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Abstract: Diabetic retinopathy (DR) and glaucoma can both be incurable if they are not detected
early enough. Therefore, ophthalmologists worldwide are striving to detect them by personally
screening retinal fundus images. However, this procedure is not only tedious, subjective, and labor-
intensive, but also error-prone. Worse yet, it may not even be attainable in some countries where
ophthalmologists are in short supply. A practical solution to this complicated problem is a computer-
aided diagnosis (CAD) system—the objective of this work. We propose an accurate system to detect
at once any of the two diseases from retinal fundus images. The accuracy stems from two factors.
First, we calculate a large set of hybrid features belonging to three groups: first-order statistics (FOS),
higher-order statistics (HOS), and histogram of oriented gradient (HOG). Then, these features are
skillfully reduced using a genetic algorithm scheme that selects only the most relevant and significant
of them. Finally, the selected features are fed to a classifier to detect one of three classes: DR, glaucoma,
or normal. Four classifiers are tested for this job: decision tree (DT), naive Bayes (NB), k-nearest
neighbor (kNN), and linear discriminant analysis (LDA). The experimental work, conducted on three
publicly available datasets, two of them merged into one, shows impressive performance in terms of
four standard classification metrics, each computed using k-fold crossvalidation for added credibility.
The highest accuracy has been provided by DT—96.67% for DR, 100% for glaucoma, and 96.67%
for normal.

Keywords: retinal fundus imaging; diabetic retinopathy; glaucoma; genetic algorithm; feature
extraction and selection; multi-classification

1. Introduction

The eyes can be considered a mirror of the human body, allowing for non-invasive
diagnosis of numerous illnesses [1]. In particular, the retina can be used as a useful indicator
of many diseases. As a person grows older, several diseases leave significant indicative
signs in the retina.

According to the fact sheet of the World Health Organization (WHO), blindness and
vision impairment affect about 2.22 billion people around the world. One billion of them
have a chance to prevent the decrease in vision if they are recognized and diagnosed at an
earlier stage [2].

Diabetic retinopathy (DR) and glaucoma, which are the focus of the present work,
are regarded as the most important causes of blindness, mainly due to the progress in life
prospects and permissive lifestyles [3]. DR is a complication of diabetes that inevitably
leads to the terminal state of vision loss. Glaucoma is a chronic ocular disease caused by
increased fluid pressure in the optic nerve and ends up also harming peripheral vision [4].
Globally, it is estimated that at least 6.9 million people have glaucoma and 4.5 million have
DR [5].
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The International Diabetic Federation estimates that, worldwide, one in every ten
people suffers from diabetes [6], and that those persons have a significant chance to suffer
from DR and glaucoma impairments. Moreover, it is estimated that the number of people
who suffer from glaucoma is expected to reach 111.8 million by 2040 [7].

DR and glaucoma are irreversible diseases, so detecting them at an early stage is
critical to avoid further deterioration in the retina. On the other hand, some countries,
especially in the developing world, have a severe shortage of oculist doctors [8], requiring
computer-aided diagnosis, such as the one proposed in the present work.

Luckily, images of the retina can help in diagnosing several retinal diseases, including
DR and glaucoma [9]. This process is usually carried out and interpreted manually, which
is laborious and prone to error due to minute image details, as shown in Figure 1. Conse-
quently, if this process is automated, it would help ophthalmologists with a supportive
tool that makes both diagnosis and decision making faster, easier, less expensive, and more
accurate. To this end, computer vision and imaging techniques, such as those in the present
work, can be leveraged.

Figure 1. The subtle and tiny intensity variations in the fundus image are too difficult to identify by
the naked eye, and this is where the proposed CAD system can help.

For ophthalmic fundus imaging analysis, well-known modalities, such as 2D fun-
dus images and 3D optical coherence tomography (OCT), can be employed [10]. In this
study, the 2D fundus image modality is adopted due to its low cost and the simplicity
in computation compared with 3D OCT modality images [11]. To this end, we use three
publicly available datasets of retinal fundus images. It should be noted, however, that
disease diagnosis via pathological structures of fundus images poses numerous challenges,
such as:

1. Finding relevant datasets for each disease is laborious;
2. Labeling (annotating) the dataset usually requires ophthalmology experts, and can

be problematic due to such considerations as privacy, safety, or ethics. The only
alternative is to use publicly available images, as is done in the present work;
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3. Subtle and tiny variations between intensity values of retinal objects, as shown in
Figure 1, can cause errors;

4. The curvature of the retina, in addition to photographic capturing conditions, can of-
ten cause illumination spots in retinal fundus images, negatively affecting their quality.

5. Retinal diseases share common characteristics in the fundus images, giving rise
to confusion.

This article tackles the above challenges, culminating in an accurate retinal diagnostic
and prognostic system that discriminates among DR, glaucoma, and normal (free of
diseases) cases using a retinal fundus image. To this end, the RGB image is first transformed
into its elementary components: red (R), green (G), and blue (B) channels. Then, three
groups of distinct features are composed for the image. The first-order statistics (FOS)
group contains 4 features per channel, giving rise to 12 features for the 3 channels. The
higher-order statistics (HOS) group contains 14 features per channel per displacement,
giving rise to 112 features for the 3 channels and 8 displacements. The histogram of oriented
gradient (HOG) group contains 81 features. The three groups thus collectively contain
429 features that can discern between the three classes we consider. However, to make the
processing more efficient, a genetic algorithm (GA)-based scheme is leveraged to select the
most relevant and informative of these features, successfully reducing them to 105.

To evaluate the feature selection process and the proposed system’s performance in
general, we use four machine learning (ML) classifiers: decision tree (DT), naive Bayes
(NB), k-nearest neighbor (kNN), and linear discriminant analysis (LDA). Based on our
experimentation with other classifiers, such as support vector machine (SVM), random
forest (RF), and Adaboost, and based on our previous work [12] with artificial neural
networks (ANNs) in the same image processing context, the four chosen classifiers provide
higher accuracy, easier setup, fewer training images, and less training and/or testing time.
It is possible, however, that a classifier that we did not experiment with performs better
using the proposed features than the chosen four.

The article is organized as follows. Section 2 surveys previous work on retinal CAD
systems, especially feature extraction and image classification. Section 3 describes the
retinal fundus datasets used in our experiments and the methodology adopted in feature
extraction and selection. Section 4 provides the results of the experimental work and
discusses their implications and the gained insights, with the discussions of those results
presented in Section 5. Finally, concluding remarks are given in Section 6.

2. Related Work

A sizable amount of research exists for disease diagnosis through retinal fundus im-
ages. The research can be categorized in six directions. The first direction is the binary
computer-aided diagnosis (CAD) system that is based on retinal blood vessel segmenta-
tion [13]. The second direction is binary CAD systems dedicated to identifying age-related
macular degeneration (AMD) disease [9]. The third direction is binary retinal CAD systems
mainly devoted to segmenting the optic disc (OD) region [3]. The fourth direction includes
multi-class CAD systems devoted to grading the progress levels of only DR [14], or only
glaucoma [15]. The fifth direction includes binary CAD systems used to classify more than
one retinal disease together, such as DR and/or glaucoma and/or AMD. These diseases are
identified, however, one at a time, as either existing or not using binary classification [16].
The sixth direction includes multi-class CAD systems applied to classify several retinal
diseases together and evaluates them as a multi-classification problem [17]. This direction
is the most relevant to the present work, and is therefore reviewed in detail next, with
Table 1 summarizing its highlights.
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Table 1. Selected methods for retinal CAD systems through retinal fundus images.

