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Abstract: Accurate tumor segmentation is important for aided diagnosis using breast ultrasound.
Interactive segmentation methods can obtain highly accurate results by continuously optimizing the
segmentation result via user interactions. However, traditional interactive segmentation methods
usually require a large number of interactions to make the result meet the requirements due to the
performance limitations of the underlying model. With greater ability in extracting image information,
convolutional neural network (CNN)-based interactive segmentation methods have been shown to
effectively reduce the number of user interactions. In this paper, we proposed a one-stage interactive
segmentation framework (interactive segmentation using weighted distance transform, WDTISeg)
for breast ultrasound image using weighted distance transform and shape-aware compound loss.
First, we used a pre-trained CNN to attain an initial automatic segmentation, based on which the
user provided interaction points of mis-segmented areas. Then, we combined Euclidean distance
transform and geodesic distance transform to convert interaction points into weighted distance
maps to transfer segmentation guidance information to the model. The same CNN accepted the
input image, the initial segmentation, and weighted distance maps as a concatenation input and
provided a refined result, without another additional segmentation network. In addition, a shape-
aware compound loss function using prior knowledge was designed to reduce the number of user
interactions. In the testing phase on 200 cases, our method achieved a dice of 82.86 ± 16.22 (%) for
automatic segmentation task and a dice of 94.45 ± 3.26 (%) for interactive segmentation task after
8 interactions. The results of comparative experiments proved that our method could obtain higher
accuracy with fewer simple interactions than other interactive segmentation methods.

Keywords: interactive image segmentation; breast ultrasound; weighted distance transform; prior
knowledge

1. Introduction

Breast cancer is one of the leading causes of death in women around the world
and diagnosing breast cancer in its early stages will always remain crucial [1,2]. Breast
ultrasound is widely used in clinical diagnosis for its advantages of safety and low cost.
Generally, accurate tumor segmentation is necessary and significant for precise diagnosis
using breast ultrasound. However, fully automatic segmentation methods are difficult
to obtain accurate results that can meet clinical analysis standards [3]. This is mainly
related to the poor quality of the ultrasound images, but also to the limitations of the
segmentation model. Compared to automatic segmentation methods that gives results at
once, the advantage of interactive segmentation is that the user provides prior knowledge
about the object through interactions to guide the refinement of the segmentation result [4].
In a real clinical situation, each patient may have multiple ultrasound images, and it
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is unrealistic to use manual annotation of tumor boundaries for all of them. Therefore,
interactive segmentation tools with fast implementation of high accuracy segmentation
have a significant meaning for clinical use.

There are three key points of excellent interaction segmentation of medical images:
simple type of interactions, efficient interaction information transfer, and the use of prior
knowledge. Existing interactive segmentation methods have different types of interactions,
which can be divided into providing points [5–9], scribbles [10–16], a bounding box (BB), or
a polygon box (PB) [11,17]. Among these ways, providing scribbles, BB and PB require the
user to swipe the mouse pointer over the image for a long time, while clicking on points
is intuitively the easiest interaction type. Interaction information transfer refers to the
way of using user interactions to guide the segmentation. Most of the existing interaction
segmentation methods use Gaussian probability maps, distance transforms, etc., to transfer
user interaction information to the segmentation mode. However, they cannot utilize both
the location information of interaction points and the contextual information of the image.
Since human interaction is actually providing prior information to the network, using prior
information in the model can reduce the number of user interactions but few ways take
advantage of this.

Some conventional interactive segmentation methods are based on graph theory. The
graph cuts [10] method uses the Gaussian mixture model (GMM) as the underpinning
model and needs the user’s scribbles for refinement. In this method, a large number of
scribbles are needed before getting a satisfactory accuracy. GrabCut [11] requires the user
to provide a bounding box to limit the region of interest (ROI) to take less scribbles, but its
performance is poor on medical images as graph cuts [10] on account of the same GMM
model. The Random walker segmentation method [12] uses random walker as the basic
model to attain a refined result. These three methods all require a lot of user interactions
due to the poor performance of underpinning model. In 2007, Bai et al. proposed an
interactive framework [13] using geodesic distances to convert user-provided scribbles, so
that the target could be automatically segmented. This was the first method to use geodesic
distance transform for interactive segmentation, while some subsequent methods [14–16]
have improved on this. However, all of them only perform well on images with large
differences between foreground and background, because the geodesic distance focuses on
the gradient information of the original image.

