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Abstract: Brightness is one of the most common timbral descriptors used for searching audio
databases, and is also the timbral attribute of recorded sound that is most affected by microphone
choice, making a brightness prediction model desirable for automatic metadata generation. A model,
sensitive to microphone-related as well as source-related brightness, was developed based on a novel
combination of the spectral centroid and the ratio of the total magnitude of the signal above 500 Hz
to that of the full signal. This model performed well on training data (r = 0.922). Validating it on
new data showed a slight gradient error but good linear correlation across source types and overall
(r = 0.955). On both training and validation data, the new model out-performed metrics previously
used for brightness prediction.

Keywords: audio characterisation; audio indexing; audio search; auditory perception; machine
learning; music information retrieval; psychoacoustics; sound quality; sound recording; timbre

1. Introduction

Audio database searching can be facilitated by metadata relating to the characteristics
of each audio excerpt. The ability to generate such metadata automatically can therefore
be useful. A key characteristic of sound is its timbre, and brightness is one of the most
commonly used timbral descriptors, e.g., it is in the top 3 most-searched timbral attributes
on the Freesound audio sample repository [1].

The timbre of a recorded sound will potentially be affected both by the sound source
and by the choice of microphone used to record it. Previous work by the authors in [2]
identified 31 perceptual attributes of recorded sound that can be affected by microphone
choice. The largest impact of microphone choice was found to be on the brightness of
the resulting recording. Models of brightness perception have been developed and tested
previously, but not specifically in connection with microphone performance. The work
documented in this paper aimed to develop a model sensitive to microphone-related,
as well as source-related, brightness differences and to evaluate it against existing bright-
ness models found to be useful in other application areas, e.g., differentiating between
musical instruments [3–5], between variations of a single instrument [6], between musical
performances [7], or between vocal articulations [8].

This paper is split into four sections: Section 2 describes listening tests used to collect
listener ratings of perceived brightness; Section 3 introduces previous research into the
acoustic correlates of perceived brightness, outlines potential improvements upon these,
and develops a linear regression model using the most suitable; Section 4 then presents an
evaluation of the brightness model; and finally, in Sections 5 and 6, the model’s performance
is discussed and conclusions are drawn.

2. Ratings of Brightness

To provide a dataset on which to base a model, listener ratings of brightness must be
obtained for stimuli recorded using a variety of microphones. The stimuli used for the
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collection of brightness ratings were those described in detail by the authors previously [2];
the stimulus creation method is summarised below.

2.1. Selecting Microphones

Microphones were selected in two stages. Firstly, microphones were identified that
represented the extremes in each of seven physical/acoustic factors that are known to
affect performance: transduction type, sensitivity, frequency response, directivity pattern,
self-noise, diaphragm size, and transient response. This resulted in a shortlist of eight
studio microphones. Five independent experts were then asked to say whether use of these
microphones would be likely to result in recordings exhibiting a full range of perceptual
differences, and to suggest additional microphones if not. Responses indicated that no
additional microphones were required. In addition to these eight studio microphones,
two MEMS (MicroElectricalMechanical System) microphones with markedly different
perceived sonic qualities were chosen; outside of professional recording environments,
mobile phones are probably the most common devices used to capture audio and these
employ MEMS microphones. The resulting ten microphones were AKG C12, AKG C414
B-XLS, AKG C451, Coles 4038, DPA 4006-TL, Electrovoice RE20, sE 2200a, Shure SM58,
Wolfson WM7131, and Knowles SPU0410HR5H.

2.2. Selecting Sources

In previous work by the authors, it was found that musical sources were good at
revealing the perceptual differences between microphones (better than vocal sources) [9].
Therefore, only musical sources were considered for this study. Sources were selected to
provide a variety of frequency spectra, dynamic ranges and transient components, in order
to: (i) be able to reveal the likely effects of the physical/acoustic factors listed in Section 2.1;
and (ii) be likely to cover a wide range of source brightnesses. This resulted in five sources
being selected: double bass, drums, acoustic guitar, string quartet, and trumpet. On each
of these sources, trained musicians played unaccompanied musical phrases lasting 7–12 s.