Author Images Number of Images in Use Methods Results

[18] KMC DR: 170 Feature Overall Acc = 0.9941
Normal: 170 Trac Overall Se = 0.9941

transform Overall Sp = 0.9941

MESSIDOR (DR: 170)
(Normal: 170) Overall Se = 1.0

Overall Sp = 1.0
Overall Acc = 1.0

[19] ARIA AMD: 60 Random transform, Overall Acc = 0.8509
Normal: 101 EMD, HOS

nonlinear, entropy,
LSDA, MRMR

KMC Normal: 270 Overall Acc = 0.9167
AMD: 270

STARE AMD: 47 Overall Acc = 1.0
Normal: 36

[20] KMC Normal: 400 Bi-dimensional Overall Acc = 0.8863
Abnormal: 400 decomposition Overall Se = 0.8625

(115 AMD, 170 DR, and empirical mode Overall Sp = 0.9100
and 115 Glaucoma) integrated index

[4] KMC Normal: 244 Features Overall Acc = 0.9480
Glaucoma: 244 Variation mode

decomposition entropies

[16] KMC Normal: 404 Continuous wavelet Overall Acc = 0.9248
Abnormal: 1082 of oriented transform Overall Se = 0.8937

(AMD: 381, DR: 195, and entropy’s features Overall Sp = 0.9558
and Glaucoma: 506 )

[21] KMC Normal: 404 Pyramid histogram Overall Acc = 96.21
Abnormal: 1400 of oriented Overall Se = 0.9050

(AMD: 529, DR: 365, and SURF features Overall Sp = 0.9742
and Glaucoma: 506 ) Canonical correlation analysis

Particle swarm optimization

[22] KMC Normal: 404 PHOW-GMM Overall Acc = 0.9679
AMD: 529 Overall Se = 0.9673

DR: 356 and Fisher vector Overall Sp = 0.9696
Glaucoma: 506 Canonical correlation analysis

Particle swarm optimization

An automatic lesion detection system is proposed by [23] for early detection of DR-
related lesions. A bag-of-visual-words (BoVW) algorithm is employed to discriminate
among different DR lesions using a maximum margin classifier. Despite the robustness
of the system, its only purpose is to identify the different types of DR signs rather than
grading the DR severity.

Ganesan et al. [18] suggest a binary CAD system for DR detection by experimenting
on two datasets of images. The RGB fundus image is transformed into a gray-level image.
Out of a total of 840 extracted features, only 670 meaningful features are used. This system
leverages a support vector machine (SVM), probabilistic neural network (PNN), and PNN
improved by a genetic algorithm (PPN-GA). In spite of the effectiveness of the system,
its binary operation is a limitation. Moreover, the system is designed to find whether the
pathology is DR positive, without determining the severity grade of the disease.

Mookiah et al. [19] present a CAD system based on nonlinear feature extraction to
distinguish between normal and AMD images. The feature vector is encoded and provided
to a SVM classifier. The system is tested on three datasets, one private and two public,
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the public being automated retinal image analysis (ARIA) and structured analysis of the
retina (STARE). The system exhibits an accuracy of 85.09%, 91.67%, and 100% for the ARIA,
private, and STARE datasets, respectively. Aside from the fact that the system is dedicated
to only AMD diagnosis, it is only valid when the retinal image resolution is uniform.

Qaisar et al. suggest an automatic retinal system to recognize the five severity levels
of DR: normal, mild NDPR, moderate NPDR, severe NPDR, and PDR [24]. This system
was developed using deep visual features (DVFs) and was tested on fundus images from
three public datasets and one private.

All the systems mentioned above are applied to diagnose only a single disease in the
image dataset. Next, we will review work that is directed at multi-disease diagnosis DR,
AMD, and glaucoma.

A system dedicated to identifying DR, AMD, and glaucoma is presented by [20].
The system is based on decomposing the fundus image into 2D intrinsic mode functions
(IMFs) to detect the pixels’ morphological variations. The system leverages an SVM classi-
fier to differentiate between pathological symptoms pertaining to DR, AMD, and glaucoma
and normal images. The system performance achieved 88.63%, 86.25%, and 91.00% for
accuracy, sensitivity, and specificity, respectively. Although this system considers three
diseases, the final decision output is a binary classification (normal or abnormal).

Koh et al. [16] present a two-class CAD system dedicated to identifying DR, AMD,
glaucoma from fundus images. In total, 404 normal and 1082 abnormal fundus images were
experimented on. The system achieved 92.48%, 89.37%, and 95.58% for overall accuracy,
overall sensitivity, and overall specificity, respectively, using 15 features. Although the
system uses four classes of images (AMD, DR, glaucoma, and normal), the system only
predicts binary classification (normal or abnormal) for each disease. Since there are 26.7%
more abnormal fundus images than normal ones, this imbalance makes the system’s final
decision more biased towards the abnormal class.

In a subsequent work, Koh et al. [22] present another CAD system to identify three
retinal diseases, AMD, DR, and glaucoma. The bag-of-visual-words approach and Gaussian
mixture model (GMM) were carried out on the training dataset to build the vocabulary.
Random forest (RF) was employed as a classification model. However, aside from the fact
that the system was tested on a private dataset of images, a requirement for reproducibility,
the final results are somewhat disappointing. The reason why the results are not impressive
could be because the system depends on the extracted vocabulary from image patterns,
not from the image pixels themselves. In addition, the final results are provided on an
aggregate basis, i.e., for all three classes of cases, DR, glaucoma and normal.

ANN in general and deep learning in particular have also been used heavily for
ophthalmic diagnosis using retinal fundus images. An overview of the applications of deep
learning of this topic is presented in [25], where the authors describe image datasets that
can be used for deep learning purposes, and applications of deep learning for segmentation
of the optic disc, optic cup, and blood vessels as well as detection of lesions.

A retinal CAD system based on deep residual NN classifiers using small labeled
images is presented in [17]. The system employs three tasks related to eye disease diagnosis.
The first is identifying five broad categories, DR, AMD, glaucoma, melanoma, and normal
images. The second is predicting one of the 320 fine-grained disease sub-categories (grades).
The third is creating a textual explanation for the diagnosis. Experimenting on a dataset
of 7212 labeled and 35,854 unlabeled images from 3502 patients, the system achieved an
overall accuracy of 83%, 75%, and 48% for the three tasks, respectively, which are low
compared to the results of the present work.

A medical image analysis based on deep mining for screening DR is proposed by
Quellec et al. [26], aiming to detect the four different DR lesion types in fundus images.
Specifically, a deep convolutional NN with 26 different layers acts to automatically detect
pathological features.

A combined convolutional NN and recurrent NN were developed for heightened
glaucoma detection [27]. The CNN/RNN combined model attained an average F score
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of 96.2% in identifying glaucoma. This system suffers, however, from low accuracy if the
number of training images is not large enough.

A retinal CAD system based on a deep learning technique is presented by Zhao
et al. [28]. A transfer deep learning architecture depends on a residual NN, including
feature attention and channel re-calibration to extract features from the retinal fundus
image. RGB Kaggle fundus images were used after pre-processing steps to mitigate noise
effects of the background. This system resulted in 87.60% for the area under the curve
(AUC) of the receiver operating characteristic (ROC) and 59.94% for overall accuracy. This
system is highly robust, but the computational cost is relatively high.

In [29], a deep learning system is proposed to study its efficacy in diagnosing and grad-
ing glaucomatous optic neuropathy (GON) through retinal fundus images. The network
comprises twenty-two layers, of which eleven are inception-v3 architecture modules. Out
of 70,000, 48,116 fundus images were selected to be annotated by ophthalmology doctors
(twenty-seven doctors) for labeling as GON images or not GON images. A minibatch
gradient descent of a size of thirty-two was used for training using an Adam optimizer,
with an initial learning rate of 0.002. The final results achieved for the system were 0.929,
0.956, and 0.920 for accuracy, sensitivity, and specificity [29].

