Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls
Abstract
:Featured Application
Abstract
1. Introduction
2. Properties of Rubber Aggregates
2.1. Classification of ELTs
2.2. Typical Properties of Rubber Tyre Waste
2.3. Rubber Granulate Application
2.4. Conventional Material Mixtures
2.5. Assumptions and Limitations
3. Materials and Methods
3.1. Preparation of Samples
3.2. Calculation Analysis for the Case Study
Lateral Earth Pressure
4. Results and Discussion
4.1. Mechanical Properties
4.1.1. Sieve Analysis and Density
4.1.2. Unit Weight Test
4.1.3. Direct Shear Testing
4.1.4. Shear Stress-to-Normal Effective Stress Ratio
4.1.5. Dilatancy in Rubber Granulates
4.2. Design Criteria of Retaining Walls
Design Situation and Loads
5. Conclusions
- Research concerning the use of ELTs as a material in geotechnical works has focused on tyre shreds in a wide range of sizes, ranging from 76 mm to 12 mm. This document provides specific information on the characteristic values of the geotechnical parameters of a detailed range of particle sizes smaller than 12 mm.
- The results show uniformity coefficients lower than three, even in the combinations of S5: 90% 2.0–7.0 + 10% 0.6–2.0 mm and S6: 50% 2.0–7.0 + 50% 0.6–2.0 mm. These are described as uniform particle sizes. They represent samples where the particle size trend tends to equalise.
- The density of the samples tested ranged from 9.79 kN/m3 to 10.32 kN/m3.
- The Proctor Compaction Test was performed on the rubber granulate samples and the maximum dry unit weight obtained was 6.03 kN/m3, which is less than one third of the maximum dry unit weight of a conventional soil.
- The characteristic values of the geotechnical parameters have been estimated according to Eurocode 7. The friction angle results range from 18.27 to 23.21 degrees and the cohesion results are wide-ranging, with values from 9.35 to 17.83 kPa. According to the values provided by the Table 2, the results obtained are in agreement with the results of the literature reviewed, with values of 3 to 57 degrees and 7.6 to 39 kPa, respectively.
- The walls of lower height show a greater increase in partial safety coefficients regarding the limit values in accordance with EC7-Part 1, mainly due to the decrease in lateral earth pressure at the back, as a result of the low unit weight and lack of cohesion of the tyre granulates.
- The comparison between the coefficients obtained in accordance with the various Project Approaches and with the CTE-DB-SE-C shows that the executed procedures fail to provide similar results and that, therefore, the effect that cohesion exerts on the safety coefficients obtained in the calculation should be evaluated, such that they are not so obviously oversized as in the case of EC7-1.
- No effective differences are observed in the ODF obtained based on the different performing mixes analysed for both the elevation of 5.80 m and 2.80 m in length. Therefore, the choice of performing mix should not be made on the basis of the granulometry.
- The constructive solutions using granular rubber as filling in the back of the containment walls allow for the optimization of the section of the concrete wall, and therefore, a greater saving in the execution. For the sand type filling, the sliding safety coefficients do not exceed the limit values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Statistical System—Eurostat Domestic Material Consumption Per Capita. Last Update: 05/03/2021. Available online: https://ec.europa.eu/eurostat/databrowser/view/t2020_rl110/default/table?lang=en (accessed on 20 May 2021).
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Söderholm, P. Taxing virgin natural resources: Lessons from aggregates taxation in Europe. In Resources, Conservation and Recycling; Elsevier: Amsterdam, The Netherlands, 2011; pp. 911–922. [Google Scholar]
- Stock, J.H.; Bradt, J.T. Analysis of proposed 20-year mineral leasing withdrawal in Superior National Forest. Ecol. Econ. 2020, 174, 106663. [Google Scholar] [CrossRef]
- Agrela, F.; González-Gallardo, F.; Rosales, J.; Tavira, J.; Ayuso, J.; Cabrera, M. Complete real-scale application of recycled aggregates in a port loading platform in Huelva, Spain. Materials 2020, 13, 2651. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K. The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review. Environ. Dev. Sustain. 2019, 21, 485–568. [Google Scholar] [CrossRef]
- European Statistical System—Eurostat End-of-life Vehicles: Reuse, Recycling and Recovery. Last Update: 08/02/2021. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_waselvt/default/bar?lang=en (accessed on 16 March 2021).