In order to break through the limitations of traditional method, interactive segmenta-
tion methods based on CNNs have been proposed. Xu et al. [5] converted user’s interaction
points into Euclidean distance maps based on foreground and background points. The five-
channel image (original RGB channels and two distance transform map) was used as the
input of a full convolutional network (FCN) to obtain the segmentation result. Euclidean
distance transform is concerned with the location information of interaction points and
cannot utilize image contexts information. BIFSeg [6] uses an image segmentation method
similar to GrabCut [11]. The user first draws a boundary box as the input for CNN to obtain
an initial result. Then, image-specific fine-tuning conducts CNN to improve segmentation
results. DeepIGeoS [7] firstly proposes using geodesic distance maps as part of the input
for CNNs. Geodesic distance maps can reflect the grayscale texture information of the
original image by calculating the shortest distance from the full image to a specific point,
so that CNNs can identify mis-segmentations of foreground and background from the
input data to refine the segmentation result. However, it is sensitive to the contrast and
spatial information of the image, and lacks the importance of clearly indicating the location
information of the interaction point. For example, in the case of blurred tumor boundary,
the geodesic distance near the boundary does not change significantly due to the small
image gray gradient change, while the Euclidean distance is only related to the locations
of interactions and not influenced by the quality of the original image. This means that
the Euclidean distance is more effective than the geodesic distance in pointing out the
misalignment area. Therefore, there is an urgent need for a method that combines the
advantages of both distance transforms.



Appl. Sci. 2021, 11, 6279 3 of 13

In this paper, we proposed a one-stage interactive segmentation framework for breast
ultrasound image based on the above three key points. Compared with existing two-stage
interactive segmentation networks [6,7] to refine the result of automatic segmentation
network, our method has several advantages. First, our method can use the same CNN
network (I-net) to obtain the automatic segmentation and refined results in turn. We trained
I-net on automatic segmentation task to ensure that it could provide an initial segmentation
when inputting the only original image. Second, our method has more effective interaction
information transfer. We proposed a weighted distance transform combined geodesic
distance and Euclidean distance transforms, which means the distance map could reflect
both the texture information near the object area and the location information of the
interaction points in the whole image. Third, our method can reduce the number of
interactions for the use of prior information in the training phase. We referred to the
proposed framework as the interactive segmentation using weighted distance transform
(WDTISeg).

The main contributions of the proposed method are as follows:
(1) We proposed a one-stage interactive segmentation framework for breast ultrasound

image segmentation, which is the first method to use a network to get both automatic and
interactive segmentation. The training process was greatly simplified because no additional
automatic segmentation network was required to provide the initial results;

(2) We proposed to convert user interactions into maps with weighted distance trans-
form which combines geodesic distance and Euclidean distance transforms. This combi-
nation can effectively convey both location information of interaction points and exploit
image contexts knowledge;

(3) We proposed a shape-aware compound loss function using the prior knowledge of
breast tumors in the training phase to reduce the number of interactions. The compound
loss function improved the accuracy of model segmentation while avoiding oscillation and
overfitting in the training process.

2. Methods
2.1. Proposed Framework

Figure 1 shows the pipeline of the proposed framework WDTISeg for interactive
segmentation. I-net is the backbone segmentation network of the framework with input
data of four channels. It was pre-trained for automatic segmentation task.

Figure 1. Framework of the proposed method WDTISeg. The cyan dots and red dots in the segmentation represent
foreground points and background points, respectively. The number below each block is the number of feature maps.

Firstly, the input image was put into I-net to obtain an initial automatic segmentation,
while the other three channels were all zero. Secondly, the user provided interaction points
of foreground and background on mis-segmented regions according to the initial segmen-
tation. Then these interaction points were converted into the foreground distance map
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(cyan) and the background distance map (red) by weighted distance transform, as shown
in Figure 1. Finally, the input image, the initial segmentation, and two distance maps were
concatenated before being put into I-net to attain a refined segmentation. This interactive
process was repeated until we attained a segmentation with satisfactory accuracy.

2.2. The Structure of I-Net

It should be noted that I-net attains automatic segmentation and interactive segmenta-
tion depending on the form of the input data. When the image is first fed into the network,
neither the initial segmentation nor distance maps exist, so I-net provides an output of
automatic segmentation. Compared with two-stage interactive segmentation methods
or refined segmentation methods, such as DeepIGeoS [7], our method does not need an
additional CNN to obtain an initial segmentation, making our model lighter and easy
to train.