A multi-layer perceptron (MLP) NN and hand-crafted features are presented by
Tamim et al. [12], using retinal fundus images to diagnose DR by searching pixel by pixel
in the retinal image for biomarkers of DR lesions. The system uses 24 hand-crafted features
and a 3-layer NN. A post-processing technique depending on mathematical morphological
operators is used to optimize the blood vessel segmentation procedure. A selected vector
of features is proposed in this study. In comparison, three publicly available datasets are
used. The experimental results, visually and quantitatively, indicate the robustness of the
suggested methods. The proposed method gave 0.960, 0.754, and 0.984 for the DRIVE
dataset, 0.963, 0.780, and 0.982 for the STARE dataset, and 0.957, 0.758, and 0.984 for the
CHASSE_DB1 dataset, for accuracy, sensitivity, and specificity, respectively. Despite the
robustness of this method, it is dedicated to only one unique ocular disease, DR.

The use of NNs and deep learning is still the focus of much research in the area of
retinal image analysis. For example, a technique based on a gray wolf optimized NN
is presented by Jerith and Kumar [30] for early recognition of glaucoma using retinal
images. They first converted the original color images into gray-level, then the artifacts
due to noise were suppressed using an adaptive median filter. The extracted features
comprised gray-level co-occurrence matrix (GLCM) features, speedup robust features,
histogram of oriented gradient (HOG) features, and global features that were encoded for
gray wolf optimization.

In [31], Maqsood et al. studied hemorrhage detection based on a 3D CNN deep
learning framework and feature fusion for evaluating retinal abnormality in diabetic
patients. A pre-trained modified CNN model was employed to extract features to form a
feature vector. The feature vector was fused by convolutional sparse image decomposition,
and later the best features were selected by multi-logic regression controlled entropy
variance techniques. They achieved 0.9771 for the average accuracy.

Li et al. [29] proposed a deep learning system to detect glaucomatous optic neuropathy
from retinal fundus images. Their NN comprised 22 layers, with 11 inception-v3 architec-
ture modules. Out of 70,000 images, 48,116 fundus images were selected for annotation
by ophthalmologists as GON or not GON. The final results achieved for the system were
0.929, 0.956, and 0.920 for accuracy, sensitivity, and specificity, respectively.

In [32], Ramasamy et al. studied detection of DR using a fusion of textural and ridgelet
features of retinal images and a sequential minimal optimization classifier. The ocular
features were extracted and fused based on co-occurrence, run-length features, and ridgelet
transform coefficients. The method was tested using sequential minimal optimization
through retinal ocular images. The sensitivity, specificity, and accuracy obtained were
0.9887, 0.9524, and 0.9705 for the DIAREKDB1 dataset, and 0.909, 0.91, and 0.910 for the
Kaggle dataset, respectively.
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The problem with deep learning, however, is that it acts mostly as a black box,
with plenty of stacked layers, providing little knowledge about local features at the image
level. Furthermore, its training requires a huge number of images, which may not be readily
available. For example, the work by Quellec et al. [26] depends on 90,000 images from
Kaggle and 110,000 images from e-ophtha, in addition to 89 DiaretDB1 datasets. Another
problem with deep learning is that it is remarkably time-consuming, primarily during train-
ing but also during testing. All these drawbacks are mitigated in the approach followed
in the present work which depends mainly on hand-crafted features and conventional
ML models.

3. Materials and Methods

Despite the huge body of work in the field of eye CAD systems, there is a gap
in handling and classifying more than one retinal disease at once (direction six above),
in particular distinguishing between cases of DR, glaucoma, and normal conditions in
fundus images. This could be due to the scarcity of publicly available fundus images,
especially ones with both glaucoma and DR. It could also be due to the fine and subtle
differences between the intensity values of different pathological patterns (pixels) in the
images, as shown in Figure 1. The present work is intended to bridge this gap.

It should be noted that both normal and DR fundus images are macula centered, so
FOS and HOS features are applied for characterizing the pathological pattern of DR. On the
other hand, glaucoma fundus images are OD centered [22]. Thus, HOG features are used
to identify the pathological pattern for glaucoma.

To obtain an accurate retinal CAD system, this study employs three groups of hybrid
features and a modified genetic algorithm (GA)-based scheme, resulting in the follow-
ing contributions:

1. A fully automated system that is easy to use.
2. The classification model is developed using a balanced number of retinal fundus

images in each class, ensuring robustness.
3. The center pixel of the OD in Dataset_2 is identified using three expert ophthalmol-

ogists, expediting the cropping of the OD for further processing and reaching the
quality of the High-Resolution Fundus (HRF) dataset.

4. The model utilizes all the three channels (red, green, and blue) of images, capturing
all potential information in the fundus image.

5. Three different groups of feature extractors are used to carefully obtain an optimal
number of 429 features, ensuring both accuracy and efficiency.

6. A modified genetic algorithm is used as a feature selector to select the most relevant
features among all the 429 extracted features.

7. Classifying more than two cases, DR, glaucoma and normal conditions, from the
fundus image opens the door to generalization where any number of cases can
be identified.

8. In-depth analysis plus a fair comparison with the nearest state-of-the-art systems.

The proposed system is based on texture features extracted from the region of interest
(ROI) of the retinal fundus images. FOS features and HOS features are extracted from all
three RGB channels to characterize DR disease, while HOG features are extracted from the
optical disc (OD) region in gray-level images. The system encompasses four main stages:
color transformation, feature extraction, feature selection, and classification, as shown in
Figure 2.

The RGB color model is commonly used in CAD systems because it is based on the
three primary colors embedded in most computerized input and output devices, unlike the
HSV model which is closer to how humans perceive color. As such, it lends itself readily to
digital image processing in general and digital retinal image research in particular. Even
the few attempts that initially use HSV, such as the attempt by Zhou et al. [33], to provide
some lamination and contrast enhancement for poor-quality images eventually revert back
to RGB for further processing.
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In the beginning, the RGB image is processed in two steps. The first step is to transform
the RGB image into its essential R, G, and B channels. The second step is to identify and crop
the OD region using the given center pixel location and the OD’s diameter. The cropped
OD region is converted into gray-scale.

Next, three different feature sets, FOS, HOS, and HOG, are then used for constructing
three different sets of features that can distinguish between the pathological and normal
patterns for each disease. The first set, FOS, consists of four features: mean, variance,
skewness, and kurtosis while HOS features are 14 textural features: angular second mo-
ment (ASM), contrasts, correlation, sum of squares (variance), inverse difference moment
(homogeneity), sum average, sum entropy, sum variance, entropy, difference variance, dif-
ference entropy, information measure of correlation 1, information measure of correlation 2,
and auto-correlation.

The third set, HOG, comprises 81 features. Both FOS and HOS extractors are used to
gather the statistical texture information for the entire retinal R, G, and B image, whereas
HOG is employed to detect intensity changes in the gray-scale cropped OD region image.
At the end of feature extraction, a feature vector with 429 distinct features is constructed.

In the next stage, a feature selection technique based on modified genetic algorithms is
applied to reduce the feature space, which positively affects the final system performance.

In the last stage, four classifiers, decision tree (DT), k-nearest neighbor (kNN), naive
Bayes (NB), and linear discriminant analysis (LDA) are used to make the diagnosis decision.

Figure 2. Block diagram of the proposed retinal computer-aided diagnosis system.

