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Abstract: Both the calculation of ground slopes at points on the map and the elevation estimation for
these points bear significant importance and also have applications in various domains, such as civil
engineering, road and railway design. The paper presents two methods that use level curves: one
that is fast and approximate and another which is slower, but more precise. The running speed of
the two proposed methods and their results are compared by performing 100 million experiments.
The paper also presents how these methods can be applied to optimize embankments. An accurate
method to calculate the horizontal plane of the excavation/filling when building a new house is
also presented.

Keywords: level curves; ground slopes; embankments; road and rail design; optimization

1. Introduction

The possibility of calculating the slope and elevation using level curves has practical
applicability in several fields of activity, such as civil engineering [1], architecture [2,3],
railway [4], road and bridge engineering [5–8], topography [9], etc. Although the results
found can be used in various areas, this article is limited to solving two problems related
to civil engineering and to railways, roads, and bridges, both ultimately related to the
embankments optimization. The problem is well known, but it was not closely examined
by design engineers, who preferred an intuitive, approximate solution. The current article
presents a rigorous and mathematically accurate solution to find the optimum between
excavations and fillings, resulting in a reduction of the embankments related costs. The
article presents in detail the solutions of two concrete problems in two different fields
of activity.

The first problem investigated is in the field of civil engineering and consists of
determining the optimal elevation corresponding to the finished floor of the ground level,
when the building has to be positioned on a slope [1–3]. The second problem investigated
is in the design of a new railway or road when there are several fixed points on the
topographic map through which the new road [10–13] or the new railway [4,11] will pass.

The designer has to know the slope and elevation in each of these points as accu-
rately as possible. Using the methods proposed in this paper, the two parameters (slope
and elevation) can be determined fast and with a high level of accuracy using the level
curves of the map, without the need for direct measurement on the spot. Furthermore,
when designing roads or railways, the risk of failure, the frictional resistance, the safety
factor against sliding or failure, the translational fill failure, or the cut volume and the road
fill per meter require knowing the slopes (side slope, cut slope, or fill slope).

The paper is organized as follows: an algorithm to calculate the ground slope at
a given point, using level curves, is deduced in Section 2. This problem is reduced to
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estimating the shortest segment that connects two lines through a point. Two methods are
proposed, a fast and approximate one and a more exact one, respectively. The two methods
are compared, and it is shown that the errors of the first method are low. In Section 3,
the optimum excavation/filling plane is calculated when a new house is built. Two methods
are proposed and discussed in Section 4, where they are compared. To finalize the paper,
conclusions will be drawn based on the arguments presented.

2. Materials and Methods

A method of calculating the soil slope through a given point is being introduced.
The input data are: the level curves, in Figure 1, the two level curves located at elevation
610 and, respectively, 620, and the 2D coordinates of a point Q on the topographic map.
The direction of the Ox axis is considered from west to east, the direction of the Oy axis is
south-north. The output is the slope calculated at point Q. The slope can be determined
using two other points collinear with Q for which the elevation is known. The points
on the map for which the elevation is known are located on level curves. Therefore, it is
enough to find two points collinear with Q located on two different level curves. Of course,
for accuracy reasons, it is preferable that Q is located between these 2 points and the
distance between the chosen 2 points is minimum. Consequently, the problem can be
accurately solved if we determine the closest two level curves to Q (Q is located in between
these curves) and two points P1 and P2, each located on one of the level curves, and the
distance between P1 and P2 is minimum (see Figure 1).
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Figure 1. Finding the slope at a point using level curves.

Since a level curve is approximated with consecutive coplanar segments of straight
lines, our problem can be reduced to finding the shortest length segment |P1P2| that
connects two coplanar line segments located on two consecutive level curves. When the
two 2D points P1(x1,y1) and P2(x2,y2) are determined, they are transformed into 3D points
by adding the elevations z1 and, respectively, z2 of the level curves on which each of the
points are located. Using the 3D coordinates of these 2 points, the slope m = tan(α) at point
Q (see Figure 2) can be calculated as follows:

m = |z2−z1|√
(x2−x1)

2+(y2−y1)
2

α = atan2
(
|z2 − z1|,

√
(x2 − x1)

2 + (y2 − y1)
2
) (1)
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Figure 2. Determining the slope at Q using P1 and P2.

The first problem (denoted IPS) intended to be solved is to identify the pair of segments
(located on two level curves) to which the finding of the shortest length segment should
be applied. Of course, for each of the two level curves, the candidates are the closest
segments to point Q. Let us denote by Si the set of candidates (segments) for curve i
(i = 1, 2). For each pair of segments s1 ∈ S1 and s2 ∈ S2, respectively, the corresponding
shortest length segment [P1P2] between s1 and s2 is calculated. If s1 contains P1 and s2
contains P2, then the pair (s1, s2) is added to the set (denoted C) of solution candidates for
IPS (Figure 3).
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Figure 3. Finding the closest line segments to Q.

