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Abstract: Short-term electric power forecasting is a tool of great interest for power systems, where
the presence of renewable and distributed generation sources is constantly growing. Specifically,
this type of forecasting is essential for energy management systems in buildings, industries and
microgrids for optimizing the operation of their distributed energy resources under different criteria
based on their expected daily energy balance (the consumption–generation relationship). Under
this situation, this paper proposes a complete framework for the short-term multistep forecasting
of electric power consumption and generation in smart grids and microgrids. One advantage of
the proposed framework is its capability of evaluating numerous combinations of inputs, making
it possible to identify the best technique and the best set of inputs in each case. Therefore, even
in cases with insufficient input information, the framework can always provide good forecasting
results. Particularly, in this paper, the developed framework is used to compare a whole set of
rule-based and machine learning techniques (artificial neural networks and random forests) to
perform day-ahead forecasting. Moreover, the paper presents and a new approach consisting of the
use of baseline models as inputs for machine learning models, and compares it with others. Our
results show that this approach can significantly improve upon the compared techniques, achieving
an accuracy improvement of up to 62% over that of a persistence model, which is the best of the
compared algorithms across all application cases. These results are obtained from the application of
the proposed methodology to forecasting five different load and generation power variables for the
Savona Campus at the University of Genova in Italy.

Keywords: short-term forecasting; multistep forecasting; artificial neural networks; renewable energy
sources; smart grids; microgrids

1. Introduction

During the last few years, the presence of renewable energy generation has increased
significantly within power systems [1]. These renewable generators are usually organized
as small, mini, or micro power plants, but they are also used as complementary generation
devices for consumers. Notably, the increasing presence of renewables marks a large
change from a traditional centralized generation system to a distributed system. This trend
is based on the distributed generation (DG) paradigm [2]. This paradigm is one of the key
points in the smart grid sector [3–5] and is characterized by better control of all connected
resources (including consumers and producers) and other goals [6], coverage of the whole
system, and the application of artificial intelligence techniques [7].

In the DG paradigm, active sources are connected directly to the distribution network,
permitting them to be nearer to consumption points [8]. These elements are usually called
distributed energy resources (DERs). Moreover, the DER concept is not only associated with
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generation systems [9] but also with the coverage of storage [10,11] and even controllable
loads [12,13]. In this sense, electric vehicles (EVs) can also be considered DERs, adding
to the difficulty of being a mobile load [14–16]. Traditionally, all these DERs have been
coordinated by energy management systems (EMSs).

Moreover, driven by current regulations [17], there is expected to be a rising tendency
toward the close participation of consumers in electricity and flexibility markets through
tools such as demand response (DR) services [13]. These markets could include aggregator
participation to simplify the management of resources [18].

Based on the aforementioned context, it can be identified that good forecasting of
power generation and consumption is essential at various network levels. For example,
transmission system operators (TSOs) and distribution system operators (DSOs) use fore-
casting to perform power system operation tasks [19,20]. Even the mentioned EMSs in
customer installations usually require the forecasting of some power consumption or gener-
ation metrics to optimize the use of resources under different criteria. These can be related
to energy efficiency in buildings [21] and microgrids [22], environmental and economic
improvements [23], or even the control of active and reactive power [24].

Based on this need, a complete framework for the multistep short-term forecasting of
electric power consumption and generation is proposed in this paper. Unlike other common
approaches found in the existing literature, the proposed framework performs day-ahead
forecasting at the start of the day without requiring online training. If online training is
used, where the observations from each day are used to update the model [25] (this is
also called “incremental learning”), the daily computational cost needs to be considered to
guarantee the applicability of the method [26].

Regarding the techniques for forecasting models, this framework proposes the use
of rule-based baselines or two machine learning techniques; a multi-layer perceptron
regressor (MLPR) and a random forest regressor (RFR).

The rule-based baseline methods include the proposal and definition of different
rules, where the number of previous days to be used can be specified, as well as whether
any distinction by day type will be applied. Despite baseline methods being typical
and classical prediction methods (some examples can be found in [27–29]), an important
number of variations and specifications are proposed and evaluated here, and these yield
the best results.

These proposed baseline models have been found to be useful not only as nonblack-
box methods but also as possible inputs for machine learning techniques. In this sense, the
previously proposed machine learning techniques have been evaluated under different
combinations of inputs, identifying which input sets achieve better results. Among the
evaluated input variables, the cross relationship between the power variables under study
has also been considered and exploited to improve the forecasting results. The inclusion
of this information is performed using what is called an “external baseline” (EXBL), i.e.,
adding a baseline of some other variable of the microgrid (e.g., load consumption) as an
input of a machine learning method; this idea is one of the proposals of the present paper.

The methodology of the proposed framework is applied in a study case to forecast
five different power variables (load, generation metrics of various types, and others) for
the Savona Campus of the University of Genoa in Italy.

The rest of the paper is organized as follows: Section 2 reviews state-of-the-art fore-
casting techniques for generation and load consumption. Section 3 presents the utilized
methodology, which is applied in the framework proposed in Section 4. Section 5 presents
the details of the case study, whose results are described in Section 6. Finally, the conclu-
sions are depicted in Section 7.

2. State-of-the-Art Methods

In the field of power forecasting, a wide variety of techniques and methods have been
proposed in the literature, and their ambit of application depends on the characteristics of
the forecast, such as the time aggregation and horizon of prediction.



Appl. Sci. 2021, 11, 6420 3 of 27

The two main types of forecasting are deterministic and probabilistic methods. Deter-
ministic forecasting results in point outputs, with one value at each step, while probabilistic
forecasting assigns probabilities to the various scenarios; these can be in the form of quan-
tiles, intervals, or density functions [30]. Both approaches are used in related existing
methods to obtain probabilistic forecasts from deterministic methods, such as bootstrapped
prediction intervals (BPIs) and quantile regression averaging (QRA) [31].

Regarding deterministic methods, an extensive summary of the different forecast-
ing approaches can be found in [32], where the authors review different electrical load
forecasting methods and analyze their convenience according to the time aggregation,
the time required for forecasting and the most convenient type of data used as input. In
particular, the analysis covers 113 different case studies reported across 41 academic papers.
The different methods are categorized as “regression” methods, “bottom up” approaches,
“artificial neural networks” (ANNs), “support vector machines”, “time series analysis”
methods, and other techniques used in mid-term forecasting. Additionally, several tables
and graphs are provided to show the situations in which these methods are most popular.

Reference [30] contains a review of the applications of probabilistic methods in load
forecasting. Despite these methods being of great interest, they present some additional
problems from the point of view of their evaluation processes, as the typical metrics used for
deterministic methods are not valid due to the existence of quantiles, prediction intervals or
confidence intervals. This is why some authors have proposed metrics such as the pinball
score or the Winkler score [30,33].

Due to these additional difficulties and considering that many energy management
applications are based on deterministic forecasts (for example, the abovementioned ap-
proaches [22–24]), the present paper is focused on deterministic methods, with the inclusion
of probabilistic techniques being a future research topic.

The types of techniques that can be found in the literature are dependent on the
ambit of application, such as the customer level, building level, renewable generation
units, microgrids of diverse sizes, distribution networks, or even market level (e.g., price
forecasting [31]).

