Development of Prediction Models for Shear Strength of Rockfill Material Using Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Support Vector Machine
2.3. Random Forest
2.4. AdaBoost Algorithm
2.5. k-Nearest Neighbor
2.6. Performance Metric
3. Model Development to Predict RFM Shear Strength
4. Results and Discussion
- (1)
- Similar to other machine learning methods, the major disadvantages of SVM, RF, AdaBoost, and KNN models are sensitive to the fitness of the data set. Generally, if the data set is small, the generalization and reliability of the model would be influenced. However, the SVM, RF, and AdaBoost algorithms work with a limited data set, i.e., 165 cases, except for KNN. The prediction performances could be better on a larger data set. Furthermore, the developed models can always be updated to yield better results as new data becomes available.
- (2)
- Other qualitative indicators such as the Los Angeles abrasion value and lithology may also have influences on the prediction results of the shear strength of RFM. Accordingly, it is significant to analyze the influence of these indicators on the prediction results for improving performance.
5. Conclusions
- In this study, the SVM model (R2 = 0.9656, NSE = 0.9654, RMSE = 0.0153, and RSR = 0.1861) successfully achieved a high level of modeling prediction efficiency to RF (R2 = 0.9181, NSE = 0.9164, RMSE = 0.0797, and RSR = 0.2891), AdaBoost (R2 = 0.8951, NSE = 0.8835, RMSE = 0.0941, and RSR = 0.3414), and KNN (R2 = 0.6304, NSE = 0.6076, RMSE = 0.1727, and RSR = 0.6264) in the test data set. As the same methodology (having the same training and test data sets) for structuring all models is taken into consideration, the SVM model resulted the best and highest performance in this aspect. This implies that this algorithm is robust in comparison with others in RFM shear strength prediction.
- The performance (in terms of R2) of the test data set for the SVM, RF, and AdaBoost algorithms studied falls in the range of 0.9656–0.8951 across the three models with 13 input valuables. Results conclude that it is rational and feasible to estimate the shear strength of RFM from the gradation, particle size, dry unit weight (γ), material hardness, FM, and normal stress (σn).
- Sensitivity analysis results revealed that normal stress (σn) was the key parameter affecting the shear strength of RFM.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation
ANN | Artificial neural network |
AdaBoost | Adaptive boosting |
KNN | k-nearest neighbor |
NSE | Nash–Sutcliffe efficiency coefficient |
R2 | Coefficient of determination |
RF | Random forest |
RFM | Rockfill material |
RMSE | Root mean square error |
RSR | Ratio of RMSE to the standard deviation of the measured data |
ISRM | International Society of Rock Mechanics |
SVM | Support vector machine |
D10 | Sieve size at 10 percent passing |
D30 | Sieve size at 30 percent passing |
D60 | Sieve size at 60 percent passing |
D90 | Sieve size at 90 percent passing |
Cc | Coefficient of curvature |
Cu | Coefficient of uniformity |
GM | Gradation modulus |
FM | Fineness modulus |
R | ISRM hardness rating |
UCSmin | Minimum uniaxial compression strength |
γ | Dry unit weight |
UCSmax | Maximum uniaxial compression strength |
σn | Normal stress |
τ | Shear strength |
φ | Angle of internal friction |
Appendix A
Case No. | Location | D10 (mm) | D30 (mm) | D60 (mm) | D90 (mm) | Cc | Cu | GM | FM | R | UCSmin (MPa) | UCSmax (MPa) | γ (KN/m3) | σn (MPa) | τ (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.022 | 0.013 |
2 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.044 | 0.025 |
3 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.088 | 0.049 |
4 | Canada | 0.03 | 2.1 | 6.6 | 18 | 22.27 | 220 | 4.22 | 4.73 | 1 | 1 | 5 | 38.9 | 0.022 | 0.013 |
5 | Canada | 0.03 | 2.1 | 6.6 | 18 | 22.27 | 220 | 4.22 | 4.73 | 1 | 1 | 5 | 38.9 | 0.044 | 0.024 |
6 | Canada | 0.03 | 2.1 | 6.6 | 18 | 22.27 | 220 | 4.22 | 4.73 | 1 | 1 | 5 | 38.9 | 0.088 | 0.048 |
7 | Canada | 0.09 | 0.92 | 3.2 | 10 | 2.94 | 35.56 | 5 | 3.94 | 1 | 1 | 5 | 37 | 0.022 | 0.014 |
8 | Canada | 0.09 | 0.92 | 3.2 | 10 | 2.94 | 35.56 | 5 | 3.94 | 1 | 1 | 5 | 37 | 0.044 | 0.027 |
9 | Canada | 0.09 | 0.92 | 3.2 | 10 | 2.94 | 35.56 | 5 | 3.94 | 1 | 1 | 5 | 37 | 0.088 | 0.053 |
10 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.61 | 6.36 | 5 | 100 | 250 | 19.62 | 0.059 | 0.163 |