3.1. Data Acquisition

The first dataset in our work, High-Resolution Fundus (HRF) [34], comprises 45 RGB
images of three different classes, DR, glaucoma, and normal conditions, with 15 images
per class. The HRF dataset is provided with ma annotation by three expert ophthalmol-
ogists, specifying the OD center pixel location and the diameter of the OD. The second
dataset, Dataset_2, consists of 288 RGB fundus images assembled from datasets. First,
192 images are from the Kaggle DR dataset [35] (96 images for DR class and 96 for the
normal class). The remaining 96 images for glaucoma are collected from the BinRashed
Eyes Glaucoma dataset [36]. Thus, the classes of Dataset_2 are balanced in that each class
contains 96 images. Since Dataset_2 was acquired from two different sources, unlike HRF,
it needs to be manually annotated to locate the OD center pixels. For this task, we made use
of the expertise of three skilled ophthalmologists from King Fahd Central Hospital (KFCH),
Saudi Arabia, who ably specified the center pixel and the diameter of the OD. The two
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datasets used in the present work thus have three classes, DR, glaucoma, and normal (free
of disease). The DR and normal images are macula centered, while the glaucoma images
are OD centered. Table 2 provides general information related to the two image datasets.

Table 2. Number of images in each dataset.

Class HRF dataset Dataset_2

DR 15 96
Glaucoma 15 96

Normal 15 96

Total 45 288

Figure 3 shows the different pathological patterns for DR and glaucoma compared to
the normal cases.

Figure 3. Sample images from the two datasets: (a) DR image from HRF dataset; (b) glaucoma image from HRF dataset;
(c) normal (healthy) image form HRF dataset; (d) DR image from Dataset_2; (e) glaucoma image from Dataset_2; (f) normal
image from Dataset_2.

3.2. Feature Selection

Feature selection reduces the amount of linearly dependent features to extract useful
independent information for a given problem. Unlike prior work on diagnosing diseases
through retinal fundus images, where the green channel of the RGB image is commonly
used, in the present work, the three channels, red (R), green (G), and blue (B) are used
to capture all the information available in the image. In addition, we make use of the
gray-level version of the image because the textural features are mainly based on the spatial
repetition of any two neighbor pixels in that version.

With the above in mind, three different feature sets are used to represent the retinal
fundus image: FOS, HOS, and HOG. This is in sharp contrast to the less suitable method
where only the green channel is used.

3.2.1. FOS Features

FOS texture features are the most straightforward and most commonly used to repre-
sent the image textural characteristics [37]. They are intensity based and mainly computed
from a histogram of gray-level values of the image. They include mean, variance, skewness,
and kurtosis which specify some of the image’s textural characteristics and are obtained
from the distribution of intensity values and individual pixel values in an image, as follows.
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Let an image I, of size H ×W pixels, where H and W are the height and width,
respectively, of I in pixels. Then,

1. The mean, µ, gives information concerning the central tendency of the pixel intensities
in the image. If (h, w), h = 0, 1, . . . , H − 1, w = 0, 1, . . . , W − 1 is a given pixel and
I(h, w) is the intensity of that pixel, then the mean of I is given by

µ =
∑H−1

h=0 ∑W−1
w=0 I(h, w)

H ×W
. (1)

2. The variance σ2, where σ is the standard deviation, determines how the intensities of
pixels are scattered around the mean intensity µ and is given by

σ2 =
∑H−1

h=0 ∑W−1
w=0 (I(h, w)− µ)2

H ×W
. (2)

3. The skewness µ3 gives knowledge regarding the symmetry of the gray-level values
around the mean. A given distribution of data is symmetric if it looks the same to the
left and right side of the mean, as in the normal distribution; otherwise, it is skewed
left or right, and the skewness is given by

µ3 =
∑H−1

h=0 ∑W−1
w=0 (I(h, w)− µ)3

H ×W × µ
. (3)

4. The kurtosis, µ4, concerns the peakedness of the pixel intensity distribution in the
image’s histogram. It is a measure of the extreme values in the tail of the distribution,
with a large kurtosis indicating that the tail peakedness exceeds that of the normal
distribution. Data distributions with low kurtosis exhibit tail data that are generally
less extreme than the normal distribution tails. The kurtosis is given by

µ4 =
∑H−1

h=0 ∑W−1
w=0 (I(h, w)− µ)4

H ×W × µ
− 3. (4)

Though simple to compute, FOS features ignore the spatial relationship between pixels
and their surrounding neighbors. So, this group is not sufficient to quantify or discriminate
between changes in retinal images [38].

3.2.2. HOS Features

The second set of features, HOS, contains textural features based on the gray-level
co-occurrence matrix (GLCM) obtained from a 2D gray image [39]. The GLCM helps extract
relevant textural features from an image by tracking the spatial distribution of pixels inside
the region of interest (ROI) of the gray image. It is prevalent in medical image analysis and
pattern recognition [40].

Consider a retinal 2D gray image, Ĩ, with L gray levels and of size H ×W pixels.
We could characterize the textural information in terms of the frequent occurrence of
the intensity of a reference pixel value, i, to its adjacent neighbor pixel value, j, with a
predefined distance d and orientation θ. To quantify this image, the concept behind Haralick
feature extraction [39] is to map it from the range [α, β], as a bit depth, into the range [1, Ng],
which holds the solicited number Ng of the gray level. The map quantization function, ψ,
is defined as

ψ : [α, β]H×W −→ [1, Ng]
H×W . (5)

Then,the quantized image, I, is given by

I = ψ( Ĩ). (6)
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The non-normalized GLCM matrix is denoted by P, and its elements are obtained
from the quantized image, I, through counting the number of times every pair of adjacent
gray-level pixels occurs as a neighbor in the image I, or in an arbitrary area thereof.
The neighborhood relation between pixels in terms of displacement between any two
adjacent pixels can be defined by a displacement vector, ν = (dx, dy), in the x and y
directions, with dx, dy ∈ Z representing the displacement in the x and y directions in terms
of pixels with distance d. In the present work, d = 1. Each entry, p(i, j), in P is given by

p(i, j) =
H

∑
h=1

W

∑
w=1

{
1, if i = I(h, w) and j = I(h + dx, w + dy)
0, otherwise

,

The entry p(i, j) tallies how many times gray values of the two nearby pixels occur in I,
with i, j ∈ [1, Ng].

According to the pioneering work of Haralick, eight displacement vectors can be used
on 2D fundus retinal images to establish the direction within two adjacent pixels, as shown
in Figure 4.

Figure 4. The eight displacement vectors that describe all possible directions of adjacency pixels. They are used to
calculate the HOS features. (a) ν0◦ = (1, 0); (b) ν45◦ = (1, 1); (c) ν90◦ = (0, 1); (d) ν135◦ = (−1, 1); (e) ν180◦ = (−1, 0);
(f) ν225◦ = (−1,−1); (g) ν270◦ = (0,−1); (h) ν325◦ = (1,−1).

The eight displacement vectors described above are used in this work to conduct
all possible relationships for the adjacent pixels in the eight directions in I. Therefore,
in this work, there are eight GLCMs for each I. Once P is constructed based on a particular
direction vector, then it is normalized, yielding the normalized GLCM:

P̃ =


p̃(1, 1) p̃(1, 2) · · · p̃(1, Ng)
p̃(2, 1) p̃(2, 2) · · · p̃(2, Ng)

...
...

. . .
...

p̃(Ng, 1) p̃(Ng, 2) · · · p̃(Ng, Ng)

,

where

p̃(i, j) =
p(i, j)

∑N
i=1 ∑N

J=1 p(i, j)

is the probability mass function for the gray level of adjacent pixels in I. So, the normalized
matrix, P̃, contains information about the retinal image pixels that have similar gray-
level values, which is used later to compute the textural features for each of the eight
displacement vectors per gray image.

The 14 textural features of an image are obtained from the P̃ matrix, noting that Ng is
the number of gray levels in the quantized image [41].