In [34], J. Runge and R. Zmeureanu review the use of ANNs for forecasting energy
use in buildings. A list of found methods that select hyperparameters is also detailed,
including (i) heuristics (such as rules of thumb), (ii) cascade correlation, (iii) evolutionary
algorithms (EA) and (iv) automated architectural search. The comparison of reviewed
papers includes information about the time steps, forecast horizons, and error metrics
used by these methods. Other details about the limitations of ANN-based forecasting
are explained.

As previously mentioned, the influence of weather conditions is of high importance
due to the increasing use of renewable generation, such as solar and wind plants, which
present power generation effects that change with atmospheric conditions. For this reason,
many authors have studied how to consider these conditions to improve forecasting
methods. In this sense, reference [35] contains recommendations for the use of weather
data in microgrid-related forecasts. The authors especially recommend using real forecast
data (received from a public or commercial forecasting service) for modeling, not any other
synthetic dataset (i.e., data specifically designed for the given experiment with different
degrees of similarity relative to reality). The importance of clearly defining the error metrics
to be applied is also pointed out.

Regarding wind power generation, some approaches followed in existing studies for
short-term and ultrashort-term forecasting include the use of autoencoders and back propa-
gation [36], numerical weather prediction [37], and long short-term memory (LSTM) [38,39].
Thus, other approaches apply wavelet decomposition combined with machine learning
techniques [40].

In the field of photovoltaic generation, one study [33] presents a method for proba-
bilistic forecasting based on LSTM and quantile regression averaging (QRA). A 24-h-ahead
forecasting method based on synthetic weather forecasting and LSTM is applied in [41].
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In applications that are more focused on small customer forecasting, which mainly
includes load consumption, customer segmentation by type is a very common approach.
In [42], customers were divided into clusters to model and forecast the next 12 h of con-
sumption. The existence of photovoltaic generation on the customer side and its effect
on total consumption are also considered in [43]. In [44], a comparison of techniques was
performed over a single household using one month of data, showing the superiority of
machine learning techniques over linear regression. The inclusion of appliance (dishwash-
ers, televisions, etc.) measurements have been shown to be useful for discovering resident
behaviors and improving forecasting results, as described in [45].

Some examples of studies including buildings with greater consumption (such as
universities) can also be found in the literature. A study of power consumption forecasting
on a university campus is presented in [46] using conditional linear predictions. The
authors compare the performance of a method using between 1 and 96 bins (the number of
divisions in which a day is divided for forecasting), showing how an 8-bin division achieves
more accurate performance than the use of 96 bins. In [47], Y. Ding et al. present a prediction
model for campus buildings based on occupancy patterns. This is a good example of how
knowledge of building use can be of great interest for consumption prediction.

Finally, regarding applications at the distribution network level, ANNs are applied
in [48] to predict the maximum demand response over a secondary distribution network in
India. The aim is to avoid violations of the permitted contractual demand limit by utilities.
The study of consumption peaks is of particular interest for congestion management
applications. Due to their importance and their difference from other more general forecasts,
some authors have proposed specific methods and evaluation metrics for peak predictions,
as in [49], where the proposed metric reduces penalization in cases of peak deviations
between the real data and the forecasts.

Many of these papers propose the use of artificial intelligence techniques, such as
those used in the present paper, to perform forecasting. This type of method has been
shown to obtain better results than other classical methods (such as statistical methods)
in many situations. However, it is worth mentioning that in some cases, artificial intel-
ligence methods constitute black-box models, so their behaviors sometimes cannot be
easily explained.

In this regard, some authors have proposed the use of rule-based methods that intro-
duce expertise-based knowledge to permit the extrapolation of models in some cases [50]
or that substitute black-box models by others that are more understandable [51].

Another type of forecasting model includes baselines, which are frequently obtained
from the measurements taken on some previous similar days [30,49] or from similar groups
of customers [52]. In the context of new flexible service applications, baseline models
could be considered good approaches for obtaining the expected consumption levels of
customers, making it possible to evaluate their availability and audit their performance in
flexible service scenarios. This interest is clearly stated by the European Commission in [53]:
“Since flexibility (by definition) cannot be measured, a baseline is needed to quantify the
delivered flexibility”. They also point out some recommendations regarding the design
and implementation of baselines, such as the avoidance of inaccurate or biased baselines.
Complex baseline methodologies could also impact the reproducibility, transparency,
and implementation costs [53] of the processes. Despite the interest that these methods
have generated, in many studies, they are usually reserved for conducting performance
comparisons with more complex models (i.e., used as reference methods).

In this sense, while artificial intelligence methods have been shown to be particularly
useful and accurate for consumption prediction, many of their techniques are based on
black-box models. This fact becomes a drawback in some situations, such as in auditory
processes or agreements (as, for example, in [54]), as poor interpretability could result
in nontransparent contracts, where the expected consumption or generation could be
biased due to the intrinsic nature of the AI model. Therefore, the present paper proposes
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various rule-based baselines that are simple to understand and apply in the context of a
transparent contract.

Additionally, these proposed baselines are also used as inputs for more complex
machine learning methods (random forests and neural networks), thereby improving the
quality of the obtained forecast according to the results.

Notably, the methodology to be applied depends on the characteristics of the time
horizon and the aggregation of the forecasting data. Specifically, the methodology and
framework proposed in the present paper are oriented to day-ahead multistep forecasting.

3. Methodology

As mentioned above, power forecasting is needed in multiple applications, such as
obtaining the available flexible capacity for a customer, performing grid management tasks
based on expected customer behavior, or improving the daily optimization of resources
with an EMS. In this sense, a framework for forecasting electric power variables (genera-
tion/consumption) is proposed here. This framework has the objective of modeling the
power values of a system for all timeslots in a given day.

This forecasting could be achieved by developing a one-output model that gives a
prediction for the selected time interval (or time step) with every execution or a multiple
output model that gives predictions for all the intervals in a day with one execution of
the model.

Referring to time and performance criteria, the best approach would be to use multi-
output models, which utilize a lesser amount of data for the training and testing processes
(each dataset contains all the outputs for one day). In contrast, a one-output model is fed
with every independent value for each interval of the available days, requiring more time
for training and testing.

Two main approaches are proposed here for modeling: rule-based baselines and
artificial intelligence regression methods (which also consider the inclusion of baseline
forecasts as additional inputs).

3.1. Rule-Based Baseline Prediction

A baseline consists of a forecast of a power variable based on previous measurements
of that variable. This method can be applied by following different rules depending on
what the objective is and the type of days and events that could be identified during
the period of interest. In this sense, a common approach is to distinguish only between
weekdays and weekends, but in this work, this technique is extended by the definition
and specification of different rules that can be chosen depending on the type of variable
to forecast.

Specifically, these proposed models perform multistep day-ahead predictions for a
whole day using only the historical data obtained on some previous days. The number
of days to be used is defined by the integer n, which is the parameter that establishes
the model configuration (therefore, it will hereinafter be referred to as a hyperparameter)
depending on the rule to be applied. Once the days to be used are selected, the mean power
value is calculated for each of the time intervals of those days, with these values being the
forecasts for these days. This process is depicted in Figure 1.