The set Si (i = 1, 2) can be built as follows: first, we find the point T belonging to the
level curve i that is closest to Q. We consider then k ≥ 1 points (L1, L2, . . . , Lk) to the left of
T on the level curve and k points (R1, R2, . . . , Rk) located to right (see Figure 4). Finally,
the set Si consists of 2k segments of straight lines given by the consecutive points on the
level curve i: Lk, Lk-1, . . . , L1, T, R1, R2, . . . , Rk, i.e.,:

Si = {[Lh+1Lh] |h = 1, 2, . . . , k− 1} ∪ {[L1T], [TR1]} ∪ {[RhRh+1] |h = 1, 2, . . . , k− 1} (2)

Now, let us see how k (giving the number of points in the vicinity of T) is considered.
Usually (in real tests), k is enough to be 1. In few cases k is found to be greater. So,
the calculations are started with k = 1 and, if necessary, it is increased.

The Algorithm 1 for solving IPS (denoted AIPS) is:



Appl. Sci. 2021, 11, 6176 4 of 21

Algorithm 1 Solving IPS (denoted AIPS)

AIPS:
Input: the points of the closest two level curves to Q
Output: the shortest line segment [P1P2] that connects the given two level curves
finished = false;
While not finished do

C = φ (empty set);
Build the sets of line segments S1 and S2 (see Equation (2));
For each segment s1 from S1 do

For each segment s2 from S2 do
Calculate the shortest length segment P1P2 that connects s1 and s2 and passes through Q;
If P1 ∈ s1 and P2 ∈ s2 then

Add [P1P2] to C;
End if;

End for;
End for;
If C not is empty then

finished = true;
else

k = k+1;
End if;

End while;

The shortest line segment that connects both level curves is the shortest segment
[P1P2] from C.

After applying AIPS, the problem is reduced to calculating the shortest segment that
passes through a given point Q and connects two coplanar lines d1 and d2 (Figure 4).
We shall denote this problem as SSTPC2L (shortest segment through a point that connects
2 lines). In Figure 4 the points A11 and A12 determine the line d1, and the points A21 and
A22 determine the line d2.
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We present two methods of solving SSTPC2L: an approximate method and an exact
mathematical method. These two methods (presented in Sections 2.1 and 2.2) were partially
described in [7].

2.1. Heuristic (Approximate) Method for SSTPC2L

From the topographic map, the point Q is known and two segments A11A12 and
A21A22 are determined belonging to the level curves from Figure 1 (A11A12 on curve 610
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and A21A22 on curve 620). These two segments are found according to Figure 3. The method
consists of drawing the perpendiculars from the given point Q on the two given lines d1
and, respectively, d2 (Figure 5). We construct a line passing through Q which is parallel to
the line determined by the feet of the two perpendiculars. The obtained line is denoted by
d3, and its intersection with the lines d1 and d2 is the searched segment [P1P2] (approximate
solution of SSTPC2L).
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Now, let’s present how the points P1 and P2 are calculated.
The equation of the line di (i = 1, 2) starting from the points Ai1 and Ai2 is:

y = mix + ni, where mi =
yi2 − yi1
xi2 − xi1

and ni = yi1 −mixi1 (3)

The perpendicular from Q on di (i = 1, 2) is:

y = − 1
mi

x + n′i, where n′i = yQ +
1

mi
xQ (4)

The foot Qi

(
xQ

i , yQ
i

)
(i = 1, 2) of the perpendicular on di is obtained by solving the

system of Equations (3) and (4).
The slope of the line Q1Q2 is:

m12 =
yQ

2 − yQ
1

xQ
2 − xQ

1

(5)

Since m12 is the slope of Q1Q2, then the parallel through the point Q
(

xQ, yQ

)
is:

y = yQ + m12(x− xQ) (6)

Finally, the points Pi (i = 1, 2) are obtained by solving the system of Equations (3) and (6).
The following Algorithm 2 (denoted A1SSTPC2L) is obtained to solve the prob-

lem SSTPC2L:
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Algorithm 2 Solving the problem SSTPC2L

A1SSTPC2L:
Input: Q and the points of the closest two level curves to Q
Output: The slope at point Q
Apply AIPS to find A11, A12, A21, A22;
Calculate the point Pi by solving system of Equations (3) and (6) (i = 1, 2).
Calculate the slope at point Q using Equation (1).