2.3. Recording Stimuli

The selected microphones were set up in a circular array of 150 mm diameter, as shown
in Figure 1, in an ITU-R BS 1116 compliant listening room [10] (which has an acoustic that
is dry but not anechoic). All sources (instruments and musicians) were positioned 1.5–2 m
from the array, no closer than ten times the array size. This setup has been shown previously
by the authors to ensure that the perceived differences between the recordings made using
any two of the microphones are predominantly due to the differing characteristics of those
microphones, rather than due to their differing positions in the array [9].

All microphones were connected to a Presonus Digimax FS microphone preamplifier
feeding an RME Fireface 800 audio interface. Audio was captured with a sample rate
of 44.1 kHz and a bit-depth of 24 bits. The MEMS microphones were supplied with
2.7 V power and recorded through the instrument inputs of the preamplifier due to their
high output impedance. To equalise differing microphone output levels, pink noise was
reproduced at a measured level of 74 dBSPL at the microphone array through a Genelec
1032 loudspeaker positioned 1.5 m directly in front of the array. The input gain on each of
the ten preamplifier channels was then adjusted to give a digital signal level of −36 dBFS
at the audio interface.

Recording 5 sources using 10 microphones provided 50 stimuli for rating. This number
is in the upper half of the range of numbers of stimuli employed in the brightness-related
perceptual studies cited in Section 3.1 (range 16–72, median 32, mean 37). All stimuli are
publicly available in the data archive referenced in the Data Availability Statement at the
end of this paper.
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Figure 1. Recording microphone array. (a) AKG C12; (b) AKG C414 B-XLS; (c) DPA 4006-TL; (d) Elec-
trovoice RE20; (e) Shure SM58; (f) Coles 4038; (g) Wolfson WM7131; (h) Knowles SPU0410HR5H;
(i) AKG C451; (j) sE 2200a. Dashed line represents 150 mm diameter circle within which all micro-
phone capsules lie.

2.4. Ratings of Brightness

Ratings of brightness were obtained using a two-part multiple-stimulus comparison
listening test. In part 1, each page of the listening test presented all ten recordings of
a particular source, and listeners were asked to rate the perceived brightness of each
recording. Listeners were asked to use the full rating range on each listening test page. This
was to minimise scale compression effects and potentially poor discrimination between
stimuli that might otherwise have resulted from a particular source having unusually low
or unusually high inherent brightness. For each listener, two of the sources were randomly
selected to be repeated to assess listener consistency.

In part 2, the most and least bright recordings of each source were presented all on a
single test page, and listeners were again asked to rate perceived brightness. Results from a
pilot experiment indicated that for each source the Knowles SPU0410HR5H and Coles 4038
microphones produced the most and least bright recordings, respectively. The results of
this part of the test will allow the part-one results to be scaled appropriately and combined
across sources.

Stimuli were presented diotically over a pair of Sennheiser HD650 headphones driven
by a Focusrite Virtual Reference Monitoring (VRM) Box interface, with the VRM feature dis-
abled. All stimuli were loudness matched: for each stimulus, five listeners independently
adjusted playback gain until the stimulus loudness matched that of a reference stimulus
judged to provide a comfortable listening level; for each stimulus, the mean playback gain
(across the five listeners) was then adopted for the listening test. Twenty participants took
part in the experiment, all of whom were undergraduate students on the Music and Sound
Recording course at the University of Surrey; all had participated in multiple listening tests
previously, and all had passed a taught module in technical listening.

