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Abstract: NUMA multi-core systems divide system resources into several nodes. When an imbalance
in the load between cores occurs, the kernel scheduler’s load balancing mechanism then migrates
threads between cores or across NUMA nodes. Remote memory access is required for a thread to
access memory on the previous node, which degrades performance. Threads to be migrated must be
selected effectively and efficiently since the related operations run in the critical path of the kernel
scheduler. This study focuses on improving inter-node load balancing for multithreaded applications.
We propose a thread-aware selection policy that considers the distribution of threads on nodes for
each thread group while migrating one thread for inter-node load balancing. The thread is selected
for which its thread group has the least exclusive thread distribution, and thread members are
distributed more evenly on nodes. This has less influence on data mapping and thread mapping for
the thread group. We further devise several enhancements to eliminate superfluous evaluations for
multithreaded processes, so the selection procedure is more efficient. The experimental results for the
commonly used PARSEC 3.0 benchmark suite show that the modified Linux kernel with the proposed
selection policy increases performance by 10.7% compared with the unmodified Linux kernel.

Keywords: NUMA; Linux kernel; multithreaded; load balancing; remote memory access

1. Introduction

Multi-core systems allow parallel computing and have a higher throughput. To
effectively utilize the performance of multi-cores, applications are coded as multithreaded.
In Linux, the kernel maintains one runqueue for each core. When a process or thread
is ready to run, it is put into the runqueue and waits to be run on the corresponding
core. The Linux kernel [1] maintains a data structure, struct task_struct, which records
attributes and runtime information for each schedulable entity. Each schedulable entity
in the Linux kernel is called a task. When several tasks with different run times are run
simultaneously, the load between cores can be imbalanced, so performance is decreased.
The kernel scheduler’s load balancing mechanism then migrates tasks from the overloaded
core’s runqueue to the runqueue of a core that is not so heavily loaded.

Non-Uniform Memory Access (NUMA) [2] systems divide system resources such as
processors, caches, and RAM into several nodes. It takes longer for one core to access the
memory on different NUMA nodes than on the local node. This costly memory access is
called remote memory access. For a task running on a NUMA system, the memory pages
allocated to it may be scattered on different nodes. When a task accesses memory pages on
nodes other than those on which it runs, remote memory access occurs. For Linux-based
NUMA systems, the load balancing mechanism can migrate tasks to another node, so
costly remote memory access is necessary after the migration. The benefit of load balancing
is reduced by the need for remote memory access after task migration. A prior study [3]
showed that reducing remote memory access is critical in designing and implementing an
operating system on NUMA systems.
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In order to maintain a balanced load and reduce remote memory access, the kernel-
level Memory-aware Load Balancing (kMLB) [4] mechanism was proposed to allow better
inter-node load balancing for the Linux-based NUMA systems. The unmodified Linux
kernel migrates the first movable task that can be run on the target core. The task may
involve more remote memory access when it is migrated between nodes. The kMLB
mechanism modifies the Linux kernel to track each task’s number of memory pages on
each node. This memory usage information is then used to select the task that is most
suited to inter-node migration. Several task selection policies, such as Most Benefit (MB) [4]
and Best Cost-Effectiveness [4], have been proposed and used different metrics. The
selected tasks require less remote memory access after migration, and system performance
successfully improves. Differently, Chen et al. [5] proposed a machine learning-based
resource-aware load balancer in the Linux kernel to make migration decisions. The extra
runtime overhead deducts the performance gain because scheduling operation is in the
critical path of kernel operations.

A multithreaded process can create threads as needed during its execution. In the
Linux kernel, these threads form one thread group and share memory space. On NUMA
systems, threads of one thread group can be scheduled by the kernel to run on different
nodes to balance the load, so the same memory pages can be accessed by threads that run
on different nodes. Accessing one memory page involves local access for some threads
and remote access for other threads. When a thread is migrated across nodes, remote
memory access and cache misses increase as well, so it is difficult to determine the cost of
memory access.

This study first analyzes multithreaded applications and their memory access in
Linux and then proposes a new task selection policy, which is named Exclusivity (Excl) for
multithreaded applications. This policy determines whether a task is suitable for inter-node
migration using the exclusivity of the thread distribution on NUMA nodes in its thread
group. The task for which the thread group is least exclusive is selected, which has a lesser
effect on data mapping and thread mapping for its thread group.

Although selecting a suitable task for inter-node migration can reduce remote memory
access, the selection procedure must evaluate all tasks in the runqueue, which involves
a processing overhead. Since the selection is in the critical path for the kernel scheduler,
the cost of more operations outweighs any benefit. Therefore, we further improve the
procedure for selecting tasks by using thread group information to eliminate superfluous
evaluations. Only a subset of movable tasks in the runqueue is evaluated, so the selection
procedure is more efficient.

The contribution of this study is as follows. First, multithreaded applications and their
memory access in Linux are analyzed. The analysis indicates that the existing memory-
aware MB policy is still effective for multithreaded applications. However, it requires
the kMLB mechanism to track per-task memory usage on per NUMA node. Thus, its
implementation needs to modify many kernel operations and data structures that are
affected. Second, the thread-aware Exclusivity policy is proposed, which is a relatively
lightweight task selection policy since it does not need the kMLB mechanism. Instead, it
uses the exclusivity of the thread distribution on nodes in the thread group to determine
the target thread for inter-node migration. Third, several methods to enhance selecting
tasks for inter-node migration for multithreaded applications are proposed.

