicted in Figure 4. The frequency bands
between 125 Hz and 8 kHz are understood to contain the most elements of English speech
sound [31]. Therefore, signals over this range should be clearly audible (e.g., SNR ≥ +15 dB
is recommended in [56]) when English speech stimuli are presented to children in their
classrooms. The frequency response of System A reveals that the signals arriving at each
listening point diverge more than that of System B. It indicates the difficulty of using
System A to ensure that everyone can hear speech sound very well at wherever they
are in the same room without harming hearing of no one, including those close to the
loudspeakers. System B exhibits its relatively flat response at least over the frequency
bands between 200 Hz and 10 kHz at many measurement positions. The shortcomings
observed at some positions below 500 Hz for both systems (e.g., System B at Position (7))
are possibly due to the room modes although the cause is not fully identifiable with the
collected information only.
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Figure 4. Transfer functions realised by two systems ((a) System A, (b) System B), both measured by
using ESS method (Section 2.4) in the unoccupied furnished English room on a day in December 2019.
x-axis: frequency (62.5 Hz to 16 kHz, but unshaded for 125 Hz to 8 kHz), y-axis: magnitude (−35 dB
to 25 dB), depicted with 1/3 octave windowing function in Systune pro (AFMG, Berlin, Germany).

3.2. English Test

The correct answer rate pc is shown in Table 5, of which the list is sorted according to
the difficulty levels in ascending order. The mean correct answer rates were 94.2% in Level
1, 73.7% in Level 2, 50.6% in Level 3 and 22.3% in Level 4. The word pairs categorized into
the Level 4 indicated extremely low correct answer rates. Note that chance level in a two-
choice forced task, like our English test, is 50%. Nevertheless, the Japanese native children
yielded much lower, pc < 50%, with some word pairs. This finding would imply the
existence of a bias effect caused by the difference between Japanese and English phonemes
and/or lack of English knowledge.

All explanatory variables in Table 3 were selected for the multivariate logistic regres-
sion model after applying variable selection based on the AIC minimisation. The Odds
Ratio (OR) and its 95% Confidence Interval (CI) of each explanatory variable in univariate
and multivariate logistic regression analyses are shown in Table 6. An OR greater than
1 implies a positive association with an increased correct answer rate, whereas an OR less
than 1 implies a negative association. The bootstrap validation result is shown in Table 7.
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Table 5. Correct answer rate pc of each word pair.

Word 1 Word 2 Correct Answer
Rate pc (%)

Number of
Samples

Difficulty
Level

light right 17.2 412 4
long wrong 20.6 413 4
tim tin 21.8 412 4
pull pool 33.4 413 4

tennis dennis 41.9 413 3
track truck 48.9 413 3
top top 52.4 412 3
coat goat 59.1 411 3

cap cab 63.8 412 2
class glass 69.6 411 2
men men 71.2 413 2

sheep cheap 73.1 412 2
fool fool 74.3 412 2
lock look 74.8 412 2
cot pot 75.3 413 2
bin bin 77.7 412 2
car cow 78.2 413 2
cart card 78.9 413 2

bag bug 83.1 413 1
snore snow 83.5 412 1
vine wine 84.3 413 1
pot pot 87.1 412 1
bell bell 88.6 413 1

could could 88.9 413 1
pear bear 90.8 413 1

Bobby Bobby 93.0 413 1
cab cab 94.2 413 1
pig peg 94.7 413 1

wood good 96.1 413 1
ten pen 96.6 412 1
pat pat 96.6 413 1
cup cup 96.6 413 1
fan fan 96.6 413 1
jeer jeer 97.8 412 1
hill hill 98.1 413 1

sand sand 98.8 413 1
walk walk 99.0 413 1
wig fig 99.3 412 1
cut cut 99.3 413 1
toy toy 99.3 413 1
jam yam 99.3 413 1
rack rock 99.8 413 1

Obviously, the most powerful predicting factor for the correct answer rates pc was
the difficulty level of word pairs. In the multivariate analysis, correct answer rates pc of
the second week were better than those of the first week, indicating that many children
did indeed get used to the task over those two weeks. Additionally, sound amplification
system type also improved the correct answer rates pc to a certain extent. In regards to seat
positions, those who sat on the seats located at the back of the classroom (Seat Group 4–5)
performed worse than those whose seats were located in Seat Group 1 area. The habituation
effects during single lesson is uncertain in the results at this point.
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Table 6. Logistic regression for all data.