- Grammelis, P.; Margaritis, N.; Dallas, P.; Rakopoulos, D.; Mavrias, G. A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers. Energies 2021, 14, 571. [Google Scholar] [CrossRef]
- Parlamento Europeo El Consejo De La Unión EuropeaParlamento Europeo. Directiva 2000/53/CE del Parlamento Europeo y Del Consejo de 18 de Septiembre de 2000 Relativa a los Vehículos al Final de su Vida Útil; EU: Brussels, Belgium, 2000. [Google Scholar]
- Boletín Oficial del Estado. Real Decreto 1619/2005, de 30 de Diciembre, Sobre la Gestión de Neumáticos Fuera de uso; BOE: Madrid, Spain, 2006; pp. 352–357. [Google Scholar]
- European Tyre and Rubber Manufacturers’ Association ETRMA. End-of-Life Tyre Report 2015; ETRMA: Brussels, Belgium, 2015. [Google Scholar]
- Strenk, P.M.; Wartman, J.; Grubb, D.G.; Humphrey, D.N.; Natale, M.F. Variability and Scale-Dependency of Tire-Derived Aggregate. J. Mater. Civ. Eng. 2007, 19, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, M.; San Martin, I.; Olivella, S.; Saaltink, M.W. Evaluation of self-combustion risk in tire derived aggregate fills. Waste Manag. 2011, 31, 2133–2141. [Google Scholar] [CrossRef]
- Cerminara, G.; Cossu, R. Waste Input to Landfills. In Solid Waste Landfilling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 15–39. [Google Scholar]
- Topçu, İ.B.; Unverdi, A. Scrap tires/crumb rubber. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–77. ISBN 9780081021569. [Google Scholar]
- Cecich, V.; Gonzales, L.; Hoisaeter, A.; Williams, J.; Reddy, K. Use of Shredded tires as Lightweight Backfill material for Retaining Structures. Waste Manag. Res. 1996, 14, 433–451. [Google Scholar] [CrossRef]
- Cetin, H.; Fener, M.; Gunaydin, O. Geotechnical properties of tire-cohesive clayey soil mixtures as a fill material. Eng. Geol. 2006, 88, 110–120. [Google Scholar] [CrossRef]
- Mashiri, M.S.; Vinod, J.S.; Sheikh, M.N.; Tsang, H.-H. Shear strength and dilatancy behaviour of sand–tyre chip mixtures. Soils Found. 2015, 55, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Edil, T.B.; Bosscher, P.J.; Eldin, N.N. Development of Engineering Criteria for Shredded or Whole Tires in Highway Applications; University of Wisconsin-Madison: Madison, WI, USA, 1990. [Google Scholar]
- Tweedie, J.J.; Humphrey, D.N.; Sandford, T.C. Tire Chips as Lightweight Backfill for Retaining Walls—Phase II; University of Maine: Maine, Orono, 1998. [Google Scholar]
- Anvari, M.; Shooshpasha, I. Fine-grained sand reinforced with granulated tire. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2, 2879–2882. [Google Scholar]
- Meguid, M.A.; Youssef, T.A. Experimental investigation of the earth pressure distribution on buried pipes backfilled with tire-derived aggregate. Transp. Geotech. 2018, 14, 117–125. [Google Scholar] [CrossRef]
- Lee, J.H.; Salgado, R.; Bernal, A.; Lovell, C.W. Shredded Tires and Rubber-Sand as Lightweight Backfill. J. Geotech. Geoenvironmental Eng. 1999, 125, 132–141. [Google Scholar] [CrossRef]
- UNE. UNE-EN 1997-1- Eurocódigo 7: Proyecto Geotécnico Parte 1: Reglas Generales; UNE: Madrid, Spain, 2016; p. 196. [Google Scholar]
- Ministerio de Fomento. Documento Básico SE-C CTE-Seguridad Estructural y Cimientos; Ministerio de Fomento: Madrid, Spain, 2019. [Google Scholar]
- ASTM. D 6270 Standard Practice for Use of Scrap Tires in Civil Engineering Applications; ASTM: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Lopera Perez, J.C.; Kwok, C.Y.; Senetakis, K. Effect of rubber size on the behaviour of sand-rubber mixtures: A numerical investigation. Comput. Geotech. 2016, 80, 199–214. [Google Scholar] [CrossRef]
- Madhusudhan, B.R.; Boominathan, A.; Banerjee, S. Engineering properties of sand–rubber tire shred mixtures. Int. J. Geotech. Eng. 2019, 1–17. [Google Scholar] [CrossRef]
- Pierce, C.E.; Blackwell, M.C. Potential of scrap tire rubber as lightweight aggregate in flowable fill. Waste Manag. 2003, 23, 197–208. [Google Scholar] [CrossRef]
- Federal Highway Administration—Department of Transportation. User Guidelines for Waste and Byproduct Materials in Pavement Construction; FHWA-RD-97-148. Available online: https://www.https://www.fhwa.dot.gov/publications/research%20/infrastructure/structures/97148/st4.cfm (accessed on 16 February 2021).