The four types of proposed baseline rules are as follows:

1. Baseline “simple n” (abbreviated as baseline_sn): This rule takes the n days prior to
the target day and calculates the mean for each time interval. There are no day-type
distinctions with this rule. The proposed values for n are 1, 2, 3, 4, 5, 6, 7, 14, 21, 28,
and 35.

2. Baseline “basic_weekend n” (abbreviated as baseline_bwn): In this rule, n days before
the objective day are considered, but not all of them are used in the baseline calculation.
If the objective day is a weekend day, the weekend days within the previous n days
are averaged for each interval of each day. The same situation occurs if the objective
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is a nonweekend day, where all nonweekend days within n days are taken. The
proposed values for n are 7, 14, 21, 28, and 35.

3. Baseline “const_num_back n” (abbreviated as baseline_cnbn): This rule takes n days
before the objective day, which are of the same type; i.e., if the objective is a weekend
day, n previous weekend days are taken. The proposed values for n are 1, 2, 3, and 4.

4. Third item. Baseline “same_weekday n” (abbreviated as baseline_swn): In this rule,
from n days before the objective day, only those that are the same day of the week
are used in the baseline calculation. For example, if the objective day is a Tuesday,
the Tuesdays included in the set of n days are averaged for each time interval. The
proposed values for n are 7, 14, 21, 28, and 35.
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Thus, the proposed values for the hyperparameter n are not the same for all rules. The
selection of those values is due to the nature of each rule and the set of days that can be
obtained. In the case of the “basic_weekend” and “same_weekday” rules, only multiples
of seven are taken to ensure the availability of days of the needed type inside the set of n
days (seven days contains two weekend days and five nonweekend days). Taking another
value for n would result in an irregular distribution of days, so this is avoided by taking
only multiples of seven.

In the case of the rule “const_num_back”, the maximum value of n is four to avoid
mixing data from different numbers of days back with respect to weekends (two weeks ago
for n = 4) and non-weekends (one week ago for n = 4). If n is higher than four, a minimum
of three weeks will be needed to calculate the baseline of a weekend day, which would
be undesirable.

The baseline_s1 method (the simple n rule, where n = 1) could be considered the
simplest rule, so can be used as the reference method for comparison with the other rules.
This idea is, for example, exposed in [55], where it is mentioned that one of the most
commonly used base methods is the naïve method [55]. This method consists of using the
last observation as the next prediction. Therefore, the baseline_s1 method can be considered
equivalent to the naïve method in this methodology, with day-ahead forecasting being the
objective. This method is applied in [43,56,57], where forecasting performed simply by
using the measurements of the previous day was called the “persistence method”. Other
authors propose the use of other methods, such as the autoregressive moving average
(ARMA) [43] or the autoregressive integrated moving average (ARIMA) models [58], as
references in their case studies. In the proposed methodology, the baseline_s1 method
is preferred because of its simplicity, as it avoids a more complex parameter adjustment
process which would be required for other models such as ARMA or ARIMA (which would
be computationally expensive due to the high orders of the models with data aggregations
of 1 h or 15 min).
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Once the rules are defined, their application can be classified into the “strict” and
“non-strict” types.

The “strict application of a rule” implies that a baseline for a certain day is considered
valid only if the available number of days in the set n is the maximum number defined
by the rule. If there are any missing data in the needed days according to the rule, this
baseline is discarded and not considered valid.

In contrast, the “non-strict application of a rule”, does not necessarily require a
specified number of days. The baseline is considered valid if there is at least one day
available for the calculation.

As will be seen in the case study, the evaluation of baselines will be performed under
the criterion of strict application. Notwithstanding, some non-strict results will also be
shown for illustrative purposes.

3.2. Neural Network Regressor

Among the numerous types of existing ANNs [59], one of the most commonly used
approaches for regression purposes is the MLPR [60]. It is a powerful tool for predict-
ing continuous variables, thereby supporting multioutput regression. This architecture is
selected for the proposed architecture due to its relative simplicity and because it is less com-
putationally expensive than other ANN types, such as recurrent neural networks (RNNs).

The basic structure of an MLPR with a single hidden layer can be seen in Figure 2. A
similar structure is adopted if more than one hidden layer is added.
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For the proposed architecture, a multilayer perceptron (MLP) that conducts training
using backpropagation [61] is used. The activation function in the hidden layers is the
rectified linear unit (ReLU) function (1), which has a lower computational cost than other
activation functions, such as the logistic or hyperbolic tangent functions. In contrast to
the MLP used for classification, the activation function in the output layer is the identity
function, achieving continuous values for the outputs (a regression behavior). Furthermore,
the squared error is used as the loss function during training.

f (x) = max(0, x), (1)

Thus, as is usually recommended, parameter regularization techniques are applied to
obtain better generalized models [62] (reducing the probability of overfitting during the
training process). This means that weights with large magnitudes are penalized during
training, so large values are not retained (they are regularized). Two well-known techniques
for this purpose are lasso regression (`1) and ridge regression (`2) [62]; the penalty term
is squared in `2 (which brings higher sensitivity to high weight values). For this reason,
the `2 technique is preferred. The regularization effect is adjusted by a hyperparameter
called “alpha”.
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The use of an MLPR for modeling requires deciding the number of hidden layer
neurons (hyperparameter nh) to be used. In this sense, some authors have proposed
heuristics (rules of thumb) to select the number of hidden neurons [34]. Their expressions
are shown in (2)–(7):

nh = (2·ni) + 1 (2)

nh = 2·(2·ni) + 1 (3)

nh =
√

no + ni + l (4)

nh =

√
N

ni·log(N)
(5)

nh =
ni + no

2
+
√

N (6)

nh =
ni + no

2
(7)

nh indicates the number of hidden layer neurons; ni is the number of input neurons; no is
the number of output neurons; l is an integer between 1 and 10; and N is the number of
training samples.

Considering the characteristics of each input and output dataset (their sizes), it is
possible to directly calculate the recommended number of hidden neurons according to
these rules. These recommendations are used to obtain initial estimations of the range of
nh values that will be tested during the experiments.

3.3. Random Forest Regressor

A random forest [63] is based on splitting the input dataset into multiple groups and
training a decision tree for each of these groups. Finally, the results of each tree are passed
to a voting block (in this case a random forest for classification) or an averaging block (for
regression), obtaining an RFR in the second case. One of the main hyperparameters of an
RFR is the number of trees to use. A higher number can improve the performance of the
model, but the computational cost grows linearly with the increase in the number of trees.

The structure of an RFR is shown in Figure 3. It can be used for single-output or multi-
output prediction simply by adding new tree structures for each of the desired outputs.
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In the proposed framework, the datasets for both artificial intelligence regression
methods (the MLPR and RFR) are the same, as both models are configured to be multioutput
prediction methods.

3.4. Forecasting Performance Metric

Which indicator to use for comparing the obtained forecasting errors is a very common
topic of discussion in the literature. In [64], a summary of possible indicators can be found.