Finally, the proposed Exclusivity policy and enhancement methods are practically im-
plemented in the Linux kernel. Extensive experiments using the PARSEC 3.0 [6] benchmark
suite run on the modified Linux kernel with various task selection policies. Compared
with the unmodified Linux kernel, the results show that when the task selection procedure
is enhanced, the Most Benefit Plus (MB+) policy, which requires the kMLB mechanism,
increases performance by 11.1%. The proposed Exclusivity policy increases performance
by 10.7%. This policy is competitive and does not require the kMLB mechanism. Besides, it
is more easily adapted to a newer Linux kernel.
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The remainder of this paper is organized as follows. Section 2 introduces the techno-
logical background and related work. Section 3 presents the improvements for inter-node
task migration for multithreaded applications and the new task selection policy. Section 4
details the experimental results, and Section 5 concludes.

2. Technological Background and Related Work

Though multi-core systems have high throughput, the performance increase depends
on the placement of tasks and their data on nodes during runtime. Task placement affects
contention between resources for the cache and cores, and data placement affects the
memory access cost for a task. To utilize system resources more efficiently and increase
performance, many studies [7–15] design specific placements of tasks and data to decrease
resource contention, balance the loads in the cores, and reduce access to remote memory.
The solutions focus on improving the performance of Symmetric Multi-processing (SMP)
and Non-Uniform Memory Access (NUMA) [2] systems.

However, the rises of multithreaded applications cause finding specific task placement
or data placement to increase performance more complicated. Since threads in one mul-
tithreaded application commonly share memory address space, and if they run on cores
that do not share or share fewer cache resources, tasks are placed less efficiently because of
more cache misses. In terms of data placement, there are different memory access latencies
for cores access memory on different nodes. It is more challenging to determine where to
allocate the required memory for the requesting task on NUMA systems.

This section first describes two types of multi-core systems and then reviews related work
in Section 2.2. Section 2.3 introduces the kernel-based Memory-aware Load Balancing (kMLB) [4]
mechanism and task selection policies proposed for improving inter-node migration.

2.1. Multi-Core Systems

A Symmetric Multi-processing (SMP) system is a multi-core system in which cores
can share different levels of cache and the cost to access any location in the main memory
is the same for all cores, as shown in Figure 1a. For a Non-Uniform Memory Access
(NUMA) [1] system, as shown in Figure 1b, system resources such as cores, RAM, and
memory controllers are divided into several nodes, and interconnection links connect these
nodes. Cores can access the memory located on the same node with it, which is called
local memory access. Accessing memory on other nodes via interconnection links is called
remote memory access. This requires a longer time. The NUMA factor is the ratio between
the remote memory access latency and the local memory access latency.

Figure 1. The load balancing mechanism affects SMP and NUMA systems differently. (a) SMP
system; (b) NUMA system.
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Though a NUMA system is more scalable than an SMP system and more memory
accesses can occur simultaneously, operating system design must reduce costly remote
memory access. Nevertheless, for load balancing, modern operating systems migrate
tasks from an overloaded core’s runqueue to the runqueue of a core with a lesser load.
The load-balancing mechanism affects SMP and NUMA systems differently, as shown in
Figure 1. Unlike an SMP system that features a uniform cost to access memory, migrating a
task across nodes can involve costly remote memory access after migration. The benefit
gained from load balancing thus is reduced by the need for remote memory access.

2.2. Related Work

In the Linux kernel, a memory page is allocated to a task when it first accesses the
page. The page is allocated on the node where the requesting task is running. This is called
a first-touch strategy [16]. Suppose a task is scheduled to run on another NUMA node
during context switches or is migrated to another node for load balancing. In that case, the
task requires remote memory access to access the page on the original node. Linux [17]
offers NUMA-related system calls for NUMA-aware programs and provides commands
and tools that constrain tasks to run on specific nodes. Several studies [11–14] proposed
methods that use NUMA-related system calls to bind one task on specific nodes to decrease
remote memory access. However, these performance improvements are reduced because a
multithreaded application can create threads as needed during runtime, and the thread
load is not deterministic. Binding tasks on specific nodes results in a load imbalance
between nodes, and CPU utilization decreases accordingly.

Chen et al. [5] implemented a machine learning (ML)-based resource-aware load
balancer in the kernel to make migration decisions. An ML model is implemented inside
the kernel to monitor real-time resource usage in the system. This identifies potential
hardware performance bottlenecks and then makes load balancing decisions. This ML
model is trained offline in the user space and is used for online inference in the kernel to
generate migration decisions. The results show no significant difference in the performance
of the original kernel and the modified kernel when running benchmarks. Performance
gains are negated largely because of the extra runtime overhead and the fact that scheduling
operations are in the critical path of kernel operations.

Migrating memory pages to the NUMA node on which their requesting task is cur-
rently running reduces remote memory access. Mishra and Mehta [15] proposed an
on-demand memