New Optical Design Method of Floating Type Collimator for Microscopic Camera Inspection
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Description for MATLAB Code
Algorithm A1. Algorithm for Programming |
1: z0_inf=-15; z1_inf=85; z2_inf=2; z3_inf=10; z4_inf=20; z5_inf=4; |
2: z0_near= z0_inf; z1_near=80; z2_near=15; z3_near=z1_inf+z2_inf+z3_inf-(z1_near+z2_near); z4_near=z4_inf; z5_near=4+4^2/(200-4); |
3: syms k1 k2 k3 k4 |
4: eq1=GaussianBracket([-z0_inf, k1, -z1_inf, k2, -z2_inf, k3, -z3_inf, k4,-z4_inf, k5,-z5_inf]) ==0; |
5: eq2=GaussianBracket([-z0_inf, k1, -z1_inf, k2, -z2_inf, k3, -z3_inf, k4,-z4_inf, k5]) ==-1/0.03; |
6: eq3=GaussianBracket([-z0_near, k1, -z1_near, k2, -z2_near, k3, - z3_near, k4,-z4_near, k5, -z5_near]) ==0; |
7: eq4=GaussianBracket([-z0_near, k1, -z1_near, k2, -z2_near, k3, - z3_near, k4,-z4_near, k5]) ==-1/0.03; |
8: S=vpasolve([eq1 eq2 eq3 eq4], [k1 k2 k3 k4]) |
9: for i=1:1:length (S,k1) |
10: fprint(‘…………………………….%dWn’, i) |
11: fprint(‘f1(%d)=%15.8fWn’,i,1/eval(S.k1(i))) |
12: fprint(‘f2(%d)=%15.8fWn’,i,1/eval(S.k2(i))) |
13: fprint(‘f3(%d)=%15.8fWn’,i,1/eval(S.k3(i))) |
14: fprint(‘f4(%d)=%15.8fWn’,i,1/eval(S.k4(i))) |
15: end |
References
- Kim, H.-T.; Kang, S.-B.; Kang, H.-S.; Cho, Y.-J.; Kim, J.-O. Optical distance control for a multi focus image in camera phone module assembly. Int. J. Precis. Eng. Manuf. 2011, 12, 805–811. [Google Scholar] [CrossRef]
- ISO 15529:2010. ISO, Optics and Photonics—Optical Transfer Function—Principles of Measurement of Modulation Transfer Function (MTF) of Sampled Imaging System. Available online: https://www.iso.org/standard/56069.html (accessed on 2 July 2021).
- Mahajan, V.N. Optical Imaging and Aberrations: Part I: Ray Geometrical Optics; SPIE Press: Bellingham, WA, USA, 1998. [Google Scholar]
- Zappe, H. Fundamentals of Micro-Optics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- ISO 12233:2017. ISO, Photography—Electronic Still Picture Imaging—Resolution and Spatial Frequency Responses. Available online: https://www.iso.org/standard/71696.html (accessed on 2 July 2021).
- Oh, N.H. Tele-Convertor Lens System and Apparatus for Evaluating Resolution Using the Same. KR Patent No. 10-1776707 B1, 4 September 2017. [Google Scholar]
- Canon Global. Canon Technology. Available online: https://global.canon/en/technology/rf-2020.html (accessed on 25 June 2021).
- Osten, W. Optical Inspection of Microsystems; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Klingshirn, C.F. Semiconductor Optics; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Pitte, E.; Petit, V.; Lecoq, P. Optical Device, Optical Test Bench and Optical Test Method. U.S. Patent No. 9,719,882B2, 1 August 2017. [Google Scholar]
- Park, H.-J.; Lee, S.-W.; Kang, G.-M.; Moon, H.-G. Automatic Inspection System for Camera Lenses and Method thereof Using a Line Charge Coupled Device. U.S. Patent Application No. 5,726,746A, 10 March 1998. [Google Scholar]
- Rhu, J.-H.; Lee, Y.-H. Measuring Method of Optics Ability and Apparatus Thereof. KR Patent No. 10-0243171B1, 2 March 2000. [Google Scholar]
- Ken, U. Method and Apparatus for Measuring Diopter of Viewing Lens. JP Patent No. 9-243514A, 19 September 1997. [Google Scholar]
- Zawawi, R.B.A.; Choi, H.; Kim, J. High-PSRR Wide-Range Supply-Independent CMOS Voltage Reference for Retinal Prosthetic Systems. Electronics 2020, 9, 2028. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.; Kim, J.; Ryu, J.-M. Development of an Omnidirectional Optical System Based Photoacoustic Instrumentation. J. Med. Imaging Health Inf. 2018, 8, 20–27. [Google Scholar] [CrossRef]
- Murata, Y. Eccentricity Measuring Method and Eccentricity Measuring Apparatus. U.S. Patent Application No. 7,307,708B2, 11 December 2007. [Google Scholar]
- Wu, C.-L.; Angot, L.; Luo, A.-C. Optical Inspection System and Optical Inspection Method thereof. U.S. Patent Application No. 2017/0177964A1, 22 June 2017. [Google Scholar]
- Takeshi, T.; Nobuhiro, M. Auto-Collimator Device. JP Patent No. 6-273267A, 30 September 1994. [Google Scholar]
- Bass, M.; Van Stryland, E.W.; Williams, D.R.; Wolfe, W.L. Handbook of Optics; McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Sharma, K.K. Optics: Principles and Applications; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Ray, S. Applied Photographic Optics; Routledge: Oxfordshire, UK, 2002. [Google Scholar]