In classical approaches, the mean average error (MAE), root mean square error (RMSE)
and coefficient of determination (R2) are considered useful for the evaluation of model
performance. Furthermore, there are other widely used indicators, such as the mean
average percentage error (MAPE) [34]. However, the MAPE is not convenient for predicting
certain variables that contain positive and negative values, which may exist in a distribution
network that includes generation resources. In these situations, the MAPE tends to yield
very large values due to the existence of zero or low values in the data to be predicted,
and this could lead to misunderstanding in their interpretation. Finally, the main indicator
used for the comparison of model performances is the coefficient of variation of the root
mean square error (CV(RMSE)) [34,64], also called the relative root mean square error
(RRMSE) by some authors (i.e., [65]). This indicator has the disadvantage of yielding higher
forecasting error values than those of other indicators when the variable to be predicted
has a low average value (as highlighted in [33]), but it avoids the appearance of very high
(or even infinite) values in near-zero samples.

Another metric that is defined here due to its simplicity is the normalized RMSE
(nRMSE). While its definition can vary from one author to another [66], here, it is considered
equal to the RMSE divided by the capacity of generation (in cases with generation resources)
or by the capacity of consumption (in cases with loads).

The expressions of the abovementioned metrics are shown in (8)–(12):

MAE =
1
n

n

∑
t=1
|yt − ŷt| (8)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (9)

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (10)

CV(RMSE)(%) =

√
1
n ∑n

t=1(yt − ŷt)
2

y
·100 (11)

nRMSE (%) =

√
1
n ∑n

t=1(yt − ŷt)
2

max(|y|) ·100 (12)

Furthermore, many other indicators can be found in the literature. The authors in [35]
point out the importance of using well-defined indicators as error metrics. One of the main
problems faced when comparing the forecasting results of different studies is precisely
the absence of error metric standardization. This ambiguity is particularly noticeable in
normalized indicators such as the normalized MAE (nMAE) or normalized RMSE (nRMSE).

For other applications, some authors propose more specific metrics to emphasize
certain aspects of the resulting forecast, such as consumption peaks. For example, the
authors in [49] propose a “semi-metric” approach to avoid the double penalty effect when a
forecasted peak deviates in time from the real peak. This approach is useful for applications
specifically centered on peak reductions at the network level; as for these applications, it is
more important that peaks be predicted at approximately the correct times rather than not
at all. However, for general applications in energy management, it is preferable to follow
some of the common indicators that were previously described, as most of the authors
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do in the reviewed bibliography (for example, [44,45,47]). Therefore, this is the approach
adopted in the present study.

After analyzing the advantages of each indicator, the CV(RMSE) was finally chosen,
as it is appropriate for the evaluation of a series with both positive and negative values.

4. Proposed Framework

In the field of power forecasting, it is common to use datasets that, apart from power
values (with their corresponding timestamps), also include weather information such as
temperature and humidity data. Moreover, this information can (and should) be enriched
with the inclusion of extra information. This additional information could be date-related
information (e.g., days of the week, workdays) or the inclusion of previous measurements
(e.g., the raw measurements taken on some previous days). Furthermore, as part of
the proposals of the present paper, it is possible to include not only the raw data of
previous days (which is usually done by other authors) but also their corresponding
baseline forecasts obtained with the previously described rule-based baseline method.

Specifically, up to five groups of possible inputs (described in Table 1) are proposed
for this framework. The exact number of inputs in some of these groups depends directly
on the aggregation of the forecasted variable (the number of time intervals considered in a
whole day) and the aggregation of weather forecasts (which could be different from the
aggregation of the forecasted variable).

Table 1. Types of inputs.

Input Group
Names Input Fields Description

DI
(stands for day
information)

year Year
month Month
dayM Day of the month
dayW Day of the week

weekend Whether the day is a weekend day (Saturday or
Sunday)

holiday Whether the day is a holiday
sw Daylight saving time (summer or winter).

Wa(thsr) Temperature (t), humidity (h), irradiation (s) and rain (r).
Day-ahead weather forecast for the whole day. The
number of time intervals could be different from the
number of intervals of the variable.

Wa(ths) Temperature (t), humidity (h), irradiation (s)
Wa(t) Temperature (t)
Wa(s) Irradiation (s)

Db1 Measurements of day −1 Power values for all time intervals of the previous
day.

Db2 Measurements of days −1 and −2 Power values for all time intervals of the two
previous days.

Db3 Measurements of days −1, −2 and −3 Power values for all time intervals of the three
previous days.

Bl(sn)

Day-ahead forecast using rule-based baseline models
The baseline1 forecast of the variable to be predicted
using a certain rule, with n as the chosen
hyperparameter.

Bl(bwn)
Bl(swn)
Bl(cnbn)

EXBL(sn)

Time intervals of an external baseline

Baseline1 forecasts of a variable that are different
from the variable to be predicted, with n as the
chosen hyperparameter. As this baseline is from a
different variable, it is called an “external baseline”
(EXBL).

EXBL(bwn)
EXBL(swn)
EXBL(cnbn)

1 The referred baselines are calculated as explained in Section 3.
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Day information includes representative data about the date, such as the year, the
month, and the day of the week.

The external baseline (EXBL) consists of a variable baseline that is different from the
objective to be predicted (i.e., not the target variable but another variable of the microgrid,
such as the load consumption). The reason for this inclusion is to take advantage of the
correlations between the different variables (i.e., load consumption and the variable to be
predicted) of the microgrid to improve the forecasting results. The datasets that include an
EXBL are identified on their tags at the end of their names.

From the combinations of all these fields, multiple datasets can be generated to
train models. In this sense, Table 2 summarizes the different datasets proposed for this
forecasting framework. To simplify the identification of the datasets, a tag (“dataset type”)
is assigned to those similar datasets. Each tag summarizes the information included in
the datasets (calendar information, weather, previous measurements, etc.) using a simple,
short name.

Table 2. Types of datasets (combination of input groups).

Dataset Type Dataset Composition (Input Groups That Are Included) 1

CaIn CaIn DI

Wa Wa( . . . 2) + DI Wa (weather variables) and DI

Db

Db1 + DI Db1 and DI

Db2 + DI Db2 and DI

Db3 + DI Db3 and DI

DbWa

Db1Wa( . . . 2) + DI Db1, Wa (weather variables) and DI

Db2Wa( . . . 2) + DI Db2, Wa (weather variables) and DI

Db3Wa( . . . 2) + DI Db3, Wa (weather variables) and DI

Bl Bl( . . . 3) + DI Bl (baseline rule and number of days) and DI

BlWa Bl( . . . 3)Wa( . . . 2) + DI
Bl (baseline rule and number of days), Wa (indicating the weather
variables) and DI

CaIn + EXBL CaIn + EXBL DI and EXBL (baseline rule and number of days)

Wa + EXBL Wa( . . . 2) + DI + EXBL( . . . 3)
Wa (indicating the weather variables), DI and EXBL (baseline rule
and number of days)

Db + EXBL

Db1 + DI + EXBL( . . . 3) Db1, DI and EXBL (baseline rule and number of days)

Db2 + DI + EXBL( . . . 3) Db2, DI and EXBL (baseline rule and number of days)

Db3 + DI + EXBL( . . . 3) Db3 and DI and EXBL (baseline rule and number of days)

DbWa + EXBL

Db1Wa( . . . 2) + DI + EXBL( . . . 3)
Db1, Wa (weather variables), DI and EXBL (baseline rule and number
of days)

Db2Wa( . . . 2) + DI + EXBL( . . . 3)
Db2, Wa (weather variables), DI and EXBL (baseline rule and number
of days)

Db3Wa( . . . 2) + DI + EXBL( . . . 3)
Db3, Wa (weather variables), DI and EXBL (baseline rule and number
of days)

Bl + EXBL Bl( . . . 3) + DI + EXBL( . . . 3)
Bl (baseline rule and number of days), DI and EXBL (baseline rule
and number of days)

BlWa + EXBL Bl( . . . 3)Wa( . . . 1) + DI + EXBL( . . . 3)
Bl (baseline rule and number of days), Wa (indicating the weather
variables), DI and EXBL (baseline rule and number of days)

1 The abbreviations used for the inputs are specified in Table 1. 2 The weather variables that are included as inputs are specified. These
variables can be temperature (t), humidity (h), solar irradiation (s) and rain (r). 3 The type of rule and the number of days for the calculation
of the baseline (Bl) or the external baseline (EXBL) are specified.
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One of the steps inside the proposed framework is to select which of the provided
datasets is most convenient to perform forecasting.