2.2. The Exact (Mathematical) Method for SSTPC2L

For this method, in order to simplify calculus, we apply some initial transformations
(rotations and translations) to the points A11, A12, A21, A22, and Q so that the bisector of
the angle between the lines d1 and d2 becomes parallel to Oy axis and the point Q is in the
origin O, i.e., Q = O (0,0). To do so, we first calculate the intersection I of d1 and d2:

d1 ∩ d2 = {I} (7)

by solving the system of linear equations:{
d1 : x−x11

x12−x11
=

y−y11
y12−y11

d2 : x−x21
x22−x21

=
y−y21

y22−y21

The following transformations to A11, A12, A21, A22 and Q are applied:

1. Translation with (−xI, −yI) (I is moved into origin O)
2. Rotation with sin(−u) = −sin(u) and cos(−u) = cos(u), where:

r =
√
(x12 − x11)

2 + (y12 − y11)
2

cos(u) = (x12 − x11)/r
sin(u) = (y12 − y11)/r

(8)

After this rotation, the line d1 is over Ox axis of the map’s system of coordinates.

3. Rotation with sin(v) and cos(v), where:
w = atan2(y22 − y21, x22 − x21)

cos(v) = cos(π/2−w/2)
sin(v) = sin(π/2−w/2)

(9)

After this rotation, the bisector of the angle given by lines d1 and d2 is over Oy.

4. Translation with (−xQ, −yQ) (Q is moved into origin O)

The following 2 systems of equations have to be solved in order to find the points
Pi(xi,yi) (i = 1,2) where the lines di (i = 1,2) intersect the line d:{

y = aix + bi
y = ax

(10)

Since Ai1, Ai2 define the line di (i = 1,2) in (10) we have:

ai =
(yi2 − yi1)

(xi2 − xi1)
(11)

bi = yi1 − ai1xi1 (12)

Solving the 2 systems of equations, the points Pi(xi,yi) (i = 1,2) are found, where:

xi =
bi

a− ai
(13)
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yi =
abi

a− ai
(14)

The distance between P1 and P2 must be minimized, i.e.,:

min
a

f(a) (15)

where:
f(a) = (y2 − y1)

2 + (x2 − x1)
2 (16)

By replacing (13) and (14) in (16) the following formula for f(a) is obtained:

f(a) =

(
a2b2

a− a2
− a1b1

a− a1
+ b2 − b1

)2
+

(
b2

a− a2
− b1

a− a1

)2
(17)

We make the following notations:

aL = min
{
−1
a1

,
−1
a2

}
(18)

aR = max
{
−1
a1

,
−1
a2

}
(19)

It is easy to see that the function f is decreasing for a ≤ aL, and is increasing for a ≥ aR,
since f is continuous, aL and aR are the slopes of the perpendiculars QQ1 and QQ2 from
Q on the lines d1 and, respectively, d2, and “a” is the slope of the line d3. Consequently,
there is a minimum of the function f denoted amin in the interval [aL, aR]. So, the value amin
is one of the solutions of the equation:

f′(a) = 0 (20)

on the interval [aL, aR], where:

f′(a) = 2
(

a2b2

a− a2
− a1b1

a− a1
+ b2 − b1

)[
−a2b2

(a− a2)
2 +

a1b1

(a− a1)
2

]
+ 2
(

b2

a− a2
− b1

a− a1

)[
−b2

(a− a2)
2 +

b1

(a− a1)
2

]
(21)

Remark 1. Since the bisector of the angle between d1 and d2 is parallel to Oy axis, it is not difficult
to see that:

aL = −aR (22)

In order to obtain the solution amin of the Equation (20), a numerical method [14]
can be used such as bisection method [15], or tangent method. Since f′(aL) < 0 and
f′(aR) > 0 => f′(aL)·f′(aR) < 0, the bisection method is suitable to be applied on
the interval:

a ∈ [aL, aR] (23)

After amin is calculated, the points Pi (i = 1, 2) are obtained using (13) and (14) and the
distance between these two points is: √

f(amin) (24)

In order to go back to the initial system of coordinates, the inverse initial transforma-
tions must be applied in reverse order to the points P1 and P2, i.e.,:

1. Translation with (−xQ, −yQ)
2. Rotation with sin(u) and cos(u) (were calculated in (8))
3. Rotation with sin(-v) = sin(v) and cos(-v) = cos(v) (calculated in (9))
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4. Translation with (xI, yI).

The following Algorithm 3 (denoted A2SSTPC2L) is obtained to solve SSTPC2L:

Algorithm 3 Solving SSTPC2L

A2SSTPC2L:
Input: Q and the points of the closest two level curves to Q
Output: The slope at point Q
Apply AIPS to find A11, A12, A21, A22;
Transform the points A11, A12, A21, A22 and Q so that the bisector of the angle between the lines
d1 and d2 is parallel to Oy axis and the point Q is in the origin O;
Find the solution amin of the equation f′(a) = 0 using bisection method on the interval (aL, aR)
(see Equations (19) and (20));
Calculate the coordinates of the points Pi (i = 1,2) using (13) and (14), where a = amin;
Apply the inverse initial transformations in reverse order to the points P1 and P2;
Calculate the slope at point Q using (1).