2.5. Analysis of Listening Test Results

To screen listeners, for each listener the within-subject consistency (the mean square
difference between ratings for each of the two repeated sources) and between-subject
agreement (the Pearson’s correlation to the mean of all subjects’ responses, for each of
the sources) were calculated. In both measures, only one subject performed worse than
one standard deviation away from the mean consistency/agreement across listeners. This
listener was removed from subsequent analysis.
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To retain a balanced dataset across all sources, the results from the repeated pages in
each subject’s tests were discarded. To allow direct comparison of the results across sources,
the results from part 2 of the test were used to scale the results from part 1 using a linear
transform. The transform was calculated to adjust the part 1 experiment results so that the
mean values of the most and least bright stimuli for each source in part 1 equalled the mean
values of the identical stimuli in part 2. Prior to the scaling, the part 1 test results spanned
a range of zero to 100 for each source type. The scaled results are shown in Figure 2.
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Figure 2. Listener ratings of brightness. Data for each source (from test part 1) have been scaled
according to the cross-source ratings of the most and least bright recordings of that source (from test
part 2).

The least bright stimulus was the bass recorded with the Coles 4038 microphone; the
brightest stimulus was the drums recorded with the Knowles SPU0410HR5H microphone.
It should be noted that, within the data for each source, several microphones are rated
similarly in terms of their brightness, shown by the similar mean values and overlapping
confidence intervals. However, the means cover 38–56% of the rating scale within the data
for each source, and 94% overall, making the data potentially useful for modelling purposes.

3. Brightness Modelling

With ratings of brightness obtained, a model can be created to predict these ratings.
First, a review into the existing correlates of brightness was conducted to identify metrics
that may accurately predict perception.

3.1. Correlates of Brightness

In multiple application areas (e.g., comparisons between musical instruments, be-
tween variations of a single instrument, or between musical notes/chords), research has
found that the spectral centroid (SC) correlates highly with the perception of bright-
ness [3–6]. The SC can be calculated from the discrete frequency representation of an
audio signal as

C =
∑N

n=1 f (n)x(n)

∑N
n=1 x(n)

, (1)
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where C is the spectral centroid, f (n) is the frequency of the nth bin, and x(n) is the
magnitude of the nth bin. For signals that have more high-frequency energy, the SC will be
higher, and it will be lower for signals that contain more low-frequency energy.

It has been noted (by a research team that included the second author) that the
standard SC metric is calculated with a linearly spaced frequency scale, and suggested
that use of a more perceptually meaningful scale, such as mel, Equivalent Rectangular
Bandwidth (ERB), or cents, may relate better to perception [11].

Brightness is commonly considered to relate to the high-frequency content of an
audio signal [3]. Changes in low-frequency content are therefore unlikely to affect the
perception of brightness, yet will affect the SC. One potential improvement to the SC as
a brightness predictor would therefore be to calculate it only for signal energy above a
particular frequency, fc, as SC f c. This can be performed as shown in Equation (2), where
C f c is the frequency limited spectral centroid and nc is the frequency bin that most closely
matches fc.

C f c =
∑N

nc f (n)x(n)

∑N
nc x(n)

(2)

Two ratio-based metrics have been proposed to predict perceived brightness: the
ratio of the total magnitude of the high-frequency portion of the signal to that of the low-
frequency portion of the signal, as calculated from Equation (3) [7]; and the ratio of the total
magnitude of the high-frequency portion of the signal to that of the full signal, as shown
in Equation (4) [12]. Several different crossover frequencies, fc, have been suggested that
range from 500 Hz to 3 kHz [7,8].

Ratio1 =
∑N

nc x(n)

∑nc−1
n=0 x(n)

, (3)

Ratio2 =
∑N

nc x(n)

∑N
n=0 x(n)

. (4)

For both the SC and ratio metrics, there are several additional manipulations that
may make them more closely relate to the perception of brightness. Frequencies below the
low-frequency limit of human hearing are unlikely to affect the perception of brightness but
may affect the metrics; therefore, for this study, only frequencies greater than 20 Hz were
considered (lower-frequency spectral bands were excluded). Similarly, human hearing
is not equally sensitive to all frequencies within the audible range; this study therefore
tested the application of A- and C-weighting filters prior to analysis. Finally, it has been
shown that high-Q spectral peaks are less perceptible than low-Q peaks [13]; this study
therefore trialed spectral smoothing to prevent less perceptible high-Q resonances from
overly influencing the metrics.