Figure 1 also shows details of I-net in our method. The network received a four-
channel data as input to predict the segmentation result. As shown in Figure 1, I-net is
designed based on U-net [18] with an encoder–decoder architecture.

I-net improved U-net [18] in several parts to fit our segmentation tasks. We used
group normalization [19] to replace batch normalization [20] to make normalization free
from the dependence on batch size. In addition, we used the leaky ReLu [21] layer instead
of the ReLu [22] layer to solve the problem of dead neuron while retaining the advantages
of ReLu function. Leaky ReLu is defined as follows:

Leaky ReLU(x) =
{

x, if x ≥ 0
αx, if x < 0

, (1)

where the α was set to 0.2 in this work.
To avoid the noise in the input image introduced by the shallow layers’ skip connec-

tion to affect the segmentation results, I-net retained only two middle skip connections
compared to U-net. These two skip connections aimed to utilize the combination of low-
level features and high-level information to achieve better segmentation of tumor margins.
At the last stage of the decoder, a convolution layer with one filer was used to attain the
final segmentation.

2.3. Weighted Distance Transform

We proposed a weighted distance transform to convert user interactions into distance
maps. An image can be regarded as an undirected graph with weight. Each pixel is a node
and the grayscale difference between neighboring pixels is the weights of the edge. In
graph theory, the geodesic distance is the distance of the shortest path between two nodes
in a graph, so the geodesic distance map can reflect the grayscale texture information of
the original image. The Euclidean distance is the shortest distance between two points in
geometric space.

Let i and j be two different pixels in an image I, then the unsigned geodesic distance
between i and j is:

DGeo(i, j, I) = min
p∈Pi, j

∫ 1

0
‖ ∇I(p(s)·u(s)) ‖ ds, (2)

where Pi, j is the set of all paths between pixel i and j. p(s) is one feasible path and it
is parameterized by s ∈ [0, 1]. u(s) is a unit vector that is tangent to the direction of
p(s) [7,13,14].

The unsigned Euclidean distance between i and j is:

DEuc(i, j, I) =
√(

xi − xj
)2

+
(
yi − yj

)2, (3)
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When we combine the two distances, let the weighted distance between pixel i and
j be:

Dw(i, j, I) = λ · DGeo(i, j, I) + (1− λ) · DEuc(i, j, I), (4)

where λ is a hyperparameter that requires experimental verification. Weighted distance
turns into Euclidean distance when λ = 0, and geodesic distance when λ = 1, respectively.

Suppose S f and Sb represent the foreground points set and the background points set,

respectively. Then the unsigned weighted distance from i to the points set S (S ∈
{

S f , Sb

}
is:

G(i, S, I) = min
j∈S

Dw(i, j, I), (5)

There are already many algorithms in computer science for solving optimization
Equation (3), such as the Floyd’s algorithm, the Dijkstra’s algorithm [23], and the fast
marching algorithm [24]. Here we use fast marching for its speediness. The geodesic
distance map was set to all zeros if no points in the foreground region and background
region were clicked. Figure 2 shows an example of weighted distance maps when λ in (4)
takes different values.

Figure 2. An example of weighted distance maps when λ in (3) takes different values. The green
point is the foreground interaction point.

2.4. Training and Testing of I-Net

For fast and efficient model training, we used automatically generated simulated
interaction points in the model training phase, while interaction points were obtained by
user clicks on images in the testing phase.

2.4.1. Training

In the training phase, in order to quickly and automatically build the model for
interaction segmentation, we generated interaction points that simulated the user’s clicks
by comparing the ground truth ( fy) with the initial segmentation ( fx). The subtraction of
the two images could provide a mis-segmented foreground region and background region,
as shown in (6).

fz = fx − fy

{
background region, fz < 0
foreground region, fz > 0

, (6)

Then user interaction points can be automatically generated from each mis-segmentation
region by randomly sampling n pixels in that region. The number of pixels of the region is
N. In this work, n was determined as the follow function (7) by experience.

n =

{
0, N < 100

ceil
(

N
500

)
, other

, (7)

where ceil(x) returns the smallest integer value greater than or equal to x.
Figure 3 shows some examples of simulated interaction points in the training phase.
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Figure 3. Examples of simulated interaction points in the training phase. The yellow and green lines
are the contours of the ground truth and the previous segmentation, respectively. The cyan and red
points are foreground and background interaction points, respectively.