Univariate Multivariate

OR 95% CI OR 95% CI

Difficulty Level
Level 2 vs. Level 1 0.17 *** (0.15–0.19) 0.17 *** (0.15–0.19)
Level 3 vs. Level 1 0.06 *** (0.06–0.07) 0.06 *** (0.06–0.07)
Level 4 vs. Level 1 0.02 *** (0.01–0.02) 0.02 *** (0.02–0.02)

Test Identifier of a lesson
2nd Test vs. 1st Test 1.08 * (1.00–1.16) 0.88 ** (0.80–0.96)

Week
Week 2 vs. Week 1 1.15 *** (1.07–1.24) 1.23 *** (1.13–1.34)

Sound Amplification System
System B vs. System A 1.06 (0.99–1.15) 1.11 * (1.01–1.21)

Seat Group
Group 2 vs. Group 1 0.96 (0.86–1.08) 0.94 (0.82–1.08)
Group 3 vs. Group 1 0.98 (0.87–1.10) 0.97 (0.85–1.12)
Group 4 vs. Group 1 0.91 (0.81–1.02) 0.87 * (0.76–1.00)
Group 5 vs. Group 1 0.83 ** (0.73–0.93) 0.76 *** (0.66–0.88)

(OR = Odds Ratio. Significance codes: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05).

Table 7. Bootstrap-validated C-statistic for the multivariate logistic regression model shown in Table 6.

Original C-Statistic Optimism Corrected C-Statistic

0.8314 0.0002 0.8312

Multivariate analysis excluding the effects of the difficulty level can be beneficial to
evaluate the effects of other factors. Then, we divided the data into two subsets, without
and with Level 4 words, and carried out logistic regression analyses for each subset. Results
are shown in Tables 8 and 9, where only variables selected by AIC minimisation for the
multivariate logistic regression models are included. Bootstrap validation results are shown
in Table 10.

The sub-analysis using the subset containing only difficulty levels 1–3 words (Table 8)
showed similar tendencies with our first analysis results (Table 6). On the contrary, the
sub-analysis results for the Level 4 words (Table 9) appeared to be different, especially
regarding the sound amplification system and the seat groups.

Speech recognition is known to be governed by acoustic signals as well as the language
experience of listeners [31]. Generally speaking, for those learning second languages (L2),
differentiating phonemes that do not exist in their first language (L1) is more challeng-
ing [58]. The English word pairs categorised into the difficulty level 4 have no difference in
pronunciation when they are transcribed in Japanese characters like Katakana. Therefore,
one of the causes for the extremely low correct answer rate would be due to lack of expo-
sure to such phoneme contrasts. In addition, elementary school children may not have
knowledge of English words in the test. Therefore, it is extremely difficult for such children
to suppose that words in those pairs may be different.

Early studies suggested that such non-native phonemes may be incorporated into lis-
teners’ L1 categories, which typically had been developed before their first birthdays [59,60].
For example, the lowest question difficulty of 17.2% was for the word pair “light–right”
(Table 5). Japanese people are particularly known to have tendency of getting confused
between /l/ and /r/ sound [61,62]. The third formant (F3) [63] is reported to be the critical
cue that English native listeners use when differentiating between /l/ and /r/, but many
Japanese native listeners frequently fail to employ it [64]. Although speech perception is
not just about simply detecting the formant, being able to hear such useful acoustic speech
cues is helpful for listeners to infer phonemes contained in speech signals [63].
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Special care or perhaps separate training is required when teaching L2 phonemes
that do not appear in their L1 phoneme structure. Research showed that mothers often
communicate with their infants with a special form of speech, known as “parentese”,
with higher pitch, overemphasised intonation contour, spoken slowly [65]. Additionally,
albeit incomplete, many have attempted to develop methods to train Japanese natives
(including adults) to learn abilities to differentiate /l/ and /r/, as in [62], for example.
Above results suggest sound amplification systems equipped with functions allowing
flexible control over realised frequency response could be valuable in second and foreign
language education.

Table 8. Logistic Regression: sub analysis 1 (without Level 4 data).