11 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.61 | 6.36 | 5 | 100 | 250 | 19.62 | 0.098 | 0.218 |
12 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.61 | 6.36 | 5 | 100 | 250 | 19.62 | 0.198 | 0.367 |
13 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.61 | 6.36 | 5 | 100 | 250 | 19.62 | 0.299 | 0.513 |
14 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.058 | 0.15 |
15 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.097 | 0.204 |
16 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.195 | 0.33 |
17 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.297 | 0.456 |
18 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.65 | 6.36 | 5 | 100 | 250 | 19.62 | 0.179 | 0.262 |
19 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.65 | 6.36 | 5 | 100 | 250 | 19.62 | 0.538 | 0.697 |
20 | U.K. | 1 | 6 | 19 | 29 | 1.89 | 19 | 2.65 | 6.36 | 5 | 100 | 250 | 19.62 | 0.887 | 0.112 |
21 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.177 | 0.245 |
22 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.529 | 0.666 |
23 | U.K. | 0.3 | 3.2 | 16 | 30 | 2.13 | 53.33 | 3.37 | 5.74 | 5 | 100 | 250 | 18.0504 | 0.876 | 0.102 |
24 | Iran | 0.1 | 1.2 | 7.5 | 17.3 | 1.92 | 75 | 4.32 | 7.42 | 4 | 50 | 100 | 9.3195 | 0.101 | 0.16 |
25 | Iran | 0.1 | 1.2 | 7.5 | 17.3 | 1.92 | 75 | 4.32 | 7.42 | 4 | 50 | 100 | 9.3195 | 0.301 | 0.34 |
26 | Iran | 0.1 | 1.2 | 7.5 | 17.3 | 1.92 | 75 | 4.32 | 7.42 | 4 | 50 | 100 | 9.3195 | 0.503 | 0.5 |
27 | Iran | 0.4 | 2.8 | 11 | 30 | 1.78 | 27.5 | 3.38 | 5.6 | 4 | 50 | 100 | 9.3195 | 0.172 | 0.207 |
28 | Iran | 0.4 | 2.8 | 11 | 30 | 1.78 | 27.5 | 3.38 | 5.6 | 4 | 50 | 100 | 9.3195 | 0.497 | 0.476 |
29 | Iran | 0.4 | 2.8 | 11 | 30 | 1.78 | 27.5 | 3.38 | 5.6 | 4 | 50 | 100 | 9.3195 | 0.83 | 0.751 |
30 | Japan | 1.3 | 4.6 | 15 | 32 | 1.09 | 11.54 | 2.68 | 6.28 | 5 | 100 | 250 | 17.81496 | 0.094 | 0.136 |
31 | Japan | 1.3 | 4.6 | 15 | 32 | 1.09 | 11.54 | 2.68 | 6.28 | 5 | 100 | 250 | 17.81496 | 0.177 | 0.242 |
32 | Japan | 1.3 | 4.6 | 15 | 32 | 1.09 | 11.54 | 2.68 | 6.28 | 5 | 100 | 250 | 17.81496 | 0.351 | 0.415 |
33 | Japan | 1.3 | 4.6 | 15 | 32 | 1.09 | 11.54 | 2.68 | 6.28 | 5 | 100 | 250 | 17.81496 | 0.512 | 0.552 |
34 | Japan | 0.6 | 2 | 16 | 30 | 0.42 | 26.67 | 3.24 | 5.86 | 4 | 50 | 100 | 21.8763 | 0.093 | 0.165 |
35 | Japan | 0.6 | 2 | 16 | 30 | 0.42 | 26.67 | 3.24 | 5.86 | 4 | 50 | 100 | 21.8763 | 0.182 | 0.308 |
36 | Japan | 0.6 | 2 | 16 | 30 | 0.42 | 26.67 | 3.24 | 5.86 | 4 | 50 | 100 | 21.8763 | 0.359 | 0.523 |
37 | Japan | 0.6 | 2 | 16 | 30 | 0.42 | 26.67 | 3.24 | 5.86 | 4 | 50 | 100 | 21.8763 | 0.535 | 0.744 |
38 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 0.177 | 0.214 |
39 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 0.514 | 0.525 |
40 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 0.839 | 0.773 |
41 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 1.172 | 1.07 |
42 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 1.494 | 1.312 |
43 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 21 | 1.97 | 1.648 |
44 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 20.8 | 0.18 | 0.24 |
45 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 20.8 | 0.5 | 0.447 |
46 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 20.8 | 0.821 | 0.689 |
47 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.41 | 5.57 | 4 | 50 | 100 | 20.8 | 1.142 | 0.93 |
48 | Iran | 0.5 | 2.8 | 9.7 | 30 | 1.62 | 19.4 | 3.43 | 5.61 | 5 | 100 | 250 | 21.1 | 0.487 | 0.39 |
49 | Iran | 0.5 | 2.8 | 9.7 | 30 | 1.62 | 19.4 | 3.43 | 5.61 | 5 | 100 | 250 | 21.1 | 0.972 | 0.766 |
50 | Iran | 0.5 | 2.8 | 9.7 | 30 | 1.62 | 19.4 | 3.43 | 5.61 | 5 | 100 | 250 | 21.1 | 1.448 | 1.11 |
51 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 0.168 | 0.157 |
52 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 0.373 | 0.634 |
53 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 0.731 | 1.088 |
54 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 0.906 | 1.258 |
55 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 1.262 | 1.699 |
56 | Iran | 0.2 | 2.5 | 19.4 | 42.2 | 1.61 | 97 | 3.19 | 5.77 | 5 | 100 | 250 | 21 | 1.437 | 1.883 |
57 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 0.092 | 0.14 |
58 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 0.179 | 0.23 |
59 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 0.344 | 0.357 |