The total number of inputs and outputs for a dataset, as previously described, depends
on the aggregation level. Specifically, 15-min aggregations have 96 outputs for a whole day,
while 60-min aggregations possess 24 outputs. The same is true for the other input fields
that include measurements of previous days or baselines, where each input day implies
the same number of inputs (96, 24, etc. according to the aggregation).

Based on the reviewed state-of-the-art methods and considering the typical needs
of the mentioned applications, the aggregation levels are typically 15 min, 1 h and (in
some cases) 2 h. This means that the number of time intervals (also called bins, time
periods, or timeslots, depending on the author) is equal to 96, 24 or 12 for a whole day,
respectively. The architecture is designed to perform multistep predictions at 00:00 of each
day, obtaining a prediction for each variable for the next 24 h (day-ahead) under the desired
aggregation level.

The general process is depicted in Figure 4. The dataset preparation block receives
information regarding the selected measures and weather data. These fields of information
are formatted and combined to create the previously described datasets. In the model
training/execution block, the three modeling techniques (the baseline, RFR and MLPR)
train models using each of the datasets. At this point, as indicated in Figure 4, the baseline
models are used as feedback for the dataset creator and included as input groups (the
baseline and external baseline) in some of the datasets (see Table 2).
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The trained models are then evaluated and ordered according to their performance
metrics. The best models and their characteristics are stored in a database and are used by
the daily forecasting block, which executes the best available model once a day (obtaining
the day-ahead forecast). Notably, in this process, the type of information needed to
execute each of the models must be specified, as the system must check the availability
of the information before deciding which model to use. For example, if the temperature
information is missing for a specific day (because of a failure in data reception from the
provider), the forecasting models that require temperature are discarded for that day, and
another model (whose required input information is available) is applied.

Finally, the obtained forecast (for all the power variables that are included in the
system) is taken by the application block, whose characteristics depend on the locations
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of the resources; the type of power information utilized; and the objective of the operator,
aggregator or customer who owns the system.

As previously specified, the framework does not necessarily require online training.
Therefore, the model updating (the execution of the model training/execution block in
Figure 4) procedure can be done every few days or even every few weeks, when the inclu-
sion of newly available historical data is desired to retrain the models. This characteristic
may maintain the bounded daily computational cost of the proposed framework, as it does
not need continuous updates.

5. Description of the Case Study

The proposed methodology was applied to the Savona Campus of the University
of Genoa, Italy, where there is a smart polygeneration microgrid (SPM), an innovative
facility used to provide electricity and heat to the campus [24]. The SPM constitutes a
good example of the penetration of DERs [67] and a complete living lab for smart grid
technology.

The campus network has various generation systems (two microturbines and PV
panels); an electrical storage system; and buildings used for living, research, and teaching,
which are mainly consumption loads. The structures of these systems are shown in Figure 5.
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The optimal daily operation of the SPM was determined by an EMS. Among other
actions, the EMS decides when and how to charge and discharge the storage system,
modulate the energy generation of the microturbines, and even decides when to sell
electricity to the national grid (if there is a surplus of energy). There are other elements of



Appl. Sci. 2021, 11, 6420 14 of 27

the campus that could also be used as controllable loads, thereby increasing the capacity
that can be provided in flexibility services [68].

The objective of the present study is to use historical and weather data from the
Savona Campus to forecast some considered power variables under a day-ahead approach.
The available data refer to three years of SPM operations (2016, 2017 and 2018). All
electrical variables were measured with a sampling time of 1 min. The day-ahead weather
predictions, which were provided by a meteorological service, are given in 30-min intervals
for the whole day.

The five power variables of interest for the present study are the following:

• ge1: The power absorbed by the SPM.
• ge2: The power withdrawn from the external distribution network.
• ut: The production of the two cogeneration microturbines.
• lc: The electrical demand of the buildings.
• pv: Photovoltaic generation.

A representation of a summary of these variables can be seen in Table 3. For each of
the five variables, some statistical values are provided: the average value (mean); standard
deviation (std), minimum value (min); first, second and third quartiles (25%, 50% and 75%,
respectively); and maximum value (max). All these values are expressed in kW.

Table 3. Summary of historical power data (2016–2018).

Value ge1 ge2 ut lc pv

mean −2.81 × 101 9.97 × 101 2.61 × 101 1.33 × 102 1.10 × 101

std 4.68 × 101 5.54 × 101 4.01 × 101 6.32 × 101 1.80 × 101

min −2.63 × 102 −9.43 × 101 −2.91 × 101 −1.51 × 101 0.00 × 100

25% −6.54 × 101 7.17 × 101 −2.54 × 10−1 8.81 × 101 0.00 × 100

50% −3.36 × 100 9.37 × 101 −2.32 × 10−1 1.08 × 102 0.00 × 100

75% 9.66 × 100 1.25 × 102 5.76 × 101 1.63 × 102 1.60 × 101

max 5.93 × 101 4.38 × 102 1.36 × 102 4.75 × 102 8.04 × 101

All the magnitudes are expressed in kW.

The historical data concerning the day-ahead weather forecasts for Savona contain the
temperature, humidity, pressure, global radiation, and rainfall variables. A summary of
the data can be seen in Table 4, with the interpretations of the given values being similar to
those in Table 3. The units are indicated in the head of the table.

Table 4. Summary of historical weather prediction data.

Value Temperature
(◦C) Humidity (%) Global Radiation

(W/m2) Rainfall (mm)

mean 15.8 68.5 174.3 0.36
std 7.6 16.6 251.7 1.92
min −3.9 18.8 0.0 0.0
25% 9.7 54.7 0.0 0.0
50% 15.3 70.9 1.8 0.0
75% 21.3 82.6 303.0 0.0
max 34.7 100.0 932.6 42.96

6. Results

This section presents the results of applying the methodology described in Section 3
to the case study of the Savona Campus, which includes five power variables to be pre-
dicted. The two aggregation levels considered are 15 min and 1 h, and the three described
forecasting techniques were tested for both configurations.

The data of consumption (or generation) of each of the variables was monitored with
a resolution of 1 min. For adapting these variables to 15-min and 1-h intervals, the power
measurements of the interval are averaged.
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The weather forecast (which have a resolution of 30 min) was not modified for use
in the 15-min and 1-h aggregation models. For both types of aggregations, the weather
data were directly used as inputs for the models in a row of 48 points for each weather
variable (temperature, humidity, irradiation and rain), with no averaging being applied to
these numbers.