We implemented the above algorithm in Visual C++ and in the bisection method we
set the error err = 0.0001 for finding the value amin. In Figure 6, a graphical output of our
program is presented.
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3. Results

Besides estimation of the ground slope for a given point, other two possible problems
can be solved since we have now obtained a method to calculate the points P1, and P2 on
the closest two level curves to a given point Q so that P1, Q, and P2 are collinear and the
distance between P1 and P2 is minimum.

3.1. Elevation Estimation at a Point

The challenge is to estimate as well as possible the elevation z of a point Q. Assuming
that z1 < z2 (see Figure 3) and since QQ’ is parallel to P2P′2, in the triangle P1P2P′2 we have:

zQ − z1

z2 − z1
=

dist
(
P1, Q′

)
dist

(
P1, P′2

) (25)

From (25) we obtain the elevation of Q:
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zQ = z1 +

√√√√√ (xQ − x1)
2 +

(
yQ − y1

)2

(x2 − x1)
2 + (y2 − y1)

2 (z2 − z1)

It is immediate that, without the assumption of z1 < z2, the following formula can be
used to estimate the elevation of Q:

zQ = min{z1, z2}+

√√√√√ (xQ − x1)
2 +

(
yQ − y1

)2

(x2 − x1)
2 + (y2 − y1)

2 |z2 − z1| (26)

3.2. The Slope between Two Points

The problem of estimating the slope between two points is significant, seeing that
when designing roads, the slope between any two points on a road cannot exceed a given
maximum slope, e.g., for highways this value has to be less than 6% or 7%. Therefore,
the chosen points from the future road can be tested for this eligibility. To do that, we con-
sider the elevations of the points Q1 and Q2 calculated using formula (26) and we can
estimate the slope m(Q1,Q2) of the road passing through Q1(x1,y1,z1) and Q2(x2,y2,z2)
using the following formula (see Figure 7):

m(Q1, Q2) = tan(β) =
|z2 − z1|

dist
(
Q1, Q′2

) =
|z2 − z1|√

(x2 − x1)
2 + (y2 − y1)

2
(27)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22 
 

The problem of estimating the slope between two points is significant, seeing that 
when designing roads, the slope between any two points on a road cannot exceed a given 
maximum slope, e.g., for highways this value has to be less than 6% or 7%. Therefore, the 
chosen points from the future road can be tested for this eligibility. To do that, we consider 
the elevations of the points Q1 and Q2 calculated using formula (26) and we can estimate 
the slope m(Q1,Q2) of the road passing through Q1(x1,y1,z1) and Q2(x2,y2,z2) using the 
following formula (see Figure 7): 

 
Figure 7. The slope of the road passing through Q1 and Q2. 

m(Qଵ, Qଶ) = tan൫β൯ = |zଶ − zଵ|dist(Qଵ, Qଶᇱ ) = |zଶ − zଵ|ඥ(xଶ − xଵ)ଶ + (yଶ − yଵ)ଶ (27)

3.3. Optimum Excavation/Filling 
When a house is built on sloping land and/or with elevations and depressions, the 

elevation of a horizontal plane must be calculated so that the excavations over the plane 
would fill the space below the plane resulting in a horizontal platform on which a house 
can be built. In such a manner, the optimal solution between excavations and fillings is 
calculated, resulting in a reduction in the costs of embankments. We shall follow up with 
a presentation of a method to accurately calculate the elevation of this plane. The well-
known “flood fill” algorithm [16] from computer graphics is adapted to deal with this 
problem. Since the algorithm runs in a discrete space, the coordinates will be transformed 
into their discrete counterparts. 

We start with the level curves from the vicinity of the house (Figure 8). Then a 
discretization is applied (Figure 9), meaning that the plane is divided into equidistant 2D 
points, e.g., in Figure 9, the distance of 40 cm between points was considered. The points 
of the contour of the house are transformed into their discrete counterparts (for each such 
a point, the closest discrete point is determined). Using Bresenham’s algorithm [17], the 
discrete points of the contour are found (green points in Figure 9). Using a flood fill 
algorithm [16] in the discrete plane of the house, the discrete points inside the contour are 
determined (red points from Figure 9). The elevation of each red or green point is 
calculated using the level curves. Using these elevations, the optimal elevation of the 
excavation/filling plane is computed. So, the following algorithm denoted AOEF is 
obtained. 

  

Figure 7. The slope of the road passing through Q1 and Q2.