60 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 0.514 | 0.52 |
61 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 0.859 | 0.887 |
62 | Iran | 0.4 | 3.3 | 10.3 | 33.3 | 2.64 | 25.75 | 3.32 | 5.64 | 4 | 50 | 100 | 21.8 | 1.186 | 1.149 |
63 | Iran | 1.2 | 2.1 | 4.2 | 25.3 | 0.88 | 3.5 | 3.63 | 5.34 | 4 | 50 | 100 | 21.8 | 0.092 | 0.147 |
64 | Iran | 1.2 | 2.1 | 4.2 | 25.3 | 0.88 | 3.5 | 3.63 | 5.34 | 4 | 50 | 100 | 21.8 | 0.178 | 0.22 |
65 | Iran | 1.2 | 2.1 | 4.2 | 25.3 | 0.88 | 3.5 | 3.63 | 5.34 | 4 | 50 | 100 | 21.8 | 0.503 | 0.461 |
66 | Iran | 1.2 | 2.1 | 4.2 | 25.3 | 0.88 | 3.5 | 3.63 | 5.34 | 4 | 50 | 100 | 21.8 | 1.148 | 0.959 |
67 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21 | 0.34 | 0.332 |
68 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21 | 0.99 | 0.843 |
69 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21 | 1.618 | 1.271 |
70 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21 | 2.399 | 1.799 |
71 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21.5 | 0.342 | 0.342 |
72 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21.5 | 0.994 | 0.865 |
73 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21.5 | 1.63 | 1.321 |
74 | Iran | 0.4 | 2.9 | 9.7 | 31 | 2.17 | 24.25 | 3.4 | 5.53 | 4 | 50 | 100 | 21.5 | 2.422 | 1.891 |
75 | Australia | 33.9 | 42.4 | 50 | 60.2 | 1.06 | 1.47 | 0.2 | 8.8 | 5 | 100 | 250 | 21.7 | 0.163 | 0.23 |
76 | Australia | 33.9 | 42.4 | 50 | 60.2 | 1.06 | 1.47 | 0.2 | 8.8 | 5 | 100 | 250 | 21.7 | 0.215 | 0.275 |
77 | Australia | 33.9 | 42.4 | 50 | 60.2 | 1.06 | 1.47 | 0.2 | 8.8 | 5 | 100 | 250 | 21.7 | 0.412 | 0.424 |
78 | Australia | 30 | 34 | 40.8 | 50 | 0.94 | 1.36 | 0.52 | 8.5 | 5 | 100 | 250 | 21.7 | 0.165 | 0.252 |
79 | Australia | 30 | 34 | 40.8 | 50 | 0.94 | 1.36 | 0.52 | 8.5 | 5 | 100 | 250 | 21.7 | 0.215 | 0.28 |
80 | Australia | 30 | 34 | 40.8 | 50 | 0.94 | 1.36 | 0.52 | 8.5 | 5 | 100 | 250 | 21.7 | 0.412 | 0.424 |
81 | Germany | 4 | 11.7 | 36.2 | 98.2 | 0.95 | 9.05 | 1.47 | 7.55 | 4 | 50 | 100 | 24.2 | 1.039 | 1.114 |
82 | Germany | 4 | 11.7 | 36.2 | 98.2 | 0.95 | 9.05 | 1.47 | 7.55 | 4 | 50 | 100 | 24.2 | 2.034 | 1.964 |
83 | Germany | 4 | 11.7 | 36.2 | 98.2 | 0.95 | 9.05 | 1.47 | 7.55 | 4 | 50 | 100 | 24.2 | 3.004 | 2.705 |
84 | Germany | 3 | 9.1 | 30.4 | 98.2 | 0.91 | 10.13 | 1.67 | 7.28 | 4 | 50 | 100 | 24.2 | 0.533 | 0.658 |
85 | Germany | 3 | 9.1 | 30.4 | 98.2 | 0.91 | 10.13 | 1.67 | 7.28 | 4 | 50 | 100 | 24.2 | 1.039 | 1.114 |
86 | Germany | 3 | 9.1 | 30.4 | 98.2 | 0.91 | 10.13 | 1.67 | 7.28 | 4 | 50 | 100 | 24.2 | 2.018 | 1.882 |
87 | Germany | 4.2 | 12.8 | 41.2 | 99 | 0.95 | 9.81 | 1.37 | 7.62 | 4 | 50 | 100 | 24.2 | 0.512 | 0.512 |
88 | Germany | 4.2 | 12.8 | 41.2 | 99 | 0.95 | 9.81 | 1.37 | 7.62 | 4 | 50 | 100 | 24.2 | 1.001 | 0.902 |
89 | Germany | 4.2 | 12.8 | 41.2 | 99 | 0.95 | 9.81 | 1.37 | 7.62 | 4 | 50 | 100 | 24.2 | 1.987 | 1.728 |
90 | USA | 0.9 | 3 | 18.8 | 99 | 0.53 | 20.89 | 2.64 | 6.35 | 5 | 100 | 250 | 21.7 | 0.861 | 0.898 |
91 | USA | 0.9 | 3 | 18.8 | 99 | 0.53 | 20.89 | 2.64 | 6.35 | 5 | 100 | 250 | 21.7 | 1.67 | 1.509 |
92 | USA | 0.9 | 3 | 18.8 | 99 | 0.53 | 20.89 | 2.64 | 6.35 | 5 | 100 | 250 | 21.7 | 4.049 | 3.198 |
93 | U.K. | 0.44 | 1.5 | 6.99 | 27.5 | 0.73 | 15.89 | 3.82 | 5.16 | 4 | 50 | 100 | 18.7 | 0.159 | 0.189 |
94 | U.K. | 0.44 | 1.5 | 6.99 | 27.5 | 0.73 | 15.89 | 3.82 | 5.16 | 4 | 50 | 100 | 18.7 | 0.471 | 0.424 |
95 | U.K. | 0.44 | 1.5 | 6.99 | 27.5 | 0.73 | 15.89 | 3.82 | 5.16 | 4 | 50 | 100 | 18.7 | 1.13 | 0.905 |
96 | Iran | 0.4 | 2.3 | 12.2 | 44.4 | 1.08 | 30.5 | 3.3 | 5.69 | 4 | 50 | 100 | 26.2 | 0.815 | 0.66 |
97 | Iran | 0.4 | 2.3 | 12.2 | 44.4 | 1.08 | 30.5 | 3.3 | 5.69 | 4 | 50 | 100 | 18.7 | 0.794 | 0.577 |
98 | Iran | 0.4 | 2.3 | 12.2 | 44.4 | 1.08 | 30.5 | 3.3 | 5.69 | 5 | 100 | 250 | 24.5 | 0.994 | 0.864 |
99 | India | 0.5 | 1.5 | 4.6 | 15.6 | 0.98 | 9.2 | 4.22 | 4.8 | 4 | 50 | 100 | 24.5 | 1.384 | 0.881 |
100 | India | 0.95 | 2.8 | 12.5 | 34.9 | 0.66 | 13.16 | 3.02 | 5.97 | 4 | 50 | 100 | 24.5 | 1.369 | 0.836 |
101 | India | 1.3 | 4.6 | 18.9 | 55.9 | 0.86 | 14.54 | 2.4 | 6.54 | 4 | 50 | 100 | 24.5 | 1.358 | 0.803 |
102 | Iran (multiple) | 0.5 | 3 | 10.4 | 31.2 | 1.73 | 20.8 | 3.36 | 5.63 | 4 | 50 | 100 | 26.2 | 1.056 | 0.625 |
103 | Iran (multiple) | 0.4 | 2.8 | 9.2 | 30.1 | 2.13 | 23 | 3.42 | 5.53 | 4 | 50 | 100 | 24.5 | 0.501 | 0.451 |