3.1.1. Metric Parameter Values

Four frequency scales for calculating the SC metrics were considered: Hertz, mel, ERB,
and cents (with a 27.5 Hz reference). For the crossover frequencies used to calculate the
SC f c and ratio metrics, all values reported in previous research were tested: 500, 750, 900,
1000, 1250, 1500, 2000, and 3000 Hz. The additional value of 6 kHz was also included. Thus,
nine crossover frequencies in total were considered.

Each metric was tested with three audio weighting options: unweighted and with A-
and C-weighting applied. In terms of spectral smoothing, seven options were tested: no
smoothing, octave-band, half-octave, 1

3 -octave, 1
12 -octave, 1

24 -octave, and 1
64 -octave smoothing.

It may also be beneficial to consider the interaction between the various metrics. This
can be shown by including the product of the various SC and ratio metrics. Additionally,
logarithmic transformations may also improve the correlation of all suggested metrics,
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since human perception of frequency and amplitude is roughly logarithmic; all metrics
were tested both untransformed and with logarithmic transformation.

3.1.2. Metrics Summary

There were, in essence, four metrics under consideration: two SC types (SC and SC f c)
and two ratio types (Ratio1 and Ratio2). By combining these metrics, and using multiple
options for frequency scale, crossover frequency, audio weighting, spectral smoothing and
logarithmic transformation (as detailed in Section 3.1.1), a total of 8484 candidate metrics
were created. Table 1 summarises the full complement of metrics and parameter values
tested, including combination metrics.

Table 1. Summary of all 8848 candidate metrics for modelling brightness.

Metric Variables Total Number

SC Audio weighting: 3 options 168
Spectral smoothing: 7 options
Frequency scale: 4 options
Log transform: 2 options

SC f c Audio weighting: 3 options 1512
Spectral smoothing: 7 options
Frequency scale: 4 options
Crossover frequency: 9 options
Log transform: 2 options

Ratio1 & Ratio2 Ratio type: 2 options 756
Audio weighting: 3 options
Spectral smoothing: 7 options
Crossover frequency: 9 options
Log transform: 2 options

SC/SC f c and Ratio Combination SC type: 2 options 6048
Ratio type: 2 options
Audio weighting: 3 options
Spectral smoothing: 7 options
Frequency scale: 4 options
Crossover frequency: 9 options
Log transform: 2 options

3.2. Initial Modelling of Brightness

The model of brightness was developed in two stages. First, an automated process
was used to test each candidate metric against the scaled data from all sources to identify a
shortlist of metrics that can predict the overall brightness well. Secondly, these shortlisted
metrics were tested against the data separately for each source type to identify the metric
that is most suitable for use in a model of brightness.

3.2.1. Automated Metric Selection: Across All Sources

A linear regression model was calculated for each of the candidate metrics, and cal-
ibrated to the overall scaled brightness ratings. Linear regression was chosen as the
modelling technique since the simplicity of the method reduces the likelihood of producing
an overfitted model, therefore producing a model that is more likely to be generalisable.
The performance of each candidate model was then assessed in terms of its Pearson’s
r (correlation), Spearman’s rho (rank correlation), and root mean square error (RMSE),
shortlisting the metric that performed best for each of these measures.

The highest Pearson’s r and lowest RMSE were achieved by the same model, which
used one of the SC and Ratio2 metrics. The highest Spearman’s rho was achieved by
two models, both of which used one of the SC f c and Ratio1 metrics. These metrics were
therefore shortlisted and the corresponding parameters are summarised in Table 2. Of the
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two models that achieved the best Spearman’s rho, the difference between the underlying
metrics was the logarithmic transformation, with the logarithmic version performing much
better in its Pearson’s r and RMSE.

Table 2. Best-performing (lowest root mean square error (RMSE), highest Pearson’s r, highest
Spearman’s rho) metrics from the original 8484 candidates.