- Jamshidi, R.; Behzad, C.; Mohammad, F.; Akhavan, A.; Alaie, M.R.; Jamshidi Chenari, R.; Maroufi, M.A.A.; Alaie, Á.R.; Fatahi, B. An Experimental and Numerical Investigation into the Compressibility and Settlement of Sand Mixed with TDA Drained constraint modulus H Height of model K 0 “‘At-rest’” coefficient of lateral earth pressure L Width of model. Geotech. Geol. Eng. 2017, 35, 2401–2420. [Google Scholar] [CrossRef]
- Tasalloti, A.; Chiaro, G.; Murali, A.; Banasiak, L. Physical and mechanical properties of granulated rubber mixed with granular soils—A literature review. Sustainability 2021, 13, 4309. [Google Scholar] [CrossRef]
- Wu, W.Y.; Benda, C.C.; Cauley, R.F. Triaxial Determination of Shear Strength of Tire Chips. J. Geotech. Geoenviron. Eng. 1997, 123. [Google Scholar] [CrossRef]
- Rodríguez-Abad, R.; Estaire, J. Geotechnical and environmental properties of tire-used shreds for use in civil construction. In Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, India, 8–12 November 2010; pp. 986–991. [Google Scholar]
- Edil, T.E. Mechanical properties and mass behavior of shredded tire-soil mixtures. In Proceedings of the International Workshop on Lightweight Geo-Materials (IW-LGM2002), Tokyo, Japan, 26–27 March 2002; pp. 17–32. [Google Scholar]
- Li, Z.H.; Zhang, H.Y. Compression Properties of Granulated Rubber-Loess Mixtures as a Fill Materials. Appl. Mech. Mater. 2011, 71–78, 673–676. [Google Scholar] [CrossRef]
- Toutanji, H.A. The use of rubber tire particles in concrete to replace mineral aggregates. Cem. Concr. Compos. 1996, 18, 135–139. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Rubber-Tire Particles as Concrete Aggregate. J. Mater. Civ. Eng. 1993, 5, 478–496. [Google Scholar] [CrossRef]
- Kalkan, E. Preparation of scrap tire rubber fiber-silica fume mixtures for modification of clayey soils. Appl. Clay Sci. 2013, 80–81, 117–125. [Google Scholar] [CrossRef]
- Fu, R.; Coop, M.R.; Li, X.Q. Influence of Particle Type on the Mechanics of Sand-Rubber Mixtures. J. Geotech. Geoenviron. Eng. 2017, 143, 04017059. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.B.; Krishna, A.M.; Reddy, K.R. Sustainable Utilization of Scrap Tire Derived Geomaterials for Geotechnical Applications. Indian Geotech. J. 2018, 48, 251–266. [Google Scholar] [CrossRef]
- Li, S.; Li, D. Mechanical Properties of Scrap Tire Crumbs-Clayey Soil Mixtures Determined by Laboratory Tests. Adv. Mater. Sci. Eng. 2018, 2018, 1742676. [Google Scholar] [CrossRef] [Green Version]
- Turgut, P.; Yesilata, B. Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy Build. 2008, 40, 679–688. [Google Scholar] [CrossRef]