In the description of dataset types, one of the fields is the EXBL. It consists of the use
of the baseline of a different variable as input information. Therefore, which variables are
supposed to be corelated must be established to implement this type of model. Taking the
fact that the EMS of the campus considers the expected load consumption to control the
power resources into account, it could be useful to use lc as an external baseline for the
rest of the variables. This method is discarded for pv, as its behavior depends on the solar
source, not on the EMS. Therefore, the three variables for which the EXBL datasets (made
from lc) that were tested were ge1, ge2 and ut.

The results of the experiments are presented in independent subsections for each
type of technique (baseline rules and machine learning techniques, including the RFR and
MLPR). Finally, a comparison of all the results is performed to check which of the models
are best among all the presented techniques.

It will be appreciated in these results that the obtained CV(RMSE) for the variables ge1
and ut are considerably larger than in the variables ge2, lc and pv. The reason for this fact
resides in how the CV(RMSE) indicator is calculated, which was specified in Section 3.4.
As this indicator is normalized by its average value, the models of variables with a lower
average value tend to have greater CV(RMSE) values. However, like only the models of a
same variable are compared between them to select the best, the relative magnitudes of the
indicators between different variables are not important.

6.1. Baseline Rule Results

The following graphs contain the results of the application of the proposed baseline
rules over the five power variables (see Figure 6). On the x-axis, the number of days back
expresses the value of the hyperparameter (n), while the y-axis shows the absolute value
of the CV(RMSE). The colored circular points (connected by continuous lines) correspond
to the strict application of the rules, while the triangles (connected by dotted lines) are
obtained from the non-strict application.

In the cases of ge1, due to its negative average value, the values of CV(RMSE) are
negative. For this reason, the axes of the graphs show the absolute value of this indicator.
It must be remembered that the best forecast corresponds to the lowest absolute values (the
nearer to zero, the better).

It can be noted that the ge2 and lc variables show behaviors that are strongly de-
pendent on the type of day (weekday and weekend), with the rules of type baseline_cnb
(“const_num_back”) and baseline_bw (“basic_weekend”) being the best.

For ge1 and ut, the best rule is baseline_s (“simple”), as they show behaviors that are
less related to the type of day. This is probably because the need for hot water (partially
produced by microturbines) does not change substantially from weekdays to weekends (as
many students live on campus).

Finally, pv is best forecasted using the baseline_s rule, which was expected because
solar irradiation is independent of the type of day.

These results show how testing multiple types of baselines provides information about
the behaviors of the variables, while addressing which type of days are the best indicators
of each of these variables. Particularly, in the case of the variable ge1, whose behavior could
at first be difficult to guess without a previous analysis, it was found that this variable is
strongly dependent on the most recent previous days.



Appl. Sci. 2021, 11, 6420 16 of 27

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 28 
 

It will be appreciated in these results that the obtained CV(RMSE) for the variables 
ge1 and ut are considerably larger than in the variables ge2, lc and pv. The reason for this 
fact resides in how the CV(RMSE) indicator is calculated, which was specified in Section 
3.4. As this indicator is normalized by its average value, the models of variables with a 
lower average value tend to have greater CV(RMSE) values. However, like only the mod-
els of a same variable are compared between them to select the best, the relative magni-
tudes of the indicators between different variables are not important. 

6.1. Baseline Rule Results 
The following graphs contain the results of the application of the proposed baseline 

rules over the five power variables (see Figure 6). On the x-axis, the number of days back 
expresses the value of the hyperparameter (n), while the y-axis shows the absolute value 
of the CV(RMSE). The colored circular points (connected by continuous lines) correspond 
to the strict application of the rules, while the triangles (connected by dotted lines) are 
obtained from the non-strict application. 

In the cases of ge1, due to its negative average value, the values of CV(RMSE) are 
negative. For this reason, the axes of the graphs show the absolute value of this indicator. 
It must be remembered that the best forecast corresponds to the lowest absolute values 
(the nearer to zero, the better). 

 

 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 28 
 

 

Figure 6. Baseline results for each variable (ge1, ge2, ut, lc and pv) with an aggregation of 15 min by 
rule and number of days. 

It can be noted that the ge2 and lc variables show behaviors that are strongly depend-
ent on the type of day (weekday and weekend), with the rules of type baseline_cnb 
(“const_num_back”) and baseline_bw (“basic_weekend”) being the best. 

For ge1 and ut, the best rule is baseline_s (“simple”), as they show behaviors that are 
less related to the type of day. This is probably because the need for hot water (partially 
produced by microturbines) does not change substantially from weekdays to weekends 
(as many students live on campus). 

Finally, pv is best forecasted using the baseline_s rule, which was expected because 
solar irradiation is independent of the type of day. 

These results show how testing multiple types of baselines provides information 
about the behaviors of the variables, while addressing which type of days are the best 
indicators of each of these variables. Particularly, in the case of the variable ge1, whose 
behavior could at first be difficult to guess without a previous analysis, it was found that 
this variable is strongly dependent on the most recent previous days. 

6.2. Machine Learning Results 
The results of the RFR and MLPR models for all the different datasets that are de-

scribed in Table 2 are presented in Figure 7. To simplify the representation of such a num-
ber of different datasets, the x-axis groups them by the tag “dataset type”, as shown in the 
same table. 

To avoid the presence of negative metric values, the y-axis represents the absolute 
value of the CV(RMSE). Therefore, the best model is the one with the minimum value. 

Each of the points in the graph represents the error for a give dataset, while the red 
hyphens indicate the model with the minimum error value (i.e., the best model for each 
of the dataset types). As defined at the start of the present section, the variables ge1, ge2 
and ut also include datasets with external baseline information (the expected load of the 
campus, i.e., lc). The variables lc and pv do not include any “EXBL” dataset, as this is not 
considered to be of interest. 

For the RFR models, these results indicate that the dataset types “Db”, “Db + EXBL”, 
“DbWa” and “DbWa + EXBL” are usually the best for all variables. The two exceptions 
are pv, which is better forecasted by the dataset types “DbWa” and “BlWa”, and lc, whose 
best model for 15-min aggregations is obtained with the dataset “CaIn”. 

For the MLPR models, the dataset types “Bl” and “BlWa” also obtain good perfor-
mances for the variables ge2 and lc. 

The comparison between the RFR and MLPR techniques for the five forecasted vari-
ables shows that the errors of the MLPR models are less than those of the RFR models for 

Figure 6. Baseline results for each variable (ge1, ge2, ut, lc and pv) with an aggregation of 15 min by rule and number of days.

6.2. Machine Learning Results

The results of the RFR and MLPR models for all the different datasets that are described
in Table 2 are presented in Figure 7. To simplify the representation of such a number of
different datasets, the x-axis groups them by the tag “dataset type”, as shown in the
same table.
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Figure 7. Metrics for the RFR and MLPR models for each forecasted variable (ge1, ge2, ut, lc and pv)
with an aggregation of 15 min. The x-axis is grouped by dataset type. The left column corresponds to
the RFR models, while the right column corresponds to the MLPR models. (a) ge1 using RFR; (b) ge1
using MLPR; (c) ge2 using RFR; (d) ge2 using MLPR; (e) ut using RFR; (f) ut using MLPR; (g) lc using
RFR; (h) lc using MLPR; (i) pv using RFR; (j) pv using MLPR.