Best Pearson’s r & RMSE Best Spearman’s rho

Metric SC & Ratio2 SC f c & Ratio1 SC f c & Ratio1
Audio weighting None None None
Frequency scale Hertz Hertz Hertz
Crossover freq. ( fc) 500 Hz 1250 Hz 1250 Hz
Spectral smoothing 1

3 -octave 1
3 -octave 1

3 -octave
Log transform Yes Yes No
Pearson’s r 0.922 0.919 0.646
Spearman’s rho 0.902 0.906 0.906
RMSE 8.52 9.928 16.779

3.2.2. Selecting One Metric: Each Source Independently

To select which of the three shortlisted metrics is the most appropriate for a general
model of brightness, a linear regression model was created from each metric to the bright-
ness ratings for each source independently. The SC and Ratio2 model performed better in
terms of its Pearson’s r, Spearman’s rho, and RMSE for each source except for the trum-
pet, where the model achieved the same Spearman’s rho as both SC f c and Ratio1 models
(ρ = 0.9879), but slightly poorer Pearson’s r and RMSE. From this it was concluded that SC
and Ratio2 metric was more suitable and would produce the best model of brightness.

3.3. Model Refinement

Since the chosen metric is the logarithm of the product of the SC and Ratio2, the metric
can be rewritten as

log10(Ratio2 · C) = log10(Ratio2) + log10(C). (5)

Using Equation (5), a multilinear regression modelling approach could be taken to find
appropriate weights for both Ratio2 and SC metrics independently. However, applying this
approach did not lead to an improvement in the performance of the model, achieving the
same Pearson’s r, RMSE, and Spearman’s rho to three significant figures. Upon performing
a multilinear regression on the standardised values of the SC and Ratio2 components,
the coefficients for each were 46.1 and 42.9, respectively (to three significant figures). Since
these coefficients are very similar, the relative contribution of each metric is almost equal.
This explains why weighting them independently does not improve the performance of
the model. Therefore, the model is a linear regression of the product of SC and Ratio2.

The finalised brightness can be expressed as in Equation (6). The full model is sum-
marised in Figure 3. Its performance is shown in Figure 4.

Brightness = −95.9388 + 44.5552 log10(Ratio2 · C). (6)
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Figure 3. Flow chart of the developed brightness model (FFT = Fast Fourier Transform).
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Figure 4. Listeners’ brightness ratings against the best-performing model, across all sources.
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4. Model Validation

In order to validate the developed brightness model, new stimuli were recorded, using
new sources and microphones. Brightness ratings of these new stimuli were obtained and
compared against the brightness predicted by the model.

4.1. Creating Validation Stimuli

Validation stimuli were again created as described in Section 2: selecting microphones
using a combination of physical/acoustic factors and expert advice; selecting sources best
able to reveal the likely effects of those physical/acoustic factors, whilst providing a range
of source brightnesses; and recording stimuli with all microphones simultaneously.

4.1.1. Selecting Microphones

Ten studio microphones were selected that weren’t used in the generation of the
training dataset and that varied in terms of their sensitivity, self-noise, transient response,
distortion, diaphragm size, transduction type, directivity, and frequency response: Sony
C800; AKG D12; Schoeps CMC-6U with 2H capsule; Countryman B3; Neumann U87
(cardioid); Royer R-121; Sony F730; DPA 4015; Sony ECM670; and Hebden HS 3000 (hyper-
cardioid). Eight independent experts were then asked to suggest microphones representing
each extreme of the scale for the perceptual attributes of brightness, noise level, harshness,
clarity, and piercing (the five timbral attributes contributing most to perceptual differences
between microphones [2]). Analysis of these responses led to the addition of the HS3000
(omnidirectional) and AKG C1000S microphones.

In the microphone set used to generate the brightness model training data, two MEMS
microphones were included. For consistency, three new MEMS microphones were included
in the set used to generate the validation data: WM7132; WM7138; and WM7331. Two of
each of these microphones were included in the validation microphone array: one with the
soundhole facing the source (face-on, more typical studio microphone orientation); and
a second with the soundhole perpendicular to the source (side-on, more typical MEMS
microphone orientation).