Univariate Multivariate

OR 95% CI OR 95% CI

Difficulty Level
Level 2 vs. Level 1 0.17 *** (0.15–0.19) 0.17 *** (0.15–0.19)
Level 3 vs. Level 1 0.06 *** (0.06–0.07) 0.06 *** (0.06–0.07)

Test Identifier of a lesson
2nd Test vs. 1st Test 0.72 *** (0.66–0.78) 0.92 (0.83–1.01)

Week
Week 2 vs. Week 1 1.20 *** (1.10–1.31) 1.26 *** (1.14–1.38)

Sound Amplification System
System B vs. System A 1.13 ** (1.03–1.23) 1.17 ** (1.06–1.28)

Seat Group
Group 2 vs. Group 1 0.90 (0.78–1.03) 0.88 (0.75–1.02)
Group 3 vs. Group 1 0.93 (0.80–1.07) 0.91 (0.78–1.07)
Group 4 vs. Group 1 0.81 ** (0.71–0.92) 0.77 *** (0.67–0.90)
Group 5 vs. Group 1 0.72 *** (0.63–0.83) 0.67 *** (0.58–0.78)

(OR = Odds Ratio. Significance codes: *** ≤ 0.001, ** ≤ 0.01).

Table 9. Logistic Regression: sub analysis 2 (Level 4 (the hardest) data only).

Univariate Multivariate

OR 95% CI OR 95% CI

Test Identifier of a lesson
2nd Test vs. 1st Test 0.62 *** (0.46–0.81) 0.61 *** (0.46–0.81)

Sound Amplification System
System B vs. System A 0.79 * (0.63–1.00) 0.78 * (0.62–0.99)

Seat Group
Group 2 vs. Group 1 1.40 (0.96–2.05) 1.41 (0.97–2.06)
Group 3 vs. Group 1 1.41 (0.96–2.07) 1.42 (0.97–2.08)
Group 4 vs. Group 1 1.76 ** (1.23–2.53) 1.77 ** (1.23–2.55)
Group 5 vs. Group 1 1.63 * (1.12–2.40) 1.64 * (1.12–2.41)

(OR = Odds Ratio. Significance codes: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05).

Table 10. Bootstrap-validated C-statistic for the multivariate logistic regression models shown in
Tables 8 and 9.

Original C-Statistic Optimism Corrected C-Statistic

Difficulty Level 1–3 0.7757 0.0006 0.7750
Difficulty Level 4 0.5931 0.0077 0.5854

Finally, to assess the association between the test score and the heterogeneous sound
fields in the classroom, we divided the subset with difficulty levels 1–3 words further into
four groups according to sound amplification systems (A or B) and seat locations (Front or
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Back), then compared the medians of test scores (38 questions per system). As shown in
Figure 5, the lowest median of the test score is observed in the sub group “System A at the
back seats”, and it is significantly lower than that of “System B at the back seats”. With
System A, the difference between front and back seats is noticed, indicating heterogeneous
sound fields in the classroom realised by using such a system.

Front

Back

65         70        75         80         85         90        95        100

System A

System B

System B

System A

p < 0.01

p < 0.001

p < 0.05

Score [%]

Seat

Seat

Figure 5. Box-and-whisker plots of sub groups divided according to sound amplification systems
and seat locations. The centre line of the box is the median, the ends of the box are the quartiles, and
the ends of the whiskers extend to 1.5 times the inter quartile range, in Seat vs. System analyses.

Collective findings from both the acoustic measurements (Section 3.1) and our statis-
tical results exposed that the difference in the acoustic quality realised by the two sound
amplification systems had an impact on, at least, Japanese children’s English learning, and
the inequality in their classroom.

4. Conclusions

The current study has demonstrated the importance of delivering good acoustic
conditions in classrooms to help children learn English more effectively through a scientific
approach, using data collected in a real-life school classroom in Japan.

The statistical results of English listening tests taken by 216 Japanese children (aged
between 11 and 12 years) using two sound amplification systems revealed the following
three points. (1) There is association between the acoustic conditions in classrooms and
the correct answer rate of the English tests taken by children in the classroom. (2) Using
sound amplification systems with loudspeaker arrays can reduce the existing inequality
in a classroom due to the heterogeneous sound fields that depend on the seat positions.
(3) English word combinations including phonemes that do not exist in L1 are particularly
hard for Japanese children to discriminate, and they negatively affect the correct answer
rate of the English tests. Hence, teaching those words particularly requires extra care. Fur-
thermore, the joint results with the multiple acoustic measurements show that even when
the difference in acoustic characteristics realised by the two systems is at the magnitude of
what has been shown, its impact on children’s learning is still noteworthy. The observed
differences in our acoustic measurements were not so noticeable in the RT values but they
were evident in the transfer functions.

Although improvement can be made to the English listening test materials for any
future studies of similar kinds, as a consequence, we illustrated that more adequately
adjusted acoustics could play a significant role to contrive children’s learning at their
schools. More research should be encouraged, for example, to set guidelines regarding
acoustic quality in classrooms at schools in any countries without them.
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