3.3. Optimum Excavation/Filling

When a house is built on sloping land and/or with elevations and depressions,
the elevation of a horizontal plane must be calculated so that the excavations over the plane
would fill the space below the plane resulting in a horizontal platform on which a house
can be built. In such a manner, the optimal solution between excavations and fillings is
calculated, resulting in a reduction in the costs of embankments. We shall follow up with a
presentation of a method to accurately calculate the elevation of this plane. The well-known
“flood fill” algorithm [16] from computer graphics is adapted to deal with this problem.
Since the algorithm runs in a discrete space, the coordinates will be transformed into their
discrete counterparts.

We start with the level curves from the vicinity of the house (Figure 8). Then a
discretization is applied (Figure 9), meaning that the plane is divided into equidistant 2D
points, e.g., in Figure 9, the distance of 40 cm between points was considered. The points
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of the contour of the house are transformed into their discrete counterparts (for each
such a point, the closest discrete point is determined). Using Bresenham’s algorithm [17],
the discrete points of the contour are found (green points in Figure 9). Using a flood fill
algorithm [16] in the discrete plane of the house, the discrete points inside the contour
are determined (red points from Figure 9). The elevation of each red or green point
is calculated using the level curves. Using these elevations, the optimal elevation of
the excavation/filling plane is computed. So, the following algorithm denoted AOEF
is obtained.
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Algorithm 4 Optimum Excavation/Filling (AOEF):

Algorithm 4 Optimum Excavation/Filling (AOEF)

Input: the points Pi (i = 1, 2, ..., n) of the contour;
for each point Pi do

Find the closed discrete point P’i;
end for;
for i = 1 to n − 1 do

Find the set of points Ci using Bresenham’s algorithm from point Pi to point Pi+1;
end for;
Using Bresenham’s algorithm from point Pn to point P1, find the set of points Cn;
Find the points Qi (i = 1, 2, . . . , m) inside the contour given by C1 ∪ C1 ∪ . . . ∪ Cn;
for each point Qi do

Apply A2SSTPC2L to find the elevation zi of Qi;
end for;

Using the elevations zi, calculate the elevation of the optimal excavation/filling plane
(see AHEFP).

Applying the elevations zi of the discrete points Qi inside the contour of the house,
the elevation of the optimal excavation/filling plane can be determined as follows. The ele-
vations are sorted ascendingly. A horizontal plane π(h) (h is the height/elevation of the
plane) is placed consecutively starting with the first (the lowest) elevation, continuing with
the second, and ending with the last one (the highest). The following algorithm is obtained:

Algorithm 5 Height of Excavation/Filling Plane (AHEFP):
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Algorithm 5 Height of Excavation/Filling Plane (AHEFP)

Input: vector of elevations z = (zi)i = 1, 2, . . . , m;
Sort ascending the vector z;
S = 0;
for i = 2 to n do

S = S + zi − z1;
end for;

S1 = 0;
S2 = S;
for i = 2 to n − 1 do

S1 = S1 + (i − 1) · (zi − zi-1);
S2 = S2 − (n − i + 1) · (zi − zi-1);
if S2 ≤ S1 then

opt = i;
break;

end if;
end for;

At each iteration of the last “for” loop from AFHEFP, the height of the plane is
considered equal to zi, S1 is the sum of the distances between the elevation of zi the
plane and the elevations below the plane, and S2 is the sum of the distances between the
elevations over the plane and the elevation zi of the plane, i.e.,:

S1 =
i−1

∑
k = 1

(zi − zk) (28)

S2 =
n

∑
k = i+1

(zk − zi) (29)

when starting a new iteration, S1 is the sum of i-1 components of z and was calculated
in the previous iteration. The new sum S1 can be obtained from the previous by adding
(i − 1) · (zi − zi-1).

At the beginning of each iteration, S2 is the sum of n-i+1 components of z and was
calculated in the previous iteration. Thus, using the value of the previous S2, the new sum
can be obtained from the previous by subtracting (n − i + 1) · (zi − zi-1).

Since S1 is increasing from 0 to S and S2 is decreasing from S to 0, the optimum is
reached when S2 becomes less or equal to S1. More exactly, the optimum height of the
plane is inside the interval [zopt-1, zopt]. If the values zopt-1 and zopt are close enough, i.e.,
zopt − zopt-1 < ε, where ε > 0 is the fixed maximum distance to the optimum, e.g., ε = 5 cm,
then any of the values zopt-1 and zopt are good approximations of the optimum. If zopt −
zopt-1 ≥ ε, then a divide and conquer strategy is applied to get closer to optimum. To do
that, two initial planes π(zopt-1) and π(zopt) are considered. A new plane is placed in the
middle. If the distance between S2 calculated for π((zopt-1+zopt)/2) and S1 for π(zopt-1) is
less than the distance between S2 for π(zopt) and S1 for π((zopt-1+zopt)/2), then the optimum
is further calculated in the interval [zopt-1, (zopt-1+zopt)/2]. Otherwise, the optimum is
calculated in the interval [(zopt-1+zopt)/2, zopt] and so on.