- CEDEX. Utilización de Materiales Marginales en Terraplenes en el Sur de España y Norte de Marruecos, y Metodologías para su Aplicación; Ministerio de Transportes; Gobierno de España: Madrid, Spain, 2013. [Google Scholar]
- Serrano-Chacón, Á.R.; Mascort-Albea, E.J.; Canivell, J.; Romero-Hernández, R.; Jaramillo-Morilla, A. Multi-Criteria Parametric Verifications for Stability Diagnosis of Rammed-Earth Historic Urban Ramparts Working as Retaining Walls. Appl. Sci. 2021, 11, 2744. [Google Scholar] [CrossRef]
- Estaire, J.; Pardo, F.; Santayana, D.; Perucho, Á. Anejo Nacional Español del Eurocódigo 7; CEDEX: Madrid, Spain, 2016. [Google Scholar]
- UNE. UNE-EN ISO 17892-4:2019 Investigación y Ensayos Geotécnicos. Ensayos de Laboratorio de Suelos. Parte 4: Determinación de la Distribución Granulométrica; UNE: Madrid, Spain, 2019; pp. 1–31. [Google Scholar]
- UNE. UNE-EN 1097-6:2014. Ensayos para Determinar las Propiedades Mecánicas y Físicas de los Áridos. Parte 6: Determinación de la Densidad de Partículas y la Absorción de Agua; UNE: Madrid, Spain, 2014. [Google Scholar]
- Concepción, M.; Menor, P. Materiales Sostenibles. Refugo de Corcho como Árido Ligero en Piezas de Hormigón Para Fábrica de Albañilería. Ph.D. Thesis, Universidad de Extremadura, Extremadura, Spain, 2016. [Google Scholar]
- Kyser, D.; Ravichandran, N. Properties of chipped rubber roofing membrane and sand mixtures for civil engineering applications. J. Build. Eng. 2016, 7, 103–113. [Google Scholar] [CrossRef]
- Contreras-Marín, E.; Anguita-García, M.; Alonso-Guzmán, E.M.; Jaramillo-Morilla, A.; Mascort-Albea, E.J.; Romero-Hernández, R. Mechanical properties of scrap tyre derived-aggregates: Standard and modified proctor tests. In REHABEND 2020 on Construction Pathology, Rehabilitation Technology and Heritage Management; Universidad de Granada: Granada, Spain, 2020; pp. 1523–1534. ISBN 9788409178735. [Google Scholar]
- UNE. UNE-EN ISO 17892-3:2018 Investigación y Ensayos Geotécnicos. Ensayos de Laboratorio de Suelos. Parte 3: Determinación de la Densidad de las Partículas; UNE: Madrid, Spain, 2018; pp. 1–22. [Google Scholar]
- UNE. UNE-EN 13286-2 Métodos de Ensayo para la Determinación en Laboratorio de la Densidad de Referencia y el Contenido o en Agua. Compactación Proctor; UNE: Madrid, Spain, 2011. [Google Scholar]
- Edil, T.B. Use of Scrap Tires in Civil and Environmental Construction; Department of Civil and Environmental Engineering University of Wisconsin-Madison: Madison, WI, USA, 2008. [Google Scholar]
- UNE. UNE-EN ISO 17892-10:2019 Investigación y Ensayos Geotécnicos. Ensayos de Laboratorio de Suelos. Parte 10: Ensayos de Corte Directo; UNE: Madrid, Spain, 2019; pp. 1–23. [Google Scholar]