2.4.2. Testing

Interaction points in the testing phase are obtained by the operator by clicking on
the mis-segmented region as shown in Figure 4. Instead of having a ground truth in the
training phase, the user clicks with points on mis-segmented areas with prior knowledge.
In each interaction phase, the user should give one foreground point and one background
point with reference to the initial segmentation from P-net or the segmentation result of
previous interaction.

Figure 4. The process of getting interaction points in the testing phase. (a) The input image with the
initial segmentation (green line); (b) the foreground point (cyan) and background point (red) given by
the user interaction; (c) the foreground point distance map; (d) the background point distance map.

As shown in the framework shown in Figure 1, the interaction process continues
until the user is satisfied with the result of the segmentation or the maximum threshold of
interactions is reached, which was set to 8 in our study.

2.5. Loss Function

Incorporating prior knowledge into the loss function is important to improve seg-
mentation accuracy and reduce the number of user interactions [25]. By observing breast
tumors in ultrasound images, we found some prior knowledge that is useful for tumor
segmentation. First, most tumors are actually compact contiguous domains. Some benign
tumors are even closer to round or ellipse shapes. Second, the physician usually ensures
that only one tumor remains on the image when saving the breast ultrasound. Even when
there are two or more tumors on the image, they can be separated by cropping the image.

Based on the above findings, we proposed a shape-aware compound loss function
Ltotal to incorporate prior knowledge with CNN. As defined in (8), Ltotal is composed by
binary cross entropy loss (LBCE), dice loss (LDice), and shape constraint loss (LSC).

Ltotal = LBCE − log(1−LDice) +ω·LSC, (8)

whereω is the weight of LSC.
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Here LSC is the loss function we used for the shape constraint:

LSC =
P2

4πS
, (9)

where S and P are the area and the perimeter of the prediction segmentation.
When the predicted tumor shape is circular, the loss LSC is the minimum value of

1. Since the tumor area is compact and connected, the loss LSC is be greater than 1 when
multiple areas are segmented or the tumor shape is dispersed. Since the shape constraint
itself converges to 1 when the shape is a circle, in order to use only its compact shape
constraint function without affecting the overall segmentation effect,ω takes 0.05 here.

Cross entropy (CE) is commonly used as a loss function in deep learning and binary
cross entropy (BCE) can be used as a loss function in binary classification tasks. The formula
for BCE is as follows:

LBCE = −Y log(X)− (1−Y) log(1− X), (10)

where X and Y represent the segmentation of the method and the ground truth, respectively.
Dice loss is a dice-based loss function. The reason why dice loss is sometimes directly

used as the loss function is that the real goal of segmentation is to maximize the dice
coefficient. In general, the use of dice loss has a negative impact on back propagation and
tends to make the training unstable.

LDice = 1−Dice = 1− 2|X ∩Y|
|X|+ |Y| , (11)

where X and Y represent the same things with (10).

3. Experiments Results and Discussion
3.1. Setting

A dataset of 2200 breast ultrasound images was acquired in Fudan University Shang-
hai Cancer Center, Shanghai, China from January 2019 to December 2019. The equipment
used to obtain ultrasound images included the Aixplorer ultrasound system (SuperSonic
Imagine S.A., Aix-en-Provence, France) at 7–15 MHz and the Resona 5S ultrasound system
(Shenzhen Mindray Bio-Medical Electronics Co. Ltd., Shenzhen, China) at 5–14 MHz. All
images were stored in DICOM format. Each ultrasound image has a tumor segmentation
that has been precisely outlined by an experienced radiologist as the ground truth. The
image size range is from 721 × 496 to 931 × 606. All images are resized to 256 × 256 before
being fed into the network.

All images are arranged in chronological order of the patients’ diagnosis. We used
the first 2000 cases for training and the remaining 200 cases for testing, which ensured the
independence of the patients in our training dataset and testing dataset.

For the quantitative evaluation, our work employed the dice value (dice) (%).

Dice =
2|X ∩Y|
|X|+ |Y| , (12)

where X and Y represent the same qualities as in (10).