To avoid the presence of negative metric values, the y-axis represents the absolute
value of the CV(RMSE). Therefore, the best model is the one with the minimum value.

Each of the points in the graph represents the error for a give dataset, while the red
hyphens indicate the model with the minimum error value (i.e., the best model for each
of the dataset types). As defined at the start of the present section, the variables ge1, ge2
and ut also include datasets with external baseline information (the expected load of the
campus, i.e., lc). The variables lc and pv do not include any “EXBL” dataset, as this is not
considered to be of interest.

For the RFR models, these results indicate that the dataset types “Db”, “Db + EXBL”,
“DbWa” and “DbWa + EXBL” are usually the best for all variables. The two exceptions are
pv, which is better forecasted by the dataset types “DbWa” and “BlWa”, and lc, whose best
model for 15-min aggregations is obtained with the dataset “CaIn”.

For the MLPR models, the dataset types “Bl” and “BlWa” also obtain good perfor-
mances for the variables ge2 and lc.
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The comparison between the RFR and MLPR techniques for the five forecasted vari-
ables shows that the errors of the MLPR models are less than those of the RFR models for
almost all variables (ge1, ge2, ut and lc), except for pv, which is better forecasted using the
RFR models.

6.3. Comparison and Discussion

Once the results are obtained, the different models for each objective variable can be
compared. This comparison is reported in Table 5, which gives the CV(RMSE) value for
the best model according to each variable, aggregation, and dataset type. To simplify the
visualization of the results, the category “XX+EXBL” (the datasets that include external
baseline information, as shown in Table 5) is not detailed for each type of baseline rule,
and only the model with the best indicator value is kept. Some reference models are also
included, such as baseline_s1 (previous day) and baseline_s7 (mean of the seven previous
days). The baseline_s1 method is finally the one chosen as a reference method, as here it is
considered analogous to the naïve method.

Moreover, the percentage of improvement (13) is calculated in a way similar to that
reported in [36] (with baseline_s1 as the reference method), and the CV(RMSE) for the
reference model and the proposed model are shown.

Iimprovement =
ere f erence model − eproposed model

ere f erence model
·100% (13)

These results can be seen in Table 6. The CV(RMSE), RMSE and nRMSE indicators for
the best models are given. Specifically, the nRMSE values are calculated considering the
magnitudes that are included in Figure 5.

As previously indicated, the table of improvement (Table 6) uses baseline_s1 as refer-
ence. However, it can be appreciated that this table is directly obtained from the numbers
in Table 5 of the results, so it is possible to calculate the relative improvements considering
any other model from those included in the table applying expression (13).

Table 5 shows some interesting data about the behaviors of the evaluated models and
input dataset types.

First, it can be observed that the models obtained using the RFR and MLPR are better
than the best baseline models. This is expected, as according to the reviewed literature,
these machine learning models usually achieve good results in the current field of study.
However, it should not be forgotten that baseline models are still useful in some scenarios.
They are very easy to calculate, give information about tendencies and are very clear
in their behavior. Moreover, they are suitable for application in the auditory process in
flexibility agreements, as a customer could be more disposed to accept one of these baseline
rules than trained models, as they are RFRs and MLPRs.

Second, it is interesting to note that the use of sets that include external baselines
(EXBLs) yield the best results for ge1, ge2 and ut. This fact can be explained considering that
in the campus (ge2), the zone under the direct control of the EMS is precisely the microgrid
(ge1) where the microturbines (ut) are installed. It is therefore logical that ge1, ge2 and ut
achieve good performance when they are modeled considering the load of the campus (lc),
as the EMS estimates it to manage the microgrid.

Regarding the forecasting of the load of the campus (lc variable), the datasets that
include information from previous days and weather predictions for these days (dataset
types “DbWa” and “BlWa”) yield the best results under the MLPR.

In the case of photovoltaic generation (pv variable), the results show that the inclu-
sion of previous day measurements together with weather information (dataset types
“DbWa” and “BlWa”) improves the modeling results. The RFR outperforms the MLPR for
this variable.
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Table 5. Summary of forecasting results.

Indicator: Absolute CV(RMSE) (%)

Variable Aggregation
Reference Methods Best Bl Best RFR Best MLPR

Baseline_s1 Baseline_s7 Baseline
Rule CaIn Wa Db DbWa Bl BlWa XX + EXBL 1 CaIn Wa Db DbWa Bl BlWa XX + EXBL 1

15 min 104.7 110.9 s1 104.7 96.7 102.2 87.1 84.5 98.4 94.4 81.8 116.1 111.4 86.0 83.2 95.5 86.9 80.2
ge1

1 h 101.3 107.0 s1 101.3 92.0 101.5 84.3 80.5 92.3 92.3 78.3 110.6 106.4 81.7 78.1 90.5 88.8 77.4

15 min 51.5 46.2 cnb4 37.2 33.8 34.8 30.9 30.3 33.3 32.7 30.2 37.3 34.4 31.2 29.7 30.7 29.3 28.7
ge2

1 h 50.4 45.5 cnb4 36.0 32.9 34.0 29.6 29.0 32.7 31.9 28.9 35.8 33.2 28.9 27.8 30.7 29.9 27.1

15 min 89.7 109.7 s1 89.7 91.2 98.7 73.6 73.0 89.9 88.3 70.7 116.8 110.4 71.2 70.9 82.2 80.2 69.9
ut

1 h 89.0 106.4 s1 89.0 87.4 97.7 74.0 72.2 86.3 87.5 69.0 112.1 107.2 70.2 68.7 81.9 83.3 67.3

15 min 36.2 33.4 cnb2 19.1 15.5 16.4 15.6 15.6 16.7 16.5 - 19.1 16.8 15.0 14.9 15.0 14.8 -
lc

1 h 35.7 33.0 cnb2 18.4 14.8 16.1 14.6 14.7 15.3 15.5 - 18.3 17.2 14.0 13.7 14.2 14.1 -

15 min 96.6 80.9 s35 73.5 80.8 68.1 76.4 65.1 78.3 65.7 - 79.6 68.2 76.8 65.9 77.6 66.2 -pv
1 h 91.5 77.5 s35 71.0 78.2 63.9 73.0 60.4 76.2 61.5 - 76.0 64.4 74.1 65.6 75.9 62.9 -

1 XX + EXBL represents the best obtained model from those that include the EXBL as input (therefore, XX denotes CaIn, Wa, Db, DbWa, Bl or BlWa). Green color: best model for each variable and aggregation.
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Table 6. Achieved forecasting improvement.