- Fu, R.; Baudet, B.A.; Madhusudhan, B.N.; Coop, M.R. A comparison of the performances of polypropylene and rubber fibers in completely decomposed granite. Geotext. Geomembr. 2018, 46, 22–28. [Google Scholar] [CrossRef]
Product | Size |
---|---|
Whole tyre | Unprocessed |
Tyre shreds (A) | Between 50 and 305 mm |
Tyre chips (B) | Between 12 and 50 mm |
Granulated rubber (C) | Between 425 μm (40 mesh) and 12 mm |
Powdered rubber (D) | Below 425 μm (40 mesh) |
Nominal Sizes/Particle Range (mm) | Specific Gravity | Unit Weight (kN/m3) | Mohr–Coulomb Parameters | Young’s Modulus E (kPa) | References | |
---|---|---|---|---|---|---|
Cohesion (kPa) | Friction Angle ϕ (°) | |||||
25–50 | 1.1–1.3 | 3.2–7.1 | 7.6–11.5 | 19–25 | 770–1250 | [30] |
≤12 | - | 5.68 | 7.04 | 27 | - | [16] |
20 | 1.2 | 5.8 | - | - | - | [31] |
≤10 | 1.1–1.3 | 4–9 | 0 | 32 | - | [32] |
5.7 | 42 | |||||
8.1 | 45 | |||||
2 | 1.1 | - | - | 44 | 450–820 | [33] |
9.5 | 1.2 | 50 | 350–600 | |||
19 | 1.1 | 54 | 430–580 | |||
38 | 1.1 | 57 | 580–690 | |||
25 | 1.3 | - | 15.0 | 26.5 | 200–1400 | [34] |
50 | 7.0 | 34 | ||||
100 | 10.0 | 29 | ||||
0.8–20 | - | 4.9–5.9 | 6–32 | 21.6 | - | [12] |
10–50 | 5.1–6.4 | 11–38 | 3.3–25.4 | 253–485 | ||
20–400 | 4.7–6.3 | 19–39 | 4.3–13.2 | 130–373 | ||
12–50 | - | 5.9 | 0.0 | 30 | - | [35] |
Sand—10% 12–50 | 15.6 | 2.0 | 46 | |||
Sand—20% 12–50 | 14.5 | 2.0 | 50 | |||
Sand—30% 12–50 | 13.3 | 2.0 | 52 |
Samples | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
Particle size (mm) | 0.0–0.8 | 0.6–2.0 | 2.0–4.0 | 2.0–7.0 | 90% 2.0–7.0 + 10% 0.6–2.0 | 50% 2.0–7.0 + 50% 0.6–2.0 |
D10 | - | 1.15 | 1.20 | 2.35 | 2.35 | 2.05 |
D60 | - | 1.50 | 3.00 | 5.20 | 5.20 | 3.00 |
Cu | - | 1.30 | 2.50 | 2.21 | 2.21 | 1.46 |
ρLa (kN/m3) | - | - | - | 10.05 | 10.02 | - |
ρs (kN/m3) | - | 9.79 | 10.20 | 10.30 | 10.80 | 10.32 |
S1 | S2 | S3 | S4 | S5 | S6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Unit Weight (Kn/m3) | Water Content (%) | Unit Weight (Kn/m3) | Water Content (%) | Unit Weight (Kn/m3) | Water Content (%) | Unit Weight (Kn/m3) | Water Content (%) | Unit Weight (Kn/m3) | Water Content (%) | Unit Weight (Kn/m3) | Water Content (%) |
5 | - | - | 5.98 | 4.68 | 5.87 | 4.54 | 5.82 | 7.39 | - | - | - | - |
10 | 6.30 | 8.70 | 5.86 | 9.33 | 5.70 | 8.67 | 6.04 | 7.86 | 5.92 | 6.30 | 6.26 | 9.45 |
15 | - | - | 5.76 | 9.24 | 5.63 | 13.38 | 5.67 | 14.83 | 6.28 | 10.34 | - | - |
20 | - | - | 5.57 | 25.90 | 5.58 | 18.76 | 6.03 | 13.66 | 6.09 | 16.22 | - | - |
25 | - | - | 5.69 | 15.55 | 5.69 | 17.24 | 6.36 | 13.40 | 5.99 | 15.39 | 5.88 | 21.67 |
30 | - | - | 5.87 | 30.89 | 5.85 | 19.84 | 6.28 | 13.10 | - | - | - | - |
35 | - | - | 5.61 | 23.70 | 6.32 | 21.76 | 4.72 | 22.21 | - | - | - | - |
40 | - | - | 5.39 | 52.73 | 6.49 | 23.39 | 5.50 | 37.33 | - | - | - | - |