4.1.2. Selecting Sources

Sources were selected to best reveal the likely effects of the physical/acoustic factors
that differ from one microphone to another, and to provide a wide range of source bright-
nesses. Additionally, the model of brightness developed in Section 3.2 had a crossover
frequency of 500 Hz, and so at least one source was selected that produces energy predomi-
nantly below 500 Hz, and another source which produces energy predominantly above
500 Hz, and a broadband source with similar magnitude above and below 500 Hz. This
resulted in a list of six sources: banjo, cello, clarinet, glockenspiel, trombone, and ukulele.

Stimuli were recorded exactly as described in Section 2.3. Figure 5 shows the layout of
the validation microphone array. All recorded stimuli were loudness matched by a panel
of six listeners to produce a comfortable listening level when presented diotically over a
pair of Sennheiser HD650 headphones driven by a Focusrite VRM Box interface, with the
VRM feature disabled.
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Figure 7.1: Validation array layout. (a) AKG C1000S; (b) Cirrus WM7331 (side on); (c)
Countryman B3; (d) AKG D12; (e) Schoeps CMC6U with 2H capsule; (f) Cirrus WM7331

(face on); (g) Sony F730; (h) Cirrus WM7132 (side on); (i) Royer R-121; (j) Cirrus WM7132
(face on); (k) Sony ECM670; (l) Hebden HS3000 (omni); (m) WM7138 (side on); (n)

WM7138 (face on); (o) Neumann U87 (cardioid); (p) Hebden HS3000 (hyper-cardioid); (q)
DPA 4015; (r) Sony C800.

Prior to any listening tests to obtain ratings of brightness, a comfortable listening
level was found. A method-of-adjustment listening test was then used to perceptually
loudness match the stimuli to this comfortable level.

7.2.1 Loudness equalisation

A comfortable listening level was found in the same manner as the elicitation
experiment. A normalised signal from the Schoeps CMC6U microphone, chosen
arbitrarily, was reproduced through a pair of Sennheiser HD650 headphones with a
Focusrite VRM box interface, with the VRM feature disabled. The volume on the
VRM box was set to maximum.

Six subjects participated in the experiment and were asked to, for each programme
item, adjust the digital level of the stimuli to a level that would be comfortable for a
listening test of approximately 30 minutes. Stimuli were adjustable between -100 and
0 dBFS. The mean digital level of all six participants was calculated and applied to all

Chapter 7. Model validation | 191

Figure 5. Validation microphone array. (a) AKG C1000S; (b) Cirrus WM7331 (side on); (c) Country-
man B3; (d) AKG D12; (e) Schoeps CMC6U with 2H capsule; (f) Cirrus WM7331 (face on); (g) Sony
F730; (h) Cirrus WM7132 (side on); (i) Royer R-121; (j) Cirrus WM7132 (face on); (k) Sony ECM670; (l)
Hebden HS3000 (omni); (m) WM7138 (side on); (n) WM7138 (face on); (o) Neumann U87 (cardioid);
(p) Hebden HS3000 (hyper-cardioid); (q) DPA 4015; (r) Sony C800.

To encourage similar scale usage here to that in the previous gathering of brightness
ratings, the most and least bright stimuli overall from the training dataset (drums recorded
with the Knowles SPU0410HR5H and bass recorded with the Coles 4038, respectively)
were included in the part-two scaling experiment. Since these scale anchors formed part
of the training dataset, the associated responses were excluded from the dataset used
for validation.