1. The angular second moment (ASM), f1, feature is a measure of the consistency of
textural information in an image. A consistent image is characterized by very few
dominant gray level transitions between its pixels, and its related P̃ matrix contains
fewer entries of large magnitude. The more homogeneity in the image, the larger the
value of ASM, with the range of this value being [0, 1]. The f1 feature is given by

f1 =
Ng

∑
i=1

Ng

∑
j=1

( p̃(i, j))2. (7)
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2. The contrast feature, f2, is a measure of the status of the local variations in the intensity
values between pixels of an image. The higher the local variation value, the larger the
contrast. Contrast also represents a measure of intensity variation between a reference
pixel and its neighbors in the image. Low contrast reflects low-intensity differences in
P̃ and vice versa. The value of the contrast feature, f2, is given by

f2 =
Ng−1

∑
n=0

n2


Ng

∑
i=1

Ng

∑
j=1

|i−j|=n

p̃(i, j)

. (8)

There is no local contrast for a cell by itself in the P̃ matrix, so the value of |i− j| plays
the role of a weight. There is no contrast if |i− j| = 0. The contract keeps increasing
as |i− j| becomes larger.

3. The correlation feature, f3, indicates that pairs of adjacent pixels are correlated (posi-
tively, neutrally, or negatively) in the retinal image. It measures the amount of linear
dependence of the gray-level values in the image.
Let p̃x(i) = ∑

Ng
j=1 p̃(i, j) be the ith element in the marginal probability matrix obtained

by summing the columns of P̃ and p̃y(j) = ∑
Ng
i=1 p̃(i, j) be the jth element in the

marginal probability matrix obtained by the summation of the rows of P̃. Additionally,
let µx = ∑

Ng
i=1 i p̃x(i) and µy = ∑

Ng
j=1 j p̃y(j) be the means of p̃x and p̃y. Further, let

σx =

√√√√ Ng

∑
i=1

(i− µx)2 p̃x(i),

σy =

√√√√ Ng

∑
j=1

(j− µy)2 p̃y(j),

be the standard divisions of p̃x and p̃y. Then the correlation feature, f3, is given by

f3 =
Ng

∑
i=1

Ng

∑
j=1

ij p̃(i, j)− µxµy

σxσy
. (9)

4. The sum of squares, or variance, feature, f4, is a measure of the dispersion of the
values around the mean and describes the higher weights that differ from the mean
value. Let µ be the mean of the P̃ matrix, then the variance features, f4, are given by

f4 =
Ng

∑
i=1

Ng

∑
j=1

(i− µ)2 p̃(i, j). (10)

5. The inverse difference moment feature, f5, shows how the distribution is close to
the elements of the diagonal of P̃. Conceptually, as the inverse difference moment
decreases, the contrast increases. This feature is given by

f5 =
Ng

∑
i=1

Ng

∑
j=1

1
1 + (i− j)2 p̃(i, j). (11)
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6. The sum average, f6, feature is the higher weight to the higher index of the marginal
P̃ matrix. If p̃x+y(i) is the probability of the P̃ matrix, then the f6 feature is given by

f6 =
2Ng

∑
i=2

i p̃x+y(i), (12)

where

p̃x+y(k) =
Ng

∑
i=1

Ng

∑
j=1

i+j=k

p̃(i, j), k = 2, 3, . . . , 2Ng.

7. The sum variance feature, f7, is a measure of the higher weights that differ from the
sum entropy value (the f8 feature below) of the marginal P̃ matrix, and is given by

f7 =
2Ng

∑
i=2

(i− f8)
2 p̃x+y(i). (13)

8. The sum entropy feature, f8, is calculated as

f8 = −
2Ng

∑
i=2

p̃x+y(i) log p̃x+y(i). (14)

Since log(0) is undefined, whenever a 0 probability is encountered during the compu-
tations, it should be replaced by an arbitrarily small positive value.

9. The entropy feature, f9, is a concept of information theory, estimating the randomness
of pixel intensities in the image. As such, its value is zero for a constant image. It is
given by

f9 = −
Ng

∑
i=1

N9

∑
j=1

p̃(i, j) log p̃(i, j). (15)

10. The difference variance feature, f10, is a measure of the weights that differ from the
difference entropy value (the f11 feature below) of the marginal P̃ matrix, and is
given by

f10 =
2Ng

∑
i=2

(i− f11)
2 p̃x−y(i). (16)

where

p̃x−y(k) =
Ng

∑
i=1

Ng

∑
j=1

|i−j|=k

p̃(i, j), k = 0, 1, . . . , Ng − 1.

11. The difference entropy feature, f11, is the weight of the higher difference of the index
entropy and is given by

f11 = −
Ng−1

∑
i=0

p̃x−y(i) log p̃x−y(i). (17)

12. The information measure of the correlation 1 feature, f12, is considered as an entropy
measure and is given by

f12 =
f9−δ

max (α, β)
, (18)
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where α, β, and δ are the entropies of p̃x, p̃y, and p̃x p̃y, respectively, and are calculated
as follows.

α = −
Ng

∑
i=1

p̃x(i) log p̃x(i),

β = −
Ng

∑
j=1

p̃y(j) log p̃y(j),

δ = −
Ng

∑
i=1

Ng

∑
i=j

p̃(i, j) log
(

p̃x(i) p̃y(j)
)
.

13. The information measure of the correlation 2 feature, f13, is given as follows. Let

η = −
Ng

∑
i=1

Ng

∑
i=j

p̃x(i) p̃y(j) log
(

p̃x(i) p̃y(j)
)

be the entropy of p̃x(i) p̃y(j). Then, f13 is given by

f13 =
√

1− exp(−2(η− f9)). (19)

14. The auto-correlation feature, f14, is given by [41]

f14 =
Ng

∑
i=1

Ng

∑
j=1

ij p̃(i, j). (20)

We content ourselves with only the first four FOS moments as they are usually enough
to summarize the underlying data fairly accurately [42]. Higher moments add little value,
and can complicate the computations. The compelling evidence of this claim is seen clearly
in Table 3 where, out of the five FOS features selected by the GA, four belonged to the first
two moments and only one to the fourth moment.

Table 3. A listing of the 105 features selected by GA from the original 429 features (See Section 4 for feature codes).

FOS2R FOS2G FOS1B FOS2B FOS4B
HOS3Ra HOS4Ra HOS5Ga HOS6Ga HOS11Ga HOS13Ga HOS6Ba HOS8Ba HOS11Ba HOS6Rb
HOS11Rb HOS13Rb HOS14Rb HOS5Gb HOS7Gb HOS8Gb HOS10Gb HOS14Ga HOS4Ba HOS9Ba
HOS11Ba HOS12Ba HOS3Rc HOS7Rc HOS9Rc HOS1Gc HOS6Gc HOS7Gc HOS9Gc HOS10Gc
HOS11Gc HOS12Gc HOS1Bc HOS2Bc HOS10Bc HOS5Bc HOS1Rd HOS4Rd HOS5Rd HOS10Rd
HOS1Gd HOS3Gd HOS5Gd HOS13Gd HOS14Gd HOS2Bd HOS7Bd HOS8Re HOS9Re HOS10Re
HOS5Ge HOS6Ge HOS7Ge HOS8Ge HOS14Ge HOS1Be HOS2Be HOS6Be HOS7Be HOS11Be
HOS1Rf HOS8Rf HOS14Rf HOS1Gf HOS1Bf HOS3Bf HOS5Bf HOS1Bf HOS12Bf HOS4Rg
HOS3Bg HOS7Bg HOS8Bg HOS9Bg HOS10Bg HOS11Bg HOS12Bg HOS14Bg HOS1Rh HOS5Rh
HOS9Gh HOS13Gh HOS1Bf HOS5Bf HOS8Bf
HOG111 HOG112 HOG134 HOG135 HOG139 HOG146 HOG147 HOG149 HOG154 HOG155
HOG161 HOG163 HOG165 HOG181 HOG182

3.2.3. HOG Features

The third group of features is extracted using a histogram of orientation gradient
(HOG) as a feature descriptor [43]. The basic idea of the HOG descriptor is that features
within an image can be investigated through intensity derivative distribution by observing
the occurrence of gradient orientation in a local image pattern. In this work, and as in [44],
the RGB retinal fundus images are cropped using the central pixel coordinate and the
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radius size of the OD for every image to localize the region of the optic disc, OD, a region of
size 200× 200, from the RGB retinal image, and the cropped image is pictured in Figure 5.