104 | Iran (multiple) | 0.4 | 2.8 | 9.2 | 30.1 | 2.13 | 23 | 3.42 | 5.53 | 4 | 50 | 100 | 24.5 | 0.986 | 0.827 |
105 | Iran (multiple) | 0.4 | 2.8 | 9.2 | 30.1 | 2.13 | 23 | 3.42 | 5.53 | 4 | 50 | 100 | 24.5 | 1.479 | 1.241 |
106 | Iran (multiple) | 0.5 | 3.3 | 10.2 | 31 | 2.14 | 20.4 | 3.28 | 5.7 | 5 | 100 | 250 | 24.5 | 0.485 | 0.379 |
107 | Iran (multiple) | 0.5 | 3.3 | 10.2 | 31 | 2.14 | 20.4 | 3.28 | 5.7 | 5 | 100 | 250 | 24.5 | 0.808 | 0.631 |
108 | Iran (multiple) | 0.5 | 3.3 | 10.2 | 31 | 2.14 | 20.4 | 3.28 | 5.7 | 5 | 100 | 250 | 24.5 | 1.131 | 0.884 |
109 | Iran (multiple) | 0.4 | 2.8 | 10.4 | 31.2 | 1.88 | 26 | 3.4 | 5.58 | 4 | 50 | 100 | 18.7 | 0.808 | 0.631 |
110 | Iran (multiple) | 0.4 | 2.8 | 10.4 | 31.2 | 1.88 | 26 | 3.4 | 5.58 | 4 | 50 | 100 | 18.7 | 1.131 | 0.884 |
111 | USA | 2.4 | 19.3 | 80.1 | 100 | 1.94 | 33.38 | 1.32 | 7.72 | 6 | 250 | 400 | 25.6 | 0.85 | 0.836 |
112 | USA | 2.4 | 19.3 | 80.1 | 100 | 1.94 | 33.38 | 1.32 | 7.72 | 6 | 250 | 400 | 25.6 | 1.695 | 1.637 |
113 | USA | 2.4 | 19.3 | 80.1 | 100 | 1.94 | 33.38 | 1.32 | 7.72 | 6 | 250 | 400 | 25.6 | 4.205 | 3.921 |
114 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 0.241 | 0.183 |
115 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 0.468 | 0.316 |
116 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 0.921 | 0.582 |
117 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 0.265 | 0.313 |
118 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 0.511 | 0.506 |
119 | Iran (multiple) | 0.01 | 1 | 10.4 | 43.9 | 9.62 | 1040 | 4 | 4.93 | 4 | 50 | 100 | 24.2 | 1.001 | 0.902 |
120 | USA | 0.2 | 0.56 | 1.2 | 2.6 | 0.1 | 6 | 6 | 3 | 4 | 50 | 100 | 16.1 | 0.021 | 0.029 |
121 | USA | 0.2 | 0.56 | 1.2 | 2.6 | 0.1 | 6 | 6 | 3 | 4 | 50 | 100 | 16.1 | 0.042 | 0.051 |
122 | USA | 0.2 | 0.56 | 1.2 | 2.6 | 0.1 | 6 | 6 | 3 | 4 | 50 | 100 | 16.1 | 0.068 | 0.071 |
123 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.054 | 0.005 |
124 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.089 | 0.028 |
125 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.11 | 0.049 |
126 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.152 | 0.067 |
127 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.191 | 0.081 |
128 | India | 0.1 | 1.3 | 6.5 | 15 | 2.6 | 65 | 4.42 | 4.55 | 5 | 100 | 250 | 19.9 | 0.24 | 0.092 |
129 | India | 0.1 | 1 | 6.2 | 17 | 1.61 | 62 | 4.5 | 4.44 | 5 | 100 | 250 | 22.3 | 0.706 | 0.94 |
130 | India | 0.1 | 1 | 6.2 | 17 | 1.61 | 62 | 4.5 | 4.44 | 5 | 100 | 250 | 22.3 | 1.31 | 1.296 |
131 | India | 0.1 | 1 | 6.2 | 17 | 1.61 | 62 | 4.5 | 4.44 | 5 | 100 | 250 | 22.3 | 1.868 | 1.536 |
132 | India | 0.2 | 2.9 | 12.3 | 32 | 3.42 | 61.5 | 3.46 | 5.53 | 5 | 100 | 250 | 22.3 | 0.702 | 0.903 |
133 | India | 0.2 | 2.9 | 12.3 | 32 | 3.42 | 61.5 | 3.46 | 5.53 | 5 | 100 | 250 | 22.3 | 1.305 | 1.25 |
134 | India | 0.2 | 2.9 | 12.3 | 32 | 3.42 | 61.5 | 3.46 | 5.53 | 5 | 100 | 250 | 22.3 | 1.862 | 1.486 |
135 | India | 0.4 | 4.4 | 21.2 | 59.8 | 2.28 | 53 | 2.74 | 6.27 | 5 | 100 | 250 | 22.3 | 0.697 | 0.862 |
136 | India | 0.4 | 4.4 | 21.2 | 59.8 | 2.28 | 53 | 2.74 | 6.27 | 5 | 100 | 250 | 22.3 | 1.283 | 1.167 |
137 | India | 0.4 | 4.4 | 21.2 | 59.8 | 2.28 | 53 | 2.74 | 6.27 | 5 | 100 | 250 | 22.3 | 1.819 | 1.358 |
138 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.002 | 0.007 |
139 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.02 | 0.052 |
140 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.032 | 0.072 |
141 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.054 | 0.095 |
142 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.111 | 0.168 |
143 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.162 | 0.217 |
144 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.209 | 0.259 |
145 | Australia | 27.1 | 32.6 | 41.3 | 53 | 0.95 | 1.52 | 0.57 | 8.5 | 5 | 100 | 250 | 15.3 | 0.401 | 0.409 |
146 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.003 | 0.008 |
147 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.021 | 0.062 |
148 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.035 | 0.089 |
149 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.058 | 0.116 |
150 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.115 | 0.191 |
151 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.155 | 0.206 |
152 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.209 | 0.259 |