Algorithm 6 divide and conquer for optimum excavation/filling plane (ADCOEFP):
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Algorithm 6 Divide and conquer for optimum excavation/filling plane (ADCOEFP)

a = zopt-1;
b = zopt;
Sa,1 = S1 − (opt − 1) · (zopt − zopt-1);
Sa,2 = S2 + (n – opt + 1) · (zopt − zopt-1);
Sb,1 = S1;
Sb,2 = S2;
while b − a ≥ ε do

c = (a+b)/2;
Sc,1 = Sa,1 + (opt − 1) · (c − a);
Sc,2 = Sa,2 − (n − opt + 1) · (c − a);
if |Sc,2 − Sa,1| < |Sb,2 − Sc,1| then

a = c;
Sa,1 = Sc,1;

else
b = c;
Sb,2 = Sc,2;

end if;
end while;
S1 = Sa,1;
S2 = Sa,2;

At the end of the while loop, any of the values, a or b are good approximations of the
optimum. We considered a as the optimal solution. The approximate excavation volume is
Ve = S2 · d2, and the filling volume is Vf = S1 · d2. Consequently, the difference between
the two volumes is:

|Ve −Vf| = |S2 − S1|d2 ≤ εShouse ≈ εmd2 (30)

So, the two volumes are very similar.

3.4. Numerical Example

Figure 10 shows a real topographic map for a plot of land on which a house is to
be built. The topographic map of the land was drawn up by a topometric engineer,
with specific high-precision equipment, called in specialized terms “station.” For small
areas of land, the station is successively placed and GPS 3D coordinates are measured
relative to a fixed position (in our situation it is a terminal in the Black Sea area located at
a distance of approximately 717 km). The first chosen points of the topographic survey
are those that describe the contour of the plot of land. In our case, the terrain contour is
described by the 15 points (numbered in black). These points are inventoried and noted in
a table (coordinate inventory) located on the topographic map. The following points will
describe the contour of the level elevations, the positioning of the access road, the position
of the neighboring houses (they are marked on the map in red together with the elevation),
etc. In the case of lands with a high slope, such as the one exemplified, the measured points
must be thickened for a greater accuracy of tracing the level curves (in total we have over
100 such points).

The designer receives in electronic format a topographic map similar to the one in
Figure 10. On this topographic support, the designer will place the designed building on
the scale, having to respect a series of rigors imposed by law, among which: the minimum
distance from the property limit and/or from the road axis as in Figure 11. Once the
construction is located, the new contour will appear on the topographic map described by
a few new points (minimum 4, in the example, for the description of the contour, 6 points
are used). A situation plan is drawn up in which, according to the legislation, the 2D
coordinates of the corners of the construction must be specified (see Table 1) together with
the elevation of the horizontal excavation/filling plane. In Figure 11, this elevation is
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denoted by CTA and is estimated at 707 m by the designer. A good determination of this
elevation is not easy, especially if the terrain has a high slope.
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Table 1. The x and y coordinates of the Q points.

Points E (m) N (m)

Q1 552,749.248 456,578.380
Q2 552,754.270 456,571.835
Q3 552,766.210 456,580.997
Q4 552,760.244 456,588.772
Q5 552,754.733 456,584.542
Q6 552,753.385 456,581.554

A detail of Figure 11 is presented in Figure 12 illustrating the points A2
11, A2

12, A2
21, and

A2
22 found using the algorithm AIPS.

Table 2 presents the coordinates of the points Ak
11, Ak

12, Ak
21, and Ak

22 calculated for
each point Qk (k = 1, 2, . . . , 6) by applying AIPS. Using A2SSTPC2L and (26), the elevation
for each point Qk (k = 1, 2, . . . , 6) is calculated.

Usually, for the dimensions of the project to be in accordance with the real construction,
before commencing all the construction works, a plot is made on the field of the future
building. For this purpose, the ground tracing is performed. The corners of the house are
very precisely marked (the Q points). In our example, the provided measured elevations of
the 6 points are presented in Table 3.
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Table 2. 3D coordinates of the Q points.