Figure 5. Stages of the HOG features. (a) RGB image; (b) cropped RGB image; (c) cropped gray-
level image; (d) HOG feature image.

The cropped retinal fundus image is divided into smaller patterns called cells; a
histogram of gradient directions for each cell is compiled separately for its entry pixels,
then all histograms are concatenated for the descriptor. In more detail, the cropped RGB
retinal fundus image is transformed to a gray-scale image; then, the cell size is indented
using a window of size 3× 3. Experimentally, filter kernels [−1, 0, 1] and [−1, 0, 1]T are
used to calculate the magnitude of the gradient orientation horizontally and vertically for
each pixel within cells in the image.

Let I(x, y) represents the intensity of the gray value of a pixel at a given location in
image I, then the horizontal gradient, Gx, vertical gradient, Gy , and the total magnitude of
gradient M, for that pixel are obtained as follows.

Gx(x, y) = I(x + 1, y)− I(x− 1, y),

Gy(x, y) = I(x, y + 1)− I(x, y− 1),

M(Gx(x, y), Gy(x, y)) =
(
(Gx(x, y))2 + (Gy(x, y))2)0.5.

On the other hand, the angle θ, representing the orientation, is given by

θ = tan−1
(

Gy(x, y)
Gx(x, y)

)
.

The magnitude and orientation values for each pixel in the image are used to construct
the histogram. A weighted vote for each pixel in the cell is computed for the orientation,
Herein, 9 histogram bins are used where the histogram channel is ultimately expanded
over degrees from 0◦ to 180◦. Spatially, cells are grouped as connected patches or blocks.
Afterwards, normalization using the L2 norm is carried out. To illustrate, let v be a non-
normalized vector for all histograms in a given block, and let ||v||i be the i-norm, for i = 1, 2,
and ε be some small constant. Then the normalized vector, v̂, is given by

v̂ =
v

(‖v‖2
2 + ε2)0.5

. (21)

Finally, vectors for all normalized blocks are concatenated together, forming a HOG
as a feature descriptor. It should be mentioned that the L2 norm is appropriated for each
block to be more invariant to contrast, shadow, and illumination in the image. Finally,
the generated feature vector with 3× 3 cells and a histogram with 9 bins gives 81 features
for each OD cropped image.

After the feature extraction process, a vector containing 429 features is formulated,
and all feature vectors are stored in a feature matrix for further processing. Table 4 shows
the different number of extracted features and their types.
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Table 4. Details of the original 429 features, before reduction by GA.

Type of Feature Image Channel TotalR G B Gray-Scale

FOS Features 4 4 4 - 12
HOS features 112 112 112 - 336
HOG features - - - 81 81

Total 116 116 116 81 429

3.3. Min–Max Scaling for Normalization

Because features are extracted from a variety of sources, they span wide ranges. On the
other hand, the performance of machine learning algorithms is sensitive to un-scaled fea-
tures, which makes re-scaling them necessary. In this article, a min-max normalization is
successfully used to re-scale the features, limiting their value to a common range. The lim-
ited range is useful because it makes the feature values end up with smaller standard
deviations, suppressing the effect of outliers in the different features. Min–max normaliza-
tion entails a linear transformation of the original features.

3.4. Feature Selection by Genetic Algorithm

Feature selection is defined as picking the most reliable and discriminative features
that reduce the high dimension of feature space to a minimum. In this work, at the posterior
stage of feature extraction, the curse of the dimensionality problem may appear, mostly
when the number of features is immense. In our case, 429 features are extracted, which
may affect not only the cost of computation in terms of training time for the model but also
the final accuracy results for the classifiers. Moreover, over-fitting may be found as well
due to the subset of redundant and irrelevant features [45]. So, it is critical to get rid of that
subset, if it exists. To this end, we use a genetic algorithm (GA) scheme which proves to be
successful, as indicated by the experimental results.

GAs consider that each individual (chromosome) in the population is described by
a vector of features (genes) drawn from the entire feature set. The vector is randomly
composed such that it contains a random combination of features. The fitness function is
then evaluated to find the most relevant features among those that exist. The end result is
used to produce successive generations. Two individuals are chosen as parents, with the
criteria based on each of their fitness function values. While there are various selection
systems, the roulette wheel is used in this study.

A chromosome with high fitness value is considered a candidate for the next genera-
tion. In this work, initially, a chromosome of 429 genes is created for each dataset, where
the HRF comprises 45 chromosomes, with another 288 chromosomes for Dataset_ 2. Specif-
ically, each chromosome is represented by a string of 1s and 0s, with each bit pointing to a
gene. For example, a chromosome with 10 genes could be 1100101011. This means that
genes 1, 2, 5, 7, 9, and 10 are included and genes 3, 4, 6, and 8 are excluded. A weighted
random selection is employed in the initial population where the probability of a candidate
chromosome being selected is based on its accuracy function response. So, chromosomes
with high probability will have a greater chance of selection. Two parent chromosomes
are selected and mated. In this process, two new chromosomes (children) inherit half of
each parent’s chromosome characteristics in a crossover operation. The new chromosome
may be further processed using mutation where the state of some genes may be changed
from 1 to 0 or the opposite. The GA effectively reduces the feature space where, out of
429 features, we end up with 105 features which are the most relevant and informative.

3.5. Classification

Once the GA selects the best discriminative features, they are used to estimate the
parameters of the classification model. Re-sampling statistical techniques are regularly
used to avoid variability and uncertainty in evaluating the model performance. That is
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done by estimating the parameters of the model multiple times from feature samples, using
a technique such as the k-fold crossvalidation, where the best discriminative feature set is
partitioned into k groups. Each group can be used as a test set while the other groups are
used for training.

In this article, we use the k-fold crossvalidation technique for both datasets. For the
HRF dataset, a leave-one-out crossvalidation is applied, i.e., k = 1. That is good for small
datasets, such as the HRF dataset, which has 45 images only. The HRF feature set is split
such that, every time, 44 images are used for training and the remaining images are used
for testing.

On the other hand, there are 288 images in Dataset_2. Thus, a 9-fold crossvalidation is
the better choice. The features of Dataset_2 are split into 9 equal parts, 8 used for training
and 1 for testing. These values lead to accurate estimation with low bias and modest
variance while every fold has the same sample number of images, namely 32. The process
of random partitioning is iterated 45 times for the HRF dataset and 9 times for Dataset_2,
with testing sets determined at run time. The results of this exercise are reported in the
tables below.

Determining the most applicable supervised ML algorithm is an overwhelming task.
The most suitable option to find the proper algorithm that can achieve a satisfying per-
formance is experimentation. After extensive analyses and trade-offs between the speed,
accuracy, and complexity of several classifiers, we found that four supervised ML al-
gorithms achieved a good performance in our problem: k-nearest neighbor (kNN) with
Euclidean distance measure, naive Bayes with Gaussian distribution (NB-G), decision tree
(DT), and linear discriminant analysis (LDA).