4.2. Validation Ratings of Brightness

For each source, a pilot listening test was used to identify ten stimuli covering the
full range of brightnesses. Three subjects were asked to rate the brightness of all eighteen
stimuli per source. From the analysis of these results, only the most and least bright
MEMS microphones were retained for the main experiment: the Cirrus WM7138 (face-
on) and Cirrus WM7331 (side-on), respectively. Eight studio microphones were selected
by identifying those rated most and least bright, as well as six others that spanned the
range of brightness ratings, removing those whose ratings of brightness were similar to
others. Those selected were: AKG D12; Sony C800; Countryman B3; Hebden HS3000
(hyper-cardioid); Neumann U87 (cardioid); Sony ECM670; and Sony F730.

Using the same two-part procedure as described in Section 2.4, eighteen listeners then
rated the brightness of each retained stimulus.

4.3. Validation of Model

Figure 6 shows the brightness predicted by the model against the mean listener ratings.
The model achieves a Pearson’s r of 0.955, but the line of best fit (grey dashed line) shows
a different gradient to the ideal line (solid back), leading to under-prediction for high-
brightness stimuli. This is most likely due to inconsistency in scale usage between the
training and validation tests (the inclusion of just two stimuli common to both might not
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have been sufficient). For the purposes of audio database searching, however, a gradient
mismatch between prediction and perception is unlikely to be of any consequence: if
brightness metadata are used to search for sounds with a specific brightness then, since
there is no standard unit of brightness perception, the search would require selection of
a reference sound with the desired brightness, and the metadata would allow accurate
identification of the other sounds having the most similar brightnesses; if brightness
metadata are instead used to order search results, then the high value of Spearman’s rho
indicates that this also will be achieved accurately.
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Figure 6. Validation brightness ratings against the model of brightness, colours indicating each
source type. Coloured dotted lines represent the line of best fit for each source, and the grey dashed
line is the overall line of best fit (Colour online).

In Section 3.3, it was shown that the contributions of the SC and Ratio2 were similar
by performing a multilinear regression with the standardised metrics. Performing the same
analysis with the validation data produces coefficients of 12.172 and 6.815, respectively.
This indicates that the SC accounts for more of the variance within the validation dataset
than the Ratio2 metric. However, neither constituent metric accounts for the vast majority
of the variance.

4.4. Comparison to Existing Models

Table 3 compares the performance of the developed model against models built on
each of the three existing metrics introduced in Section 3.1: spectral centroid (SC), Ratio1,
and Ratio2. For each of these three metrics, a linear regression model was trained with the
training dataset, and tested against the validation dataset. The crossover frequencies for
the ratio metrics were selected from those listed in Section 3.1.1; choosing the frequencies
that gave the highest Pearson’s r and lowest RMSE.

Since logarithmic transformations were tested for each metric during the development
of the new model, the logarithmic transformations of the SC and ratio metrics were also
calculated for comparison.
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Table 3. Comparing the performance of all brightness models.

Model Pearson’s r Spearman’s rho RMSE

Tested against training data

New model 0.922 0.902 8.52
SC 0.760 0.789 14.30
log SC 0.811 0.789 12.87
Ratio1 (1 kHz crossover) 0.734 0.867 14.93
log Ratio1 (2 kHz crossover) 0.907 0.887 9.28
Ratio2 (2 kHz crossover) 0.888 0.887 10.11
log Ratio2 (3 kHz crossover) 0.900 0.892 9.59

Tested against validation data

New model 0.955 0.954 14.46
SC 0.830 0.801 19.33
log SC 0.864 0.801 24.00
Ratio1 (1 kHz crossover) 0.713 0.901 17.73
log Ratio1 (2 kHz crossover) 0.862 0.822 23.62
Ratio2 (2 kHz crossover) 0.851 0.838 24.05
log Ratio2 (3 kHz crossover) 0.798 0.787 34.58

For both the training and validation datasets, the new model out-performs models
built on all existing metrics of brightness, in all performance measures.