153 | Australia | 20.7 | 26.7 | 32.8 | 53 | 1.05 | 1.58 | 0.89 | 8.2 | 5 | 100 | 250 | 15.3 | 0.394 | 0.401 |
154 | Thailand | 3.1 | 7.8 | 22 | 46.4 | 0.89 | 7.1 | 1.98 | 7.01 | 4 | 50 | 100 | 21 | 0.833 | 0.745 |
155 | Thailand | 3.1 | 7.8 | 22 | 46.4 | 0.89 | 7.1 | 1.98 | 7.01 | 4 | 50 | 100 | 21 | 1.649 | 1.407 |
156 | Thailand | 3.1 | 7.8 | 22 | 46.4 | 0.89 | 7.1 | 1.98 | 7.01 | 4 | 50 | 100 | 21 | 2.451 | 2.01 |
157 | Thailand | 3.1 | 7.8 | 22 | 46.4 | 0.89 | 7.1 | 1.98 | 7.01 | 4 | 50 | 100 | 21 | 3.223 | 2.492 |
158 | Thailand | 3.5 | 7.1 | 19.8 | 45.7 | 0.73 | 5.66 | 2.03 | 6.98 | 4 | 50 | 100 | 21 | 0.808 | 0.631 |
159 | Thailand | 3.5 | 7.1 | 19.8 | 45.7 | 0.73 | 5.66 | 2.03 | 6.98 | 4 | 50 | 100 | 21 | 1.592 | 1.169 |
160 | Thailand | 3.5 | 7.1 | 19.8 | 45.7 | 0.73 | 5.66 | 2.03 | 6.98 | 4 | 50 | 100 | 21 | 2.338 | 1.576 |
161 | Thailand | 3.5 | 7.1 | 19.8 | 45.7 | 0.73 | 5.66 | 2.03 | 6.98 | 4 | 50 | 100 | 21 | 3.14 | 2.178 |
162 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.014 | 0.028 |
163 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.028 | 0.048 |
164 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.055 | 0.082 |
165 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.108 | 0.143 |
References
- Aghaei, A.A.; Soroush, A.; Reyhani, M. Large-scale triaxial testing and numerical modeling of rounded and angular rockfill materials. Sci. Iran. Trans. A Civ. Eng. 2010, 17, 169–183. [Google Scholar]
- Varadarajan, A.; Sharma, K.; Venkatachalam, K.; Gupta, A. Testing and modeling two rockfill materials. J. Geotech. Geoenviron. Eng. 2003, 129, 206–218. [Google Scholar] [CrossRef]
- Marsal, R.J. Large scale testing of rockfill materials. J. Soil Mech. Found. Div. 1967, 93, 27–43. [Google Scholar] [CrossRef]
- Marachi, N.D. Strength and Deformation. Characteristics of Rockfill Materials. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1969. [Google Scholar]
- Venkatachalam, K. Prediction of Mechanical Behaviour of Rockfill Materials. Ph.D. Thesis, Indian Institute of Technology, Delhi, India, 1993. [Google Scholar]
- Leps, T.M. Review of shearing strength of rockfill. J. Soil Mech. Found. Div. 1970, 96, 1159–1170. [Google Scholar] [CrossRef]
- Liu, S.-H. Application of in situ direct shear device to shear strength measurement of rockfill materials. Water Sci. Eng. 2009, 2, 48–57. [Google Scholar]
- Linero, S.; Palma, C.; Apablaza, R. Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing. In Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering; Australian Centre for Geomechanics: Perth, Australia, 2007; pp. 59–75. [Google Scholar] [CrossRef]
- Honkanadavar, N.; Gupta, S. Prediction of shear strength parameters for prototype riverbed rockfill material using index properties. In Proceedings of the Indian Geotechnical Conference, Mumbai, India, 16–18 December 2010; pp. 335–338. [Google Scholar]
- Froemelt, A.; Duürrenmatt, D.J.; Hellweg, S. Using data mining to assess environmental impacts of household consumption behaviors. Environ. Sci. Technol. 2018, 52, 8467–8478. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Gu, W.-J.; Ahmad, F. A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks. J. Cent. South Univ. 2020, 27, 500–516. [Google Scholar]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Ahmad, F. Evaluating Seismic Soil Liquefaction Potential Using Bayesian Belief Network and C4. 5 Decision Tree Approaches. Appl. Sci. 2019, 9, 4226. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Tang, X.; Qiu, J.; Ahmad, F.; Gu, W. LLDV-a Comprehensive framework for assessing the effects of liquefaction land damage potential. In Proceedings of the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 14–16 November 2019; pp. 527–533. [Google Scholar]
- Ahmad, M.; Tang, X.-W.; Qiu, J.-N.; Ahmad, F.; Gu, W.-J. A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data. Front. Struct. Civil. Eng. 2020, 14, 1476–1491. [Google Scholar] [CrossRef]
- Ahmad, M.; Tang, X.; Ahmad, F. Evaluation of liquefaction-induced settlement using random forest and REP tree models: Taking Pohang earthquake as a case of illustration. In Natural Hazards-Impacts, Adjustments & Resilience; IntechOpen: London, UK, 2020. [Google Scholar]
- Ahmad, M.; Al-Shayea, N.A.; Tang, X.-W.; Jamal, A.; Al-Ahmadi, H.M.; Ahmad, F. Predicting the pillar stability of underground mines with random trees and C4. 5 decision trees. Appl. Sci. 2020, 10, 6486. [Google Scholar] [CrossRef]