3.2. Implementation Details This Is Example 1 of an Equation

Adam [26] with a learning rate at 3× 10−4 was used to be the optimizer in the training
stage. The batch size was 32 and the ratio of validation was set to 20% (200 cases). The
model was trained for 50 epochs and only saved at the best validation loss. We trained and
tested our interactive network using an Intel(R) Xeon(R) Gold 6130 CPU at 2.10 GHz and
an NVIDIA TESLA V100 (32G).
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Our WDTIseg was at low cost during the training and testing phases. In the training
phase, WDTIseg was trained with different λ and loss functions, while the average training
time was 624.6 s. The model size was 385 Mb. In the testing phase, the time from the
input image put into the network to attain the final segmentation after 8 interactions was
recorded, while the average cost was 17.6 s.

3.3. Performance on Automatic Segmentation Task

Our proposed framework WDTISeg could both obtain automatic segmentation and
refine results based on interactions. To demonstrate that our method did not require an
additional training of an automatic segmentation network to obtain the initial segmentation,
we compared the automatic segmentation results of U-net and WDTISeg.

Table 1 shows automatic segmentation results of U-net and WDTISeg. The dice of
automatic segmentation results of WDTISeg was 82.86± 16.22 (%), better than that of U-net.
In the automatic segmentation examples in Figure 5, it is clear that the results of WDTISeg
were similar to U-net, and the segmentation results were even slightly more compact.

Table 1. A comparison of dice values of the final segmentation results after 8 interactions. Automatic
segmentation results of U-net and WDTISeg are presented to reflect the gain of the interactive
segmentation methods.

Methods Dice (%)

U-net (automatic) 80.50 ± 18.78
WDTISeg (automatic) 82.86 ± 16.22

Graph cuts 82.46 ± 15.53
Random walker 85.16 ± 13.85

DeepIGeoS (R-net) 92.49 ± 7.05

WDTISeg (λ = 0, Ltotal) 92.28 ± 7.13
WDTISeg (λ = 0.25, Ltotal) 93.89 ± 4.70
WDTISeg (λ = 0.5, Ltotal) 94.45 ± 3.26
WDTISeg (λ = 0.75, Ltotal) 93.54 ± 3.63

WDTISeg (λ = 1, Ltotal) 92.87 ± 6.09
WDTISeg (λ = 0.5, LDice) 92.17 ± 7.29
WDTISeg (λ = 0.5, LBCE) 93.01 ± 6.46

WDTISeg (λ = 0.5, LDice+BCE) 93.54 ± 3.63

Figure 5. The automatic segmentation results of U-net and WDTISeg.

These prove that WDTISeg can still have comparable automatic segmentation perfor-
mance to U-net after interactive segmentation training.



Appl. Sci. 2021, 11, 6279 9 of 13

Our study focused on improving automatic segmentation-based refinement, and
for the first time, we proposed that the interactive segmentation network can generate
the initial segmentation results by itself without the need to train additional automatic
segmentation networks.

3.4. Impact of the Factor λ in Weighted Distance Transform

To verify the effectiveness of combining the two distance transforms, we compared
the single interaction results when λ took different values. Different values represent the
different weights of the two distance transforms. The weighted distance became Euclidean
distance completely when λ took 0, and Geodesic distance completely when λ took 1.
However, we used the same user interactions during the experiment.

As can be seen from Table 1, the interactive segmentation method performed much
better than the conventional automatic segmentation method U-net, by as much as 10%.
Our method with the parameter λ = 0.5, Ltotal achieved a dice score of 94.45 ± 3.26% and
it performed better than the other four values of λ. By fixing the loss function to be Ltotal,
we can see that the results when λ was t between 0 and 1 were better than both 0 and 1.
This proved that combining the two distance conversions can perform better than using
either method alone on an interactive segmentation task.

Figure 6 shows a comparison of the segmentation results of our method with different
values of λ by given the same user interaction points. The upper case 1 is a tumor with an
obscure border, where the interaction point location information is more important than the
texture information. In this case, the performance of Euclidean distance transform should
be better than Geodesic transform, which is as the same in Figure 6. In the lower case 2,
the tumor boundary is obvious, but it has a mis-segmentation outside the tumor. This
requires both texture information to ensure correct segmentation of the tumor region and
interaction point location information to instruct the network to remove mis-segmented
regions outside the tumor. Therefore, λ of 0.5 is better than any other value in case 2. This
proves that the combination of our two distance transforms is beneficial in dealing with
tumors in different cases.

Figure 6. The segmentation results of WDTISeg having different values of λ by given the same user
interaction points.