- Hiromitsu, M. Optical Pickup, Optical Information Reproducing Device and Optically Recorded Information Reproducing Device. JP Patent No. 2010-211842A, 24 September 2010. [Google Scholar]
- Lee, C.-W. Lens Device with Constant Magnification and Variable Focal Length, and Optical Pickup Device Using It. JP Patent No. 10-186224A, 14 July 1998. [Google Scholar]
- Mouroulis, P.; Macdonald, J. Geometrical Optics and Optical Design; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Iga, K.; Kokubun, Y. Encyclopedic Handbook of Integrated Optics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ryu, J.M.; Kim, Y.S.; Jo, J.H.; Kang, G.M.; Lee, H.J.; Lee, H.K. Statistical Analysis of Focus Adjustment Method for a Floating Imaging System with Symmetric Error Factors. Korean J. Opt. Photon. 2012, 23, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Gross, H.; Blechinger, F.; Achtner, B. Handbook of Optical Systems; Wily-VCH Verlag GmbH & Co: Hoboken, NJ, USA, 2005. [Google Scholar]
- Choi, H.; Choe, S.-W.; Ryu, J.-M. A Macro Lens-Based Optical System Design for Phototherapeutic Instrumentation. Sensors 2019, 19, 5427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.H. Converter Lens System. KR Patent No. 10-1862451, 23 May 2018. [Google Scholar]
- Ullah, M.; Pratiwi, E.; Park, J.; Lee, K.; Choi, H.; Yeom, J. Wavelength discrimination (WLD) TOF-PET detector with DOI information. Phys. Med. Biol. 2019, 65, 055003. [Google Scholar] [CrossRef]
- Ullah, M.N.; Park, C.; Pratiwi, E.; Kim, C.; Choi, H.; Yeom, J.-Y. A new positron-gamma discriminating phoswich detector based on wavelength discrimination (WLD). Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 946, 162631. [Google Scholar] [CrossRef]
- Seo, S.H.; Ryu, J.M.; Choi, H. Focus-Adjustable Head Mounted Display with Off-Axis System. Appl. Sci. 2020, 10, 7931. [Google Scholar] [CrossRef]
- Choi, H.; Ryu, J.-M. Photo-Acoustic Applications Using a Highly Focused Macro Lens. J. Med. Imaging Health Inf. 2017, 7, 25–29. [Google Scholar] [CrossRef]
- Choe, S.-W.; Park, K.; Park, C.; Ryu, J.; Choi, H. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell. Comput. Assist. Surg. 2017, 22, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Jung, J. Paraxial Design and Locus Analysis of Zoom Lens System. Ph. D. Thesis, Kyungnam University, Changwon, Korea, 1994. [Google Scholar]
- Choi, H.; Ryu, J.; Yoon, C. Development of novel adjustable focus head mount display for concurrent image-guided treatment applications. Comput. Assisted Surg. 2017, 22, 163–169. [Google Scholar] [CrossRef]
- Pedrotti, F.L.; Pedrotti, L.S. Introduction to Optics; Prentice-Hall Englewood Cliffs: Hoboken, NJ, USA, 1993; Volume 2. [Google Scholar]
- Choi, H.; Ryu, J.; Yeom, J.-Y. A Cost-effective Light Emitting Diode-acoustic System for Preclinical Ocular Applications. Curr. Opt. Photonics 2018, 2, 59–68. [Google Scholar]
- Choi, H.; Ryu, J.M.; Kim, J.H. Tolerance Analysis of Focus-adjustable Head-mounted Displays. Curr. Op. Photon 2017, 1, 474–490. [Google Scholar]
- Choi, H.; Yeom, J.-Y.; Ryu, J.-M. Development of a Multiwavelength Visible-Range-Supported Opto–Ultrasound Instrument Using a Light-Emitting Diode and Ultrasound Transducer. Sensors 2018, 18, 3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.U. A Study for an Analytic Conversion between Equivalent Lenses. Korean J. Opt. Photon. 2012, 23, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Ryu, J.; Kim, J. A Novel Fisheye-Lens-Based Photoacoustic System. Sensors 2016, 16, 2185. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.M.; Gang, G.M.; Lee, H.K.; Lee, K.W.; Heu, M.; Jo, J.H. Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens. J. Opt. Soc. Korea 2015, 19, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jo, J.-Y.; Ryu, J.-M. A Novel Focal Length Measurement Method for Center-Obstructed Omni-Directional Reflective Optical Systems. Appl. Sci. 2019, 9, 2350. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jo, J.; Ryu, J.-M.; Yeom, J.