- Pirhadi, N.; Tang, X.; Yang, Q.; Kang, F. A new equation to evaluate liquefaction triggering using the response surface method and parametric sensitivity analysis. Sustainability 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Pirhadi, N.; Tang, X.; Yang, Q. Energy evaluation of triggering soil liquefaction based on the response surface method. Appl. Sci. 2019, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, A.; Shirzadi, A.; Choubin, B.; Taromideh, F.; Hosseini, F.S.; Borji, M.; Shahabi, H.; Salvati, A.; Dineva, A.A. Towards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mapping. IEEE Access 2020, 8, 145968–145983. [Google Scholar] [CrossRef]
- Mosavi, A.; Golshan, M.; Janizadeh, S.; Choubin, B.; Melesse, A.M.; Dineva, A.A. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: A priority assessment of sub-basins. Geocarto Int. 2020, 1–20. [Google Scholar] [CrossRef]
- Mosavi, A.; Hosseini, F.S.; Choubin, B.; Goodarzi, M.; Dineva, A.A. Groundwater salinity susceptibility mapping using classifier ensemble and Bayesian machine learning models. IEEE Access 2020, 8, 145564–145576. [Google Scholar] [CrossRef]
- Mosavi, A.; Sajedi-Hosseini, F.; Choubin, B.; Taromideh, F.; Rahi, G.; Dineva, A.A. Susceptibility mapping of soil water erosion using machine learning models. Water 2020, 12, 1995. [Google Scholar] [CrossRef]
- Mosavi, A.; Hosseini, F.S.; Choubin, B.; Abdolshahnejad, M.; Gharechaee, H.; Lahijanzadeh, A.; Dineva, A.A. Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. Water 2020, 12, 2770. [Google Scholar] [CrossRef]
- Mosavi, A.; Hosseini, F.S.; Choubin, B.; Taromideh, F.; Ghodsi, M.; Nazari, B.; Dineva, A.A. Susceptibility mapping of groundwater salinity using machine learning models. Environ. Sci. Pollut. Res. 2021, 28, 10804–10817. [Google Scholar] [CrossRef] [PubMed]
- Mosavi, A.; Hosseini, F.S.; Choubin, B.; Goodarzi, M.; Dineva, A.A.; Sardooi, E.R. Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour. Manag. 2021, 35, 23–37. [Google Scholar] [CrossRef]
- Choubin, B.; Borji, M.; Hosseini, F.S.; Mosavi, A.; Dineva, A.A. Mass wasting susceptibility assessment of snow avalanches using machine learning models. Sci. Rep. 2020, 10, 18363. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Žuvela, P.; Spataru, A.; Lučić, B.; Kern, R.; Wong, M.W. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J. Chemom. 2021, e3349. [Google Scholar] [CrossRef]
- Lovrić, M.; Meister, R.; Steck, T.; Fadljević, L.; Gerdenitsch, J.; Schuster, S.; Schiefermüller, L.; Lindstaedt, S.; Kern, R. Parasitic resistance as a predictor of faulty anodes in electro galvanizing: A comparison of machine learning, physical and hybrid models. Adv. Model. Simul. Eng. Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Gupta, A.K. Constitative Modelling of Rockfill Materials. Ph.D. Thesis, Indian Institute of Technology, Delhi, India, 2000. [Google Scholar]
- Abbas, S.; Varadarajan, A.; Sharma, K. Prediction of shear strength parameter of prototype rockfill material. IGC-2003 Roorkee 2003, 1, 5–8. [Google Scholar]
- Honkanadavar, N.; Sharma, K. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials. Int. J. Geomech. 2014, 14, 04014028. [Google Scholar] [CrossRef]
- Frossard, E.; Hu, W.; Dano, C.; Hicher, P.-Y. Rockfill shear strength evaluation: A rational method based on size effects. Géotechnique 2012, 62, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Kaunda, R. Predicting shear strengths of mine waste rock dumps and rock fill dams using artificial neural networks. Int. J. Min. Mineral. Eng. 2015, 6, 139–171. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef] [Green Version]
- Alkhatib, K.; Najadat, H.; Hmeidi, I.; Shatnawi, M.K.A. Stock price prediction using k-nearest neighbor (kNN) algorithm. Int. J. Bus. Humanit. Technol. 2013, 3, 32–44. [Google Scholar]
- Vijayan, V.; Ravikumar, A. Study of data mining algorithms for prediction and diagnosis of diabetes mellitus. Int. J. Comput. Appl. 2014, 95, 12–16. [Google Scholar]
- Thongkam, J.; Xu, G.; Zhang, Y. AdaBoost algorithm with random forests for predicting breast cancer survivability. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 3062–3069. [Google Scholar]