5. Discussion

Much of the literature regarding the perception of brightness suggested that the spec-
tral centroid is a suitable metric which correlates with perceived brightness [3–6]. Literature
has also suggested that ratio models are suitable for modelling perceived brightness [7,12].
However, the results from this paper show that a combination of the SC and Ratio2 pro-
duces a better model. The reasons for this are unclear but the authors suggest that SC
is perhaps too sensitive a measure of spectral balance (being affected by, for example,
movement of a spectral peak from a bright-sounding 8 kHz to an equally bright-sounding
7 kHz) whereas Ratio2 is perhaps too coarse (being entirely unaffected by spectral changes
that are either wholly below or wholly above 500 Hz). (Adding energy above 20 kHz will
lead our model (and any other based on the same SC and/or ratio metrics) to over-predict
brightness. If significant energy variations above 20 kHz are considered likely, and a high
enough sample rate is employed to represent them, then the problem can be fixed simply
by setting the upper limits of the ratio and SC sums to 20 kHz.)

The proposed model out-performed the existing metrics, as well as their logarithmic
transformations, with all performance measures, shown in Table 3. Whilst the logarithmic
transformation improved the correlation of the SC metric for both the training and valida-
tion dataset, a logarithmic transformation did not always improve the correlation of the
ratio metrics. This is shown by the lower Pearson’s r for the logarithmic models with the
validation data. Interestingly, although the SC metric is far more commonly associated
with brightness in the literature, the ratio metrics tended to produce higher correlation to
the subjective brightness ratings.

The best crossover frequency, fc, for the new model was identified as 500 Hz. This is
within the range of crossover frequencies suggested by Lartillot and Toiviainen [12].

Adding a A- or C-weighting filters, or using a perceptual frequency scale to calculate
the SC, did not improve the performance of the model. This was unexpected since these
perceptual transformations were proposed to better relate metrics to subjective impressions.
It may be that the logarithmic transformation applied to the selected metrics was sufficient
to simulate the nonlinearities of the human hearing system.

The most appropriate level of spectral smoothing was found to be 1
3 -octave, implying

that the stimuli contained some degree of high-Q peaks/troughs in their frequency spectra
that were adversely affecting the relationship between the metrics and perceived level of



Appl. Sci. 2021, 11, 6461 13 of 14

brightness. Although the 1
3 -octave smoothing has likely removed these, applying a wider

smoothing (half-octave or octave-band width) may have resulted in a loss of detail in the
signal, and thus reduced the predictive ability of the metric.

Detailed analysis of the exact impact of each parameter on brightness prediction
accuracy is outside the scope of this paper but could make an interesting follow-up study.

The proposed model correlates well with the validation data, but there was a gradient
difference in the predicted brightness, under-predicting the validation brightness ratings
for high-brightness stimuli. It was suggested that this may have been due to inconsistency
in scale usage between the training and validation tests. The training dataset ranged from
0 to 100, whereas the validation dataset ranged only from 26.7 to 91.8. It has been noted
that prediction models typically express some form of offset or different gradient in the
results [14], so this is not completely unexpected.

6. Conclusions

Automatic generation of metadata relating to timbre can facilitate searching of audio
databases, and brightness is one of the most commonly used timbral descriptors; it is also
the timbral attribute most affected by microphone choice. Models have been developed
previously to predict the differing brightnesses of recorded sounds that result from dif-
ferences between sound sources. This study developed a model intended, additionally,
to account for the influence of the microphones used to make the recordings. This model is
the product of the SC and Ratio2 (the ratio of the total magnitude of the high-frequency
portion of the signal to that of the full signal), with 1

3 -octave smoothing, 500 Hz crossover
frequency, and a logarithmic transformation. The model can be summarised with the
flowchart shown in Figure 3.

With a training dataset of 50 stimuli, comprising brightness ratings of five sources
recorded with ten microphones, the developed model achieved a Pearson’s r of 0.922,
Spearman’s rho of 0.902, and RMSE of 8.52. This performs better than all of the previously
proposed metrics that relate to brightness (when calibrated on this dataset). Validating
the model on a different dataset, composed of brightness ratings of six different sources
recorded with ten different microphones, the proposed model achieved a Pearson’s r of
0.955. On this validation dataset the model, again, performed better than all previously
proposed metrics.
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