Points E (m) N (m) Z(m) Calculated Z(m)

Q1 552,749.2478 456,578.3797 707.8851
A1

11 552,749.7024 456,578.7371 707.6000
A1

12 552,749.4725 456,578.9520 707.6000
A1

21 552,748.8265 456,578.0230 708.0000
A1

22 552,749.2769 456,577.9832 708.0000
Q2 552,754.2700 456.,571.8350 709.3279

A2
11 552,754.0980 456,572.9276 709.2000

A2
12 552,754.4526 456,572.8445 709.2000

A2
21 552,754.0176 456,571.5626 709.6000

A2
22 552,754.3366 456,571.5767 709.6000

Q3 552,766.2100 456,580.9970 704.2017
A3

11 552,768.2179 456,583.3340 704.0000
A3

12 552,768.7357 456,582.6679 704.0000
A3

21 552,760.8755 456,578.3463 704.4000
A3

22 552,760.9848 456,577.8984 704.4000
Q4 552,760.2440 456,588.7720 704.2330

A4
11 552,762.5489 456,590.7208 704.0000

A4
12 552,762.9178 456,590.3418 704.0000

A4
21 552,755.2345 456,585.1132 704.4000

A4
22 552,754.9360 456,585.3872 704.4000

Q5 552,754.7330 456,584.5420 704.7360
A5

11 552,755.2345 456,585.1132 704.4000
A5

12 552,755.1438 456,584.4878 704.4000
A5

21 552,752.7819 456,582.6377 704.8000
A5

22 552,752.3362 456,582.9349 704.8000
Q6 552,753.3850 456,581.5540 705.0855

A6
11 552,753.3671 456,581.7908 704.8000

A6
12 552,753.7000 456,581.5900 704.8000

A6
21 552,753.2125 456,581.6078 705.2000

A6
22 552,753.5536 456,581.3981 705.2000

Table 3. The estimated and the measured z-coordinates of the Q points.

Points Estimated Z (m) Measured Z (m)

Q1 707.8921 707.8990
Q2 709.3279 709.3260
Q3 704.2017 704.2140
Q4 704.2330 704.2210
Q5 704.7360 704.7500
Q6 705.0855 705.0970

As seen in Table 3, the estimated elevation and the measured one for each Q point are
very close. The difference between them is less than 2 cm.

Using the coordinates of the points Qk (k = 1, 2, . . . , 6) from Table 1, Bresenham, and,
then flood fill algorithms were applied resulting in 803 points located inside the perimeter
of the house. The elevations of these points were calculated using A2SSTPC2L and (26).
The algorithm AHEFP was applied for these 803 elevations and the height of the horizontal
excavation/filling plane was accurately estimated as 706.2571 m, instead of the value 707 m
proposed by the designer. Out of the 803 points, 412 were located below the horizontal
plane, and 391 had the elevation over this plane.

4. Discussion

In order to compare the two proposed methods (from Sections 2.1 and 2.2) for deter-
mining the points P1 and P2 100 million experiments were performed. For each experiment,
two random lines d1 and d2 were selected and the point Q was also randomly chosen.
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The tests were performed using an ASUS ROG GL752VW-T4015D laptop with Intel® Core™
i7-6700HQ 2.60 GHz processor, and 8 GB of RAM.

First, we analyzed the speed of the proposed methods. The total running time of the
first method was 5.82 s. The total running time of the second method was 40.14 s. So,
the first method is almost 7 times faster than the second one (see Figure 13). The first
method is considerably faster because it requires elementary calculations, while the second
one runs an iterative algorithm to solve the Equation (18).
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We also calculated the accuracy of the first method against the second method since
the error for the second method can be set as low as desired. An average error of 0.61%
was obtained, the lowest error being 0 and the highest 1.17% (Table 4). So, we concluded
that the accuracy of the approximate first method is good enough.

Table 4. Errors of the first method obtained from 100 million experiments.

Errors (First Method against Second Method)

Lowest error 0%
Average error 0.61%
Highest error 1.17%

The steps of positioning the house will be next discussed, and the utility of the methods
proposed in this paper will be shown. The designer receives a topographic map in electronic
format. On this topographic support, the designer will place the designed building on
the scale, having to comply with a series of rigors imposed by law, among which: the
minimum distance from the property limit and/or from the road axis, etc. Once the
construction is located, the outline of the house described by several new points will appear
on the topographic map (minimum 4). At these new points, it is necessary to specify: the
coordinates on the three dimensions according to which the elevation is specified, and the
distances of the construction location from the property limits. The determination of the
coordinates in the plan does not raise any concerns, but there are difficulties in obtaining
the real vertical elevation especially if the terrain has a high slope. The article proposes a
method for determining the exact elevation of the land at the corners of the building, and in
fact for the entire contour. Depending on the contour dimensions, the designer establishes
a position of the horizontal plane, a plane that corresponds to the finished floor of the
ground level. The decision to establish this quota should be contingent on the volumes of
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embankments that will be made. The optimum is obtained when the excavation volume is
approximately equal to the filling volume. The article solves this problem in Section 3.3.