- Samui, P.; Sitharam, T.; Contadakis, M. Machine learning modelling for predicting soil liquefaction susceptibility. Nat. Hazards Earth Syst. Sci. 2011, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Support vector machines-based modelling of seismic liquefaction potential. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 983–996. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Wang, S.; Wei, W. Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine. Int. J. Min. Sci. Technol. 2013, 23, 701–707. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.K.; Kim, Y.H.; Eo, Y.D.; Park, W.Y.; Park, H.C. Generation of radiometric, phenological normalized image based on random forest regression for change detection. Remote. Sens. 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Maillo, J.; Ramírez, S.; Triguero, I.; Herrera, F. kNN-IS: An iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl. Based Syst. 2017, 117, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Chomboon, K.; Chujai, P.; Teerarassamee, P.; Kerdprasop, K.; Kerdprasop, N. An empirical study of distance metrics for k-nearest neighbor algorithm. In Proceedings of the 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 28–30 March 2015; pp. 280–285. [Google Scholar]
- Prasath, V.; Alfeilat, H.A.A.; Hassanat, A.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Salman, H.S.E. Distance and similarity measures effect on the performance of K-nearest neighbor classifier—A review. arXiv 2017, arXiv:1708.04321. [Google Scholar]
- Farooq, F.; Nasir Amin, M.; Khan, K.; Rehan Sadiq, M.; Faisal Javed, M.; Aslam, F.; Alyousef, R. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of High Strength Concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Nhu, V.-H.; Shahabi, H.; Nohani, E.; Shirzadi, A.; Al-Ansari, N.; Bahrami, S.; Miraki, S.; Geertsema, M.; Nguyen, H. Daily water level prediction of Zrebar Lake (Iran): A comparison between M5P, random forest, random tree and reduced error pruning trees algorithms. ISPRS Int. J. Geo. Inf. 2020, 9, 479. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Babanajad, S.K.; Alavi, A.H.; Farnam, Y. Novel approach to strength modeling of concrete under triaxial compression. J. Mater. Civ. Eng. 2012, 24, 1132–1143. [Google Scholar] [CrossRef]
- Nush, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Khosravi, K.; Mao, L.; Kisi, O.; Yaseen, Z.M.; Shahid, S. Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile. J. Hydrol. 2018, 567, 165–179. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Fallah, A.; Armaghani, D.J.; Azizi, A.; Mohamad, E.T. Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng. Comput. 2019, 35, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Koopialipoor, M.; Armaghani, D.J.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Andjelkovic, V.; Pavlovic, N.; Lazarevic, Z.; Radovanovic, S. Modelling of shear strength of rockfills used for the construction of rockfill dams. Soils Found. 2018, 58, 881–893. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q. A hierarchical analysis for rock engineering using artificial neural networks. Rock Mech. Rock Eng. 1997, 30, 207–222. [Google Scholar] [CrossRef]
- Faradonbeh, R.S.; Armaghani, D.J.; Abd Majid, M.; Tahir, M.M.; Murlidhar, B.R.; Monjezi, M.; Wong, H. Prediction of ground vibration due to quarry blasting based on gene expression programming: A new model for peak particle velocity prediction. Int. J. Environ. Sci. Technol. 2016, 13, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hasanipanah, M.; Rad, H.N.; Armaghani, D.J.; Tahir, M. A new design of evolutionary hybrid optimization of SVR model in predicting the blast-induced ground vibration. Eng. Comput. 2021, 37, 1455–1471. [Google Scholar] [CrossRef]
- Rad, H.N.; Bakhshayeshi, I.; Jusoh, W.A.W.; Tahir, M.; Foong, L.K. Prediction of flyrock in mine blasting: A new computational intelligence approach. Nat. Resour. Res. 2020, 29, 609–623. [Google Scholar]
- Ahmad, M.; Hu, J.-L.; Ahmad, F.; Tang, X.-W.; Amjad, M.; Iqbal, M.J.; Asim, M.; Farooq, A. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials 2021, 14, 1983. [Google Scholar] [CrossRef] [PubMed]
Case No. | Location | D10/mm | D30/mm | D60/mm | D90/mm | Cc | Cu | GM | FM | R | UCSmin/MPa | UCSmax/MPa | γ/KNm−3 | σn/MPa | τ/MPa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.022 | 0.013 |
2 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.044 | 0.025 |
3 | Canada | 0.02 | 0.94 | 4 | 18 | 11.05 | 200 | 4.78 | 4.19 | 1 | 1 | 5 | 15.4 | 0.088 | 0.049 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