Variable Aggregation

Ref. Model
baseline_s1 Best Model

IIMP (%)
CV(RMSE) (%) CV(RMSE)

(%)
RMSE
(kW)

nRMSE
(%)

ge1
15 min 104.7 80.2 22.5 9.4 23

1 h 101.3 77.4 21.7 8.8 24

ge2
15 min 51.5 28.7 28.6 6.5 44

1 h 50.4 27.1 27.0 6.2 46

ut
15 min 89.7 69.9 18.2 14.2 22

1 h 89.0 67.3 17.6 13.8 24

lc
15 min 36.2 14.8 19.6 4.7 59

1 h 35.7 13.7 18.2 4.3 62

pv
15 min 96.6 65.1 7.2 9.0 33

1 h 91.5 60.4 6.6 8.3 34
IIMP: Index of improvement (Iimprovement) expressed as a percentage (%).

The proposed models achieve accuracy improvements of up to 62% and a mean of 37%
(average improvement value across the five variables and the two aggregations evaluated)
over that of the reference model, which is baseline_s1 (see Table 6).

Finally, as an example, some illustrative comparisons between the actual data, the
best baseline and the best model are shown in Figure 8 for each of the five variables. The
CV(RMSE) for each of the individual days is calculated for both the baseline and the
best model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 28 
 

The proposed models achieve accuracy improvements of up to 62% and a mean of 
37% (average improvement value across the five variables and the two aggregations eval-
uated) over that of the reference model, which is baseline_s1 (see Table 6). 

Finally, as an example, some illustrative comparisons between the actual data, the 
best baseline and the best model are shown in Figure 8 for each of the five variables. The 
CV(RMSE) for each of the individual days is calculated for both the baseline and the best 
model. 

It can be appreciated how the error of the baseline is usually greater than the error of 
the best model, with the only exception in the given examples being day number two of 
Figure 8b. On this day, it can be appreciated how the best baseline model occasionally 
achieved a better result than the best model. However, these kinds of occurrences are ex-
pectable in the environment under study. The consumption and generation of the campus 
have low levels of aggregation, which produce behaviors that are difficult to predict. For 
this reason, on some specific days it may happen that the best selected model is outper-
formed by another one, which occurred on the indicated day. Despite these infrequent 
events, the CV(RMSE) (which should be taken as criterion for model selection) show from 
a global point of view the goodness of each model, as seen in Tables 5 and 6. 

 
(a) 

 
(b) 

Figure 8. Cont.



Appl. Sci. 2021, 11, 6420 22 of 27Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 28 
 

 
(c) 

 
(d) 

 
(e) 

Figure 8. Actual power vs. forecasting (baseline and models) with an aggregation of 15 min. “Bl 
err” (baseline error) indicates the CV(RMSE) for the best baseline model. “Mod err” (model error) 
indicates the CV(RMSE) for the best model. (a) ge1; (b) ge2; (c) ut; (d) lc; (e) pv. 

7. Conclusions 
As previously mentioned, forecasting is an essential tool for energy management. 

Many approaches apply online training, which can increase the daily computational cost 
(as the system must perform tasks related to updating the model daily) and does not usu-
ally involve tests with many different dataset types. Therefore, this paper presents a meth-
odology for power variable forecasting that provides multiple combinations of infor-
mation inputs and techniques without necessarily requiring online training. Therefore, 
model updating can be performed every few days or even every few weeks, when the 
inclusion of newly available historical data is desired to retrain the models. This charac-
teristic permits a reduction of the daily computational cost incurred by the proposed 
framework according to current needs. 

Figure 8. Actual power vs. forecasting (baseline and models) with an aggregation of 15 min. “Bl err” (baseline error)
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(a) ge1; (b) ge2; (c) ut; (d) lc; (e) pv.

It can be appreciated how the error of the baseline is usually greater than the error
of the best model, with the only exception in the given examples being day number two
of Figure 8b. On this day, it can be appreciated how the best baseline model occasionally
achieved a better result than the best model. However, these kinds of occurrences are
expectable in the environment under study. The consumption and generation of the
campus have low levels of aggregation, which produce behaviors that are difficult to
predict. For this reason, on some specific days it may happen that the best selected model
is outperformed by another one, which occurred on the indicated day. Despite these
infrequent events, the CV(RMSE) (which should be taken as criterion for model selection)
show from a global point of view the goodness of each model, as seen in Tables 5 and 6.
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7. Conclusions

As previously mentioned, forecasting is an essential tool for energy management.
Many approaches apply online training, which can increase the daily computational cost
(as the system must perform tasks related to updating the model daily) and does not usually
involve tests with many different dataset types. Therefore, this paper presents a method-
ology for power variable forecasting that provides multiple combinations of information
inputs and techniques without necessarily requiring online training. Therefore, model
updating can be performed every few days or even every few weeks, when the inclusion of
newly available historical data is desired to retrain the models. This characteristic permits
a reduction of the daily computational cost incurred by the proposed framework according
to current needs.

The proposed methodology provides recommendations on how to perform the analy-
sis, which indicators can be used, and how to select the best indicators for the case under
study. Specifically, it was applied to a university campus in Italy and used for the prediction
of five different power variables.

Remarkably, in the proposed methodology, it is important not only to identify the best
obtained model, but also to retain the information of the best model for each type of input
information required. This approach makes it possible to use another model for which the
system has the required inputs if for a certain day a portion of the information is missing
(e.g., the weather forecast is not received). In this way, the feasibility and robustness of the
system is increased, lowering the probability of failure during the forecasting process.

This methodology can be used by all the actors involved in flexibility services and/or
the energy management of microgrids, i.e., DSOs, aggregators, and customers.

The applied methods include the definition of rule-based baselines, which perform
forecasts using the measurements of the previous days obtained under different criteria
and machine learning techniques (random forests and neural networks). Moreover, the
proposed baselines are included as inputs of machine learning methods, which has been
shown to improve the quality of the forecasting.

Notably, the types of datasets that can be created depend on the available information,
such as the mentioned baselines, weather data, calendar information, and other data of
interest (such as occupancy in cases regarding certain types of buildings).

Moreover, the forecasting horizon can also change depending on the application. In
the present case study, the prediction horizon is one day, but the same models could be
trained and tested using other horizons. The only requirement is to adapt the input datasets
with the information that is available in the considered horizons.

The presented case study shows that an MLPR outperforms an RFR for the majority
of the variables (except for the forecasting of the PV generation, pv). Moreover, the inclu-
sion of external baseline (EXBL) information from the campus load (lc) yields a forecast
improvement over those of the models in which EXBLs are not included.

From a global point of view, the presented experiments show that the proposed models
achieve an accuracy improvement of up to 62% over that of the reference model.
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Abbreviations

ge1 Power absorbed by the smart polygeneration microgrid (kW)
ge2 Power withdrawn from the external distribution network (kW)
lc Electrical demand of the buildings (kW)
pv Photovoltaic generation (kW)
ut Production of the two cogeneration microturbines (kW)
ANN Artificial neural network
Bl Baseline
CaIn Calendar information
CV(RMSE) Coefficient of variation of the root mean square error
Db Day back
DER Distributed energy resource
DG Distributed generation
DI Day information
DR Demand response
DSO Distribution system operator
EMS Energy management system
EV Electric vehicle
EXBL External baseline
MAE Mean average error
MAPE Mean average percentage error
MLPR Multi-layer perceptron regressor
nRMSE Normalized root mean square error
RFR Random forest regressor
RMSE Root mean square error
RRMSE Relative root mean square error
SPM Smart polygeneration microgrid
TSO Transmission system operator
Wa Weather forecast
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