For the design of a road, a primary route of the road is made on a topographic map
and road recognition is performed. A final design of the road follows both along its entire
length and on its cross-sections. Figure 14 shows with a red line the optimal trajectory of
a road depending on the elevation of the natural land. Because the considered road is a
highway, the rules impose stricter restrictions on the slopes. If the allure of the natural
terrain in certain areas is followed, the maximum allowed inclination of the road will
inevitably be exceeded. As it can be seen in Figure 14, in these areas, measures must
be taken to straighten the slope, such as fillings, excavations or the provision of bridges
and viaducts, tunnels respectively. Through detailed awareness of the elevations and the
inclination of the land in the points near the road, an optimal vertical tracing of the road
can be established so that we have minimum excavations and fillings for an imposed road
slope, or we can optimize the lengths of the bridges, respectively tunnels [12].
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When designing a new road or railway, a number of initial design factors must be
taken into account, such as: road category, design speed, width of a traffic lane, number of
lanes, traffic frequency, equipment size, etc. Depending on the route imposed on the road,
there are also other specific aspects that must be taken into account:

1. Avoid high erosion hazard sites, particularly where mass failure is a possibility.
2. Utilize natural terrain features such as stable benches, ridgetops, and low gradient

slopes to minimize the area of road disturbance.
3. If necessary, include short road segments with steeper gradients to avoid problem

areas or to utilize natural terrain features.
4. Avoid midslope locations on long, steep, or unstable slopes.
5. Locate roads on well-drained soils and rock formations which dip into slopes rather

than areas characterized by seeps, highly plastic clays, concave slopes hummocky
topography, cracked soil and rock strata dipping parallel to the slope.

6. For logging road, utilize natural log landing areas (flatter, benched, well-drained land)
to reduce soil disturbance associated with log landings and skid roads.

7. Avoid undercutting unstable, moist toe slopes when locating roads in or near a
valley bottom.

8. Roll or vary road grades where possible to dissipate flow in road drainage ditches
and culverts and to reduce surface erosion.

9. Select drainage crossings to minimize channel disturbance during construction and
to minimize approach cuts and fills.

10. Locate roads far enough above streams to provide an adequate buffer, or provide
structure or objects to intercept sediment moving down slope below the road.
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11. If an unstable area such as a headwall must be crossed, consider end hauling excavated
material rather than using sidecast methods. Avoid deep fills and compact all fills to
accepted engineering standards. Design for close culvert and cross drain spacing to
effectively remove water from ditches and provide for adequate energy dissipators
below culvert outlets. Horizontal drains or interceptor drains may be necessary to
drain excess groundwater [13].

As seen in Figure 15, the angle of inclination of the terrain is an important parameter
to know in order to avoid erosion and then landslides [18,19].
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From the point of view of the cross-sections, the position of the road in relation to the
terrain slope must take into account the above constraints. By the same token, knowing the
slope of the land is essential for establishing the position both horizontally and especially
vertically of the road, and for achieving a low cost related to the embankment works.
This position is established according to the Full Bench Road Prism, which contains the
elements in Figure 16.
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For very steep road areas such as the one in Figure 17, knowing the slope is imperative
because substantial savings in embankment volumes can be made, resulting in decreasing
the quantities of gabions or excavations [13].
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The problem related to determining the slope of natural land at a point on the topo-
graphic map is necessary both in the longitudinal section and in the cross-section of roads
or railways and have the same solution described in Sections 3.1 and 3.2.

The proposed methods can also be applied in environment protection, and hydrotech-
nical engineering [18,19]. The evaluation of the slope is also necessary for river levees.
Slope stability analyses are conducted with rising water levels until certain failure is
reached. Discharge occurs at a water height of around 7 cm above the crown, which means
the slope would actually fail before reaching the hydraulic heads used for slope stability
calculation during the overflow [20].

5. Conclusions

To conclude, the correct estimation of elevation at points has a practical application
to calculate the optimum excavation/filling plane when a new house is built. The article
presented a method to estimate accurately the elevation of this plane which reduces the
costs of embankments.

When designing a new road or railway, designers need to know the ground slope at
some points of the future road or rail as exactly as possible, as well as the elevation of each
considered point, and, also, the slope of each consecutive two points. Instead of sending
workers on the field to perform measurements, these values can be calculated with very
good accuracy using the methods described in Section 2.1, and Section 2.2. Two algorithms
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to solve SSTPC2L are presented, a fast and approximate one and an exact but slower one.
The error of the first method is low (see Table 1). It has the advantage of being very fast and
accurate enough. Thus, if there are many points for which SSTPC2L is applied, the first
method can be preferred. However, if we look for a more accurate solution, the second
method is more suitable.
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