4. Results

We have tested the proposed system by experimenting extensively on two datasets,
originating from three publicly available datasets. Our experiments were run on a platform
including Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, 2592 MHz, 6 Core(s), 12 logical
processor(s), 16 GB memory using MATLAB 9.2, R2017b.

The experimental results, presented below, show that the combination of the three sets
of features and feature selection process provides a discriminative vector of 105 features,
which was later fed into each of the four mentioned classifiers for evaluation. The final
results obtained from our experiments are excellent.

The first activity we performed was to use the GA to select the most relevant of the
429 originally calculated features. This activity ended up selecting the 105 features shown
in Table 3, for which we use the following coding for the feature names:

• FOSxA is a feature of the FOS group (Section 3.2.1), with x = 1, 2, 3, 4 being the
feature number within the group, and A ∈ {R, G, B} being the color channel used.
For example, FOS2G is feature no. 2 in the FOS feature family (i.e., variance) calculated
for the green channel of the image.

• HOSxAy is a feature of the HOS group (Section 3.2.2), with x = 1, 2, . . . , 14, being
the feature number within the group, A ∈ {R, G, B} being the color channel used,
and y ∈ {a, b, . . . , h} being the displacement used. For example, HOS9Rd is feature
no. 9 in the HOS feature family (i.e., entropy) calculated for the red channel of the
image with the displacement number d in Figure 4.

• HOGxyz is a feature of the HOG group (Section 3.2.3), with xy referring to entry
(x, y) in the 3× 3 matrix and z being the bin number in the corresponding histogram.
For example, HOG125 is the feature referred to by the entry in the 1st row and 2nd
column of the 3× 3 matrix and the 5th bin number in the histogram.
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The four classifiers considered in the present work, DT, kNN, NB, and LDA, were
tested separately to classify the HRF dataset and Dataset_2. For each classification experi-
ment, the following 3× 3 confusion matrix was constructed:

Predicted

Actual


Class 1 2 3

1 A11 A12 A13
2 A21 A22 A23
3 A31 A32 A33


where 1 = DR, 2 = glaucoma and 3 = normal, and Aij is the count of cases of class i that
are classified as class j. This matrix is used to obtain five metrics: precision (Pr), sensitivity
(Se), specificity (Sp), F1 score (F1), accuracy (Acc), and AUC, as follows.

Pr = TP
TP+FP , (22)

Se = TP
TP+FN , (23)

Sp = TN
TN+FP , (24)

F1 = 2TP
2TP+FP+FN , (25)

Acc = TP+TN
TP+FP+TN+FN . (26)

AUC = 0.5( TP
TP+FN + TN

TN+FP ). (27)

where

• FP, false positives, the number of images belonging to the class but incorrectly labeled
as not.

• FN, false negatives, the number of images belonging to the class but incorrectly
labeled as not.

• TP, true positive, the number of images belonging to the class and correctly labeled
as such.

• TN, true negative, the number of images not belonging to the class and correctly
labeled as such.

The area under the receiver operating characteristic curve (ROC-AUC) is a useful and
broadly used measure to evaluate the performance of binary classifiers. Recently [46], it has
been extended to multi-class classifiers, where for each class, the other classes are simply
lumped together as the second class.

Furthermore, we obtained the Overall Se, Overall Sp, and Overall Acc parameters,
which are calculated from the aggregation of all three classes for each dataset as follows.

Overall Se = ∑3
i=1 TPi

∑3
i=1(TPi+FNi)

(28)

Overall Sp = ∑3
i=1 TNi

∑3
i=1(TNi+FPi)

(29)

Overall Acc = ∑3
i=1(TPi+TNi)

∑3
i=1(TPi+FPi+TNi+FNi)

(30)

where i = 1, 2, 3 is the class label with 1 = DR, 2 = glaucoma and 3 = normal.
Unlike most previous studies, we evaluate the classifiers of the proposed system in

two ways. First, the performance metrics (22)–(27) are used to measure the classification
performance for every classifier for each class (DR, glaucoma, and normal). Second,
the performance metrics (28)–(30) are used to measure the overall classification performance
for all classes.

Tables 5 and 6 show the results regarding precision, sensitivity, specificity, F1 score,
and accuracy metrics for the two datasets. In all tables, the proposed system results are
shown in detail for each class and for each dataset. From the tables, it is obvious that the
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proposed system functions remarkably well. Tables 5 and 6 represent the classification
performance of the four classifiers when tested on the HRF features and Dataset_2 features,
respectively. Each row represents results for only one class.

Table 5. Classification performance per classifier for every class in the HRF dataset.

Classifier Class Pr Se Sp F1 Acc AUC

DR 0.7000 0.7700 0.8334 0.7368 0.8148 0.8055
DT Glaucoma 0.8000 0.7273 0.8750 0.7619 0.8148 0.8011

Normal 0.7000 0.7000 0.8334 0.7000 0.7857 0.7666

DR 0.5000 0.5555 0.7619 0.5263 0.7000 0.6587
kNN Glaucoma 0.8000 0.6667 0.8667 0.7272 0.7778 0.7666

Normal 0.8887 0.8889 0.8667 0.8421 0.8752 0.8777

DR 0.4000 0.5000 0.7142 0.4444 0.6551 0.6071
NB Glaucoma 0.8001 0.5714 0.8467 0.6667 0.7037 0.7087

Normal 0.7000 0.8750 0.8000 0.7778 0.8260 0.8375

DR 0.8000 0.7273 0.8947 0.7619 0.8334 0.8110
LDA Glaucoma 1 1 1 1 1 1

Normal 0.7000 0.7776 0.8571 0.7368 0.8334 0.8178

Table 6. Classification performance per classifier for every class in Dataset_2.

Cassifier Class Pr Se Sp F1 Acc AUC

DR 1 0.9090 1 0.9523 0.9667 0.9545
DT Glaucoma 1 1 1 1 1 1

Normal 0.9000 1 0.9524 0.9473 0.9667 0.9761

DR 0.7000 0.8750 0.8636 0.7778 0.8667 0.8693
kNN Glaucoma 1 0.9000 1 0.9524 0.9629 0.9545

Normal 0.9001 0.8181 0.9445 0.8571 0.8965 0.8813

DR 0.7000 1 0.8695 0.8235 0.9000 0.9347
NB Glaucoma 1 0.9090 1 0.9523 0.9642 0.9545

Normal 1 0.8333 1 0.9090 0.9310 0.9166

DR 0.8000 1 0.9000 0.8888 0.9285 0.9500
LDA Glaucoma 0.9000 0.8182 0.9445 0.8571 0.8965 0.8813

Normal 0.9000 0.8182 0.9444 0.8571 0.8965 0.8813

Table 7 represents the classification performance for the two datasets as overall sen-
sitivity (Overall Se), overall specificity (Overall Sp), and overall accuracy (Overall Acc).
Clearly, the proposed system performs extremely well.

Table 7. Overall classification performance for the two datasets.

Dataset Classifier Overall Se Overall Sp Overall Acc

DT 0.7400 0.0740 0.7400
HRF dataset kNN 0.6600 0.6600 0.6600

NB 0.6400 0.6400 0.6400
LDA 0.8300 0.8300 0.8300

DT 0.9667 0.9667 0.9667
Dataset_2 kNN 0.8670 0.8670 0.8670

NB 0.9000 0.9000 0.9000
LDA 0.9360 0.9360 0.9360

Tables 8 and 9 show the best and worst results for each class in the HRF dataset and
Dataset_2.
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Table 8. The best and the worst classification results for the HRF dataset.