163 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.028 | 0.048 |
164 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.055 | 0.082 |
165 | Netherlands | 11 | 15 | 23 | 32 | 0.89 | 2.09 | 1.48 | 7.48 | 5 | 100 | 250 | 16.8 | 0.108 | 0.143 |
Parameter | Data Set | Min Value | Max Value | Mean | Standard Deviation |
---|---|---|---|---|---|
D10 (mm) | Training | 0.010 | 33.900 | 4.857 | 9.179 |
Testing | 0.010 | 33.900 | 2.887 | 7.453 | |
D30 (mm) | Training | 0.560 | 42.400 | 8.465 | 10.577 |
Testing | 0.560 | 42.400 | 5.442 | 9.050 | |
D60 (mm) | Training | 1.200 | 80.100 | 19.287 | 15.135 |
Testing | 1.200 | 50.000 | 14.252 | 10.349 | |
D90 (mm) | Training | 2.600 | 100.000 | 40.386 | 22.018 |
Testing | 2.600 | 99.000 | 38.091 | 24.289 | |
CC | Training | 0.100 | 22.270 | 2.199 | 3.075 |
Testing | 0.100 | 22.270 | 3.226 | 4.492 | |
CU | Training | 1.360 | 1040.000 | 53.324 | 156.064 |
Testing | 1.470 | 1040.000 | 134.510 | 294.958 | |
GM | Training | 0.200 | 6.000 | 2.788 | 1.243 |
Testing | 0.200 | 6.000 | 3.365 | 1.331 | |
FM | Training | 3.000 | 8.800 | 6.250 | 1.261 |
Testing | 3.000 | 8.800 | 5.709 | 1.374 | |
R | Training | 1.000 | 6.000 | 4.364 | 0.910 |
Testing | 1.000 | 5.000 | 4.182 | 1.131 | |
UCSmin (MPa) | Training | 1.000 | 250.000 | 75.045 | 39.230 |
Testing | 1.000 | 100.000 | 68.273 | 32.444 | |
UCSmax (MPa) | Training | 5.000 | 400.000 | 170.682 | 88.010 |
Testing | 5.000 | 250.000 | 159.545 | 87.957 | |
γ (KN/m3) | Training | 9.320 | 38.900 | 20.766 | 4.605 |
Testing | 9.320 | 38.900 | 20.932 | 5.854 | |
σn (MPa) | Training | 0.002 | 4.205 | 0.729 | 0.780 |
Testing | 0.021 | 3.223 | 0.756 | 0.816 | |
τ (MPa) | Training | 0.005 | 3.921 | 0.660 | 0.662 |
Testing | 0.024 | 2.492 | 0.668 | 0.619 |
Algorithm | Hyperparameter | Explanation | Optimal Value |
---|---|---|---|
AdaBoost | Number of estimators | Number of trees | 2 |
Learning rate | It establishes the degree to which newly acquired information can override previously acquired information | 0.1 | |
Boosting algorithm | Updates the weight of the base estimator with probability estimates or classification results (SAMME.R/SAMME) | SAMME | |
Regression loss function | Linear/square/exponential | Linear | |
RF | Number of trees | Number of trees in the forest | 15 |
Limit depth of individual trees | The depth to which the trees will be grown | 03 | |
SVM | Cost (C) | Penalty term for loss and applies for classification and regression tasks | 8 |
Regression loss epsilon (ε) | The distance between true and predicted values within which no penalty is applied | 0.1 | |
Kernal type | Kernel is a function that transforms attribute space to a new feature space to fit the maximum-margin hyperplane, thus allowing the algorithm to construct the model with linear, polynomial, RBF, and Sigmoid kernels | RBF | |
KNN | Number of neighbors | Number of nearest neighbors | 5 |
Metric | Distance parameter—Euclidean/Manhattan/Chebyshev/Mahalanobis | Euclidean | |
Weight | Uniform—all points in each neighborhood are weighted equally/distance—closer neighbors of a query point have a greater influence than the neighbors further away | Uniform |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Kamiński, P.; Olczak, P.; Alam, M.; Iqbal, M.J.; Ahmad, F.; Sasui, S.; Khan, B.J. Development of Prediction Models for Shear Strength of Rockfill Material Using Machine Learning Techniques. Appl. Sci. 2021, 11, 6167. https://doi.org/10.3390/app11136167
Ahmad M, Kamiński P, Olczak P, Alam M, Iqbal MJ, Ahmad F, Sasui S, Khan BJ. Development of Prediction Models for Shear Strength of Rockfill Material Using Machine Learning Techniques. Applied Sciences. 2021; 11(13):6167. https://doi.org/10.3390/app11136167
Chicago/Turabian StyleAhmad, Mahmood, Paweł Kamiński, Piotr Olczak, Muhammad Alam, Muhammad Junaid Iqbal, Feezan Ahmad, Sasui Sasui, and Beenish Jehan Khan. 2021. "Development of Prediction Models for Shear Strength of Rockfill Material Using Machine Learning Techniques" Applied Sciences 11, no. 13: 6167. https://doi.org/10.3390/app11136167
APA StyleAhmad, M., Kamiński, P., Olczak, P., Alam, M., Iqbal, M. J., Ahmad, F., Sasui, S., & Khan, B. J. (2021). Development of Prediction Models for Shear Strength of Rockfill Material Using Machine Learning Techniques. Applied Sciences, 11(13), 6167. https://doi.org/10.3390/app11136167