45 | - | - | 5.39 | 37.55 | 5.76 | 39.38 | 4.76 | 20.57 | - | - | - | - |
50 | 6.10 | 25.00 | 5.93 | 46.17 | 6.17 | 40.46 | 5.41 | 27.02 | - | - | - | - |
S1 | S2: | S3 | S4 | S5 | S6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Cohesion (kPa) | Friction Angle ϕ (°) | Cohesion (kPa) | Friction Angle ϕ (°) | Cohesion (kPa) | Friction Angle ϕ (°) | Cohesion (kPa) | Friction Angle ϕ (°) | Cohesion (kPa) | Friction Angle ϕ (°) | Cohesion (kPa) | Friction Angle ϕ (°) |
1 | 15.8 | 23.60 | 1.6 (*) | 26.19 (*) | 8.99 | 30.5 | 28.8 | 21.4 | 13.6 | 23.01 | 15.0 | 26.5 |
2 | 12.2 | 23.45 | 2.8 (*) | 25.91 (*) | 24.98 | 22.4 | 12.8 | 24.8 | 12.2 | 23.45 | 17.8 | 23.0 |
3 | 16.6 | 23.60 | 8.4 | 26.47 | 20.2 | 22.6 | 23.6 | 23.0 | 17.8 | 17.63 | 14.8 | 22.6 |
4 | 18.2 | 25.05 | 18.0 | 23.16 | 18.2 | 22.9 | 23.6 | 21.7 | - | - | ||
5 | - | - | 16.4 | 22.41 | - | - | - | - | - | - | ||
Characteristic Geotechnical Parameters | ||||||||||||
Lower | 9.76 | 22.17 | 2.25 | 18.96 | 15.88 | 15.34 | 6.48 | 19.07 | 7.72 | 13.79 | 11.94 | 19.01 |
Mean | 13.27 | 23.21 | 9.35 | 21.95 | 17.83 | 20.81 | 15.77 | 21.21 | 11.74 | 18.27 | 14.25 | 21.97 |
Backfilling | γ (kN/m3) | C’ (kN/m2) | ϕ’ (°) |
---|---|---|---|
Sand | 26.76 | - | 30.00 |
Sand + S4 | 6.36 | 15.77 | 21.21 |
Sand + S5 | 6.28 | 11.74 | 18.27 |
Sand + S6 | 6.26 | 14.25 | 21.97 |
L580 | CTE | Project Approach 1.1 | Project Approach 1.2 | Project Approach 2 | Project Approach 3 | ODF Limit | Difference (%) | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Sliding | CTE | 1.08 | - | - | - | - | 1.5 | - |
Overturning | CTE | 2.24 | - | - | - | - | 2 | - | |
Sliding | EC7 | - | - | - | 0.75 | - | 1.00/1.10 | - | |
Overturning | EC7 | - | - | - | 5.44 | - | 1 | - | |
Sand + S4 | Sliding | CTE | 2 | - | - | - | - | 1.5 | 25% |
EC7 | - | 3.99 | 3.32 | 3.62 | 3.32 | 1.00/1.10 | 69.17% | ||
Dif. | - | 49.87% | 39.75% | 44.75% | 39.75% | 26.66% | - | ||
Overturning | CTE | 2.85 | - | - | - | - | 2 | 29.82% | |
EC7 | - | 4.66 | 4.6 | 4.66 | 4.6 | 1 | 78.40% | ||
Dif. | - | 38.84% | 38.04% | 38.84% | 38.04% | 50.00% | - | ||
Sand + S5 | Sliding | CTE | 2 | - | - | - | - | 1.5 | 25% |
EC7 | - | 3.14 | 2.27 | 2.81 | 2.27 | 1.00/1.10 | 58.11% | ||
Dif. | - | 36.30% | 11.89% | 28.82% | 11.89% | 26.66% | - | ||
Overturning | CTE | 2.85 | - | - | - | - | 2 | 29.82% | |
EC7 | - | 4.17 | 3.64 | 4.17 | 3.64 | 1 | 74.48% | ||
Dif. | - | 31.65% | 21.70% | 31.65% | 21.70% | 50.00% | - | ||
Sand + S6 | Sliding | CTE | 2 | - | - | - | - | 1,5 | 25.00% |
EC7 | - | 4.09 | 3.24 | 3.72 | 3.24 | 1.00/1.10 | 69.25% | ||
Dif. | 51.10% | 38.27% | 46.23% | 38.27% | 43.46% | - | |||
Overturning | CTE | 2.85 | - | - | - | - | 2 | 29.82% | |
EC7 | - | 4.77 | 4.52 | 4.77 | 4.52 | 1 | 78.55% | ||