The combination of Euclidean distance transform and geodesic distance transform can
both convey the location information of interaction points and make use of image context
information. The experimental results demonstrate that this combination improves the
stability of the segmentation model to cope with images that are difficult to segment.

3.5. Effect of Proposed Loss Function

We explored the effect of our involved loss function by observing the dice rate on
the training and validation datasets, as shown in Figure 7. On the plot of dice rate on the
training dataset, LDice(Dice loss) achieved the best performance, while Ltotal (BCE + Dice +
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SC loss) came second. The reason why LDice performed well on the training set is that the
network used dice as the evaluation metric, and the network maximizes dice by optimizing
the network structure during training. However, the dice rate of LDice on the validation
dataset had a sharp oscillation. This is mainly because LDice is a region-dependent loss,
and if some pixels of a small target are incorrectly predicted, then it will lead to a significant
change in the loss value, which will result in a drastic change in the gradient.

Figure 7. Dice rate on the training (left) and validation datasets (right) of different loss functions.

Compared with other three loss functions, Ltotal incorporating prior knowledge
achieves optimality on the validation set and does not show more intense oscillations
after epochs greater than 30. The BCE loss used for dichotomous classification is insensitive
to category imbalance, so it can prevent the oscillation due to LDice to some extent. On
the other hand, the loss function LSC based on compact shape constraint utilizes prior
information of tumor shape, and thus can improve the accuracy of segmentation. Note that
LSC converges to 1 at the minimum when the tumor is circular, so it cannot be used as a
segmentation loss function alone.

The purpose of introducing a subjective human into the segmentation process is to
use human’s prior knowledge as a supplement to improve the segmentation accuracy. In
the interactive segmentation task, human is both the participant in the interactive seg-
mentation process, the prior information provider, and also the evaluator of segmentation
results without the ground truth. In the interaction segmentation task, we may learn from
the few-shot learning which has been widely used machine learning classification task.
Human guides segmentation on a few simple images so that the network can master the
segmentation skills, further reducing the training time and human interaction time.

3.6. Quantitative Comparison of Different Methods

We evaluated WDTISeg with graph cuts, random walker, and DeepIGeoS (R-net).
Table 1 presents a quantitative comparison of these methods on the testing data. All results
are accepted after 8 interactions for the interactive segmentation method. Compared with
the other three methods, the dice of WDTISeg (λ = 0.5, Ltotal) reached 94.45 ± 3.26 (%)
after 8 interactions, which fully shows that our method can achieve a high segmentation
accuracy with fewer interactions.

Visual comparison results are shown in Figure 8. All interactive segmentation methods
can attain a high accurate segmentation after enough interactions. However, results of
graph cuts and random walker showed more rough edges. In contrast, our method was
able to obtain a segmentation that fit more closely to the tumor margin. What is more,
our WDTISeg only required simple point clicks, while graph cuts and GrabCut require
more scribbles or a bounding box. The results of DeepIGeoS are more similar to that of
our method, because we also used distance conversion to pass interaction information.
However, it can be found that the segmentation result of our method was smoother at the
tumor edge, especially at the lower right corner of case 4. This may benefit from the fact
that we used a shape constraint loss to impose prior constraints on tumor shape.
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Figure 8. Visual comparison for breast ultrasound image segmentation. All results were the final
result accepted after 8 interactions.

4. Conclusions

In this paper, we proposed a one-stage interactive segmentation framework (WDTISeg)
for breast ultrasound image segmentation. The ultrasound image was put into the network
first to attain an initial segmentation, on which user interaction points were provided
to indicate mis-segmentations. Interaction points were converted into distance maps by
weighted distance transform to be part of input of the interactive network. The one-stage
network of point interaction made the interaction simpler. The loss function designed for
the clinical prior knowledge of breast cancer further improved the segmentation accuracy.
Comparison with other methods on the test dataset demonstrated the advantages of the
proposed method.

However, our method had limitations in combining the two distance transforms.
In this paper, in order to verify the usefulness of combining two distance conversion
methods, different ratios were tried to conduct experiments, and the experimental results
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proved in general that combining two methods helps to improve the segmentation accuracy.
Considering the differences of different ultrasound images, the most suitable combination
ratio should be different for each image. If an optimal ratio value can be obtained adaptively
according to the characteristics of the ultrasound image itself, thus attaining the best
segmentation result, it will further improve the segmentation accuracy and enhance the
segmentation robustness.
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