Class Pr Se Sp F1 Acc AUC

DR Best(max) 0.8000 0.7700 0.8947 0.7619 0.8334 0.8110
Worst(min) 0.4000 0.5000 0.7142 0.4444 0.6551 0.6071

Glaucoma Best(max) 1.000 1.000 1.000 1.000 1.000 1
Worst(min) 0.8000 0.5714 0.8467 0.6667 0.7037 0.7087

Normal Best(max) 0.8887 0.8889 0.8421 0.8752 0.8752 0.8777
Worst(min) 0.7000 0.7000 0.8000 0.7000 0.7857 0.7666

Table 9. The best and the worst classification results for Dataset_2.

Class Pr Se Sp F1 Acc AUC

DR Best(max) 1.000 1.000 1.000 0.9523 0.9667 0.9545
Worst(min) 0.7000 0.8750 0.8636 0.7778 0.8667 0.8693

Glaucoma Best(max) 1.000 1.000 1.000 1.000 1.000 1.000
Worst(min) 0.9000 0.8082 0.9445 0.8571 0.8965 0.8965

Normal Best(max) 1.000 1.000 1.000 1.000 1.000 0.9761
Worst(min) 0.9000 0.8181 0.9444 0.8571 0.8965 0.8813

Table 10 shows a recently published system proposed by Chelaramani [17], which
is based on automatic deep learning and performs five-class classification, in contrast to
our system which is based on hand-crafted features, conventional ML algorithms, and
three-class classification. The common factor between the two systems is the complete
results provided for every individual class in terms of precision, sensitivity, specificity, F1
score, and accuracy.

Table 10. Comparison between the results of the proposed model and the state-of-the-art method as
an automatic deep feature extraction.

Method Class Pr Se Sp F1 Acc

[17]

Melanoma 0.8193 0.9701 0.9511 0.8883 0.9479
Glaucoma 0.8388 0.9365 0.9619 0.8850 0.9510

AMD 0.8090 0.8317 0.9516 0.8202 0.9196
DR 0.8829 0.7211 0.9711 0.7938 0.9047

Normal 0.7788 0.7136 0.9296 0.7448 0.8894

The proposed model
DR 1.000 0.9090 1.000 0.9523 0.9667

Glaucoma 1.000 1.000 1.000 1.000 1.000
via DT classifier Normal 0.9000 1.000 0.9524 0.9473 0.9667

5. Discussion

Rather than classify the severity level of a certain disease, we have opted in this
work to focus on distinguishing between three classes, namely DR, glaucoma, and normal.
The reason why our system performed remarkably well is multi-faceted. First, the choice
of the features (of the three groups) plays an important role. For example, we used entropy
and ASM as features because the former is a measure of disorder, just as the latter is a
measure of sameness and consistency in the image. The higher the entropy, the higher
the disorder (pathological pattern-like DR) in the image, and vice versa. So, entropy is
a good biomarker for the degree of DR in an image. On the other hand, ASM is a good
biomarker for normal and DR images. In addition, energy is a good biomarker for the local
uniformity or homogeneity that can differentiate between DR and glaucoma. Furthermore,
contrast is a good biomarker for DR, particularly in the green channel. So the obtained
GLCM in general provides good biomarkers for discerning between DR and normal images.
Meanwhile, the HOG features are a good biomarker for glaucoma through cropping the
OD of the pixels. During the feature extraction and selection procedure, we observed
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that the combination of the three feature sets is wholly leveraged to discern within every
pathological pattern in the retinal image.

The classification results are provided comprehensively in Section 4, not only as
overall metrics for all three classes (DR, glaucoma, and normal) but also for each class
individually. The results show that although the same set of features is used with all four
classifiers considered in the present work, the classification performance of each classifier
is to some extent dataset dependent. This could be due to the extraordinary complexity of
the retinal image. In our situation, the DT classifier performed better with Dataset_2 than
with the HRF dataset. For example, DT achieved, with Dataset_2, an accuracy of 95.45% for
DR, 100% for glaucoma, and 97.61% for normal conditions. By contrast, the LDA classifier
performed better with the HRF dataset than with Dataset_2. Section 4 provides all the
metric values for all four classifiers and both datasets.

The classification performance is also to some extent class dependent. That is, no
classifier is good at detecting all diseases. Again, this can be attributed to the immense
complexity of the retinal image. For example, let us consider the HRF dataset. The best
results for the DR class are achieved by the LDA classifier under all metrics, except for Se,
in which DT is the winner. At the same time, the worst DR results are obtained by the NB
classifier. Concerning glaucoma, the best results are shown by the LDA classifier and the
worst by the NB classifier. For the normal cases, the best results are obtained by the kNN
classifier and the worst results by DT.

Based on the results, displayed in Section 4, the proposed system is by and large highly
successful in identifying the three possible classes: DR, glaucoma, and normal. Concerning
Dataset_2, the best results for DR, glaucoma, and normal conditions are achieved by the DT
classifier, while the worst results are obtained by kNN for the DR class for Pr, F1, and AUC
and for the normal class for SE and F1 metrics, respectively. The worst results for the
glaucoma class are obtained in terms of Sp, F1, and AUC using the LDA classifier, while
the worst results for the normal class are obtained in terms of Sp and AUC using the LDA
classifier. According to the Diabetes Society in the United Kingdom, it is recommended
that the sensitivity measure of any CAD system should exceed 80% [24] to be permitted for
use. Our system clearly surpasses this threshold by a wide margin.

Our system shows a remarkable performance with low cost compared to automatic
feature selection using time-consuming deep learning, which transfers the input (image)
pixels into multiple successive layers for the purpose of learning the features. However,
the proposed system has a limitation in the event that the image has pathological manifes-
tations of both DR and glaucoma at the same time. We did not face this event because no
image in the used datasets had this issue. It is considered an open point for future study if
a suitable image dataset is found.

6. Conclusions

In this article, we have proposed an accurate retinal CAD system. The accuracy of the
proposed system has been confirmed by extensive experimental work that was conducted
on publicly available real datasets. The system comprises three elements that collectively
contribute to its success. The first element is choosing three different sets of features that
skillfully identify and discriminate between the pathological features, despite their slight
and subtle differences. The second element is designing a modified GA-based scheme
to reduce the highly dimensional feature space of the retinal image by selecting only the
most relevant and essential features. The third element is the sampling technique used for
each dataset.

The experimental results show that the system succeeds both absolutely and compared
with competitive systems. More importantly, they refute the idea that the only way to
achieve high classification performance in a system is to resort to automatic feature extractor
systems (deep learning). The proposed system outperforms systems based on deep learning
at a fraction of the time cost and of the number of training images.
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It is evident from the experimental results that the 105 features selected by the GA
from the original 429 calculated features are highly successful in discriminating between
the three classes we consider: DR, glaucoma, and normal. This degree of success, however,
depended on both the classifier and the dataset. The features classified DR best in Dataset_2
using the DT classifier. However, the same features classified DR best in the HRF dataset
using the LDA classifier.

Experimentally, it is noted that despite the relatively small number of images used,
the results are promising, and this proves the good choice of the features and the effective-
ness of the modified genetic algorithm as a feature selection algorithm. However, using
more images is sure to improve system performance further. This conclusion is confirmed
by obtaining better classification for Dataset_2 than the HRF dataset, given that the former
dataset is larger than the latter.

The proposed system can serve as a supportive diagnostic tool that can easily be
installed and used in healthcare units, small polyclinics, and remote villages and com-
munities, especially in developing countries where ophthalmologists are in short supply.
Even in the presence of ophthalmologists, it can help them make the right diagnosis
decision quickly. In the future, this system can be configured as a personal retinal health-
care commodity that can be used directly by individuals before seeking the services of a
medical doctor.
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