-Y. Ultrawide-angle optical system design for light-emitting-diode-based ophthalmology and dermatology applications. Technol. Health Care 2019, 27, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Ryu, J.-M.; Yeom, J.-Y. Development of a Double-Gauss Lens Based Setup for Optoacoustic Applications. Sensors 2017, 17, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Ju, Y.J.; Jo, J.H.; Ryu, J.-M. Chromatic aberration free reflective mirror-based optical system design for multispectral photoacoustic instruments. Technol. Health Care 2019, 27, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.N.; Park, Y.; Kim, G.B.; Kim, C.; Park, C.; Choi, H.; Yeom, J.-Y. Simultaneous Acquisition of Ultrasound and Gamma Signals with a Single-Channel Readout. Sensors 2021, 21, 1048. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.S.; Choi, H. Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes. Technol. Health Care 2021, 29, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Ryu, J. Design of Wide Angle and Large Aperture Optical System with Inner Focus for Compact System Camera Applications. Appl. Sci. 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Choe, S.-w.; Ryu, J. Optical Design of a Novel Collimator System with a Variable Virtual-Object Distance for an Inspection Instrument of Mobile Phone Camera Optics. Appl. Sci. 2021, 11, 3350. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Lim, W.; Yang, Y.-M. Active-beacon-based driver sound separation system for autonomous vehicle applications. Appl. Acoust. 2021, 171, 107549. [Google Scholar] [CrossRef]
- Shin, S.-H.; Yoo, W.-S.; Choi, H. Development of Public Key Cryptographic Algorithm Using Matrix Pattern for Tele-Ultrasound Applications. Mathematics 2019, 7, 752. [Google Scholar] [CrossRef] [Green Version]
- Chaves, J. Introduction to Nonimaging Optics; CRC press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Kim, K.M.; Choe, S.-H.; Ryu, J.-M.; Choi, H. Computation of Analytical Zoom Locus Using Padé Approximation. Mathematics 2020, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, K. Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Choi, H.; Ryu, J.-M.; Choe, S.-W. A novel therapeutic instrument using an ultrasound-light-emitting diode with an adjustable telephoto lens for suppression of tumor cell proliferation. Measurement 2019, 147, 106865. [Google Scholar] [CrossRef]
Distance | z0 | z1 | z2 | z3 | z4 | Δz | m |
---|---|---|---|---|---|---|---|
Infinity | 5 mm | 85 mm | 2 mm | 10 mm | 20 mm | 0 mm | −0.03 |
Near | 5 mm | 80 mm | 15 mm | 2 mm | 20 mm | 0.0816 mm | −0.03 |
Solution 1 | Solution 2 | Solution 3 | Solution 4 | |
---|---|---|---|---|
f1 = 1/k1 | −3.230 mm | 4.670 mm | −6663.425 mm | 4.705 mm |
f2 = 1/k2 | 28.040 mm | 0.094 mm | −92.489 mm | 0 mm |
f3 = 1/k3 | 87.941 mm | −22.961 mm | −48.026 mm | 1.663 mm |
f4 = 1/k4 | −17.202 mm | 11.759 mm | 33.909 mm | 0.129 mm |
Cam Angle | Object | Group 1 | Group 2 | Group 3 | Group 4 | Image | Δz | Mag. |
---|---|---|---|---|---|---|---|---|
0 (infinity) | 10 | 3.592 | 6.821 | 14.331 | 10.666 | 4 | 0 | 0 |
0.1 | 10 | 3.614 | 7.912 | 13.218 | 10.666 | 4.008 | 0.008 | −0.002 |
0.3 | 10 | 3.657 | 9.994 | 11.093 | 10.666 | 4.024 | 0.024 | −0.006 |
0.5 | 10 | 3.508 | 12.160 | 9.076 | 10.666 | 4.040 | 0.040 | −0.010 |
0.7 | 10 | 3.089 | 14.509 | 7.146 | 10.666 | 4.057 | 0.057 | −0.014 |
1.0 (near) | 10 | 1.914 | 18.435 | 4.395 | 10.666 | 4.081 | 0.081 | −0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chee, S.; Ryu, J.; Choi, H. New Optical Design Method of Floating Type Collimator for Microscopic Camera Inspection. Appl. Sci. 2021, 11, 6203. https://doi.org/10.3390/app11136203
Chee S, Ryu J, Choi H. New Optical Design Method of Floating Type Collimator for Microscopic Camera Inspection. Applied Sciences. 2021; 11(13):6203. https://doi.org/10.3390/app11136203
Chicago/Turabian StyleChee, Seonkoo, Jaemyung Ryu, and Hojong Choi. 2021. "New Optical Design Method of Floating Type Collimator for Microscopic Camera Inspection" Applied Sciences 11, no. 13: 6203. https://doi.org/10.3390/app11136203
APA StyleChee, S., Ryu, J., & Choi, H. (2021). New Optical Design Method of Floating Type Collimator for Microscopic Camera Inspection. Applied Sciences, 11(13), 6203. https://doi.org/10.3390/app11136203