Dif. | - | 40.25% | 36.94% | 40.25% | 36.94% | 38.59% | - |
L280 | CTE | Project Approach 1.1 | Project Approach 1.2 | Project Approach 2 | Project Approach 3 | ODF Limit | Difference (%) | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Sliding | CTE | 1.18 | - | - | - | - | 1.5 | - |
Overturning | CTE | 2.84 | - | - | - | - | 2 | 34.64% | |
Sliding | EC7 | - | - | - | 0.74 | - | 1.00/1.10 | - | |
Overturning | EC7 | - | - | - | 1.84 | - | 1 | - | |
Sand + S4 | Sliding | CTE | 1.92 | - | - | - | - | 1.5 | 21.87% |
EC7 | - | 2.32 | 2.34 | 2.11 | 2.34 | 1.00/1.10 | 55.94% | ||
Dif. | - | 17.24% | 17.94% | 10.69% | 17.94% | 26.66% | - | ||
Overturning | CTE | 3.06 | - | - | - | - | 2 | 34.64% | |
EC7 | - | 3.41 | 3.45 | 3.41 | 3.45 | 1 | 10.78% | ||
Dif. | - | 10.26% | 11.30% | 10.26% | 11.30% | 50.00% | - | ||
Sand + S5 | Sliding | CTE | 1.92 | - | - | - | - | 1.5 | 21.87% |
EC7 | - | 2.13 | 2.19 | 1.94 | 2.19 | 1.00/1.10 | 47.98% | ||
Dif | - | 9.85% | 12.32% | 1.00% | 12.32% | 26.66% | - | ||
Overturning | CTE | 3.06 | - | - | - | - | 2 | 29.82% | |
EC7 | - | 4.15 | 3.28 | 4.15 | 3.28 | 1 | 73.18% | ||
Dif. | - | 26.26% | 6.70% | 26.26% | 6.70% | 50.00% | - | ||
Sand + S6 | Sliding | CTE | 1.92 | - | - | - | - | 1,5 | 25.00% |
EC7 | - | 2.38 | 2.47 | 2.16 | 2.47 | 1.00/1.10 | 57.80% | ||
Dif. | - | 19.32% | 22.26% | 11.11% | 22.26% | 18.73% | - | ||
Overturning | CTE | 3.06 | 2 | 34.64% | |||||
EC7 | - | 3.47 | 3.5 | 3.47 | 3.5 | 1 | 87.12% | ||
Dif. | - | 9.31% | 8.18% | 9.31% | 8.18% | 50.00% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Marín, E.; Anguita-García, M.; Alonso-Guzmán, E.M.; Jaramillo-Morilla, A.; Mascort-Albea, E.J.; Romero-Hernández, R.; Soriano-Cuesta, C. Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls. Appl. Sci. 2021, 11, 6159. https://doi.org/10.3390/app11136159
Contreras-Marín E, Anguita-García M, Alonso-Guzmán EM, Jaramillo-Morilla A, Mascort-Albea EJ, Romero-Hernández R, Soriano-Cuesta C. Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls. Applied Sciences. 2021; 11(13):6159. https://doi.org/10.3390/app11136159
Chicago/Turabian StyleContreras-Marín, Elizabeth, María Anguita-García, Elia Mercedes Alonso-Guzmán, Antonio Jaramillo-Morilla, Emilio J. Mascort-Albea, Rocío Romero-Hernández, and Cristina Soriano-Cuesta. 2021. "Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls" Applied Sciences 11, no. 13: 6159. https://doi.org/10.3390/app11136159
APA StyleContreras-Marín, E., Anguita-García, M., Alonso-Guzmán, E. M., Jaramillo-Morilla, A., Mascort-Albea, E. J., Romero-Hernández, R., & Soriano-Cuesta, C. (2021). Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls. Applied Sciences, 11(13), 6159. https://doi.org/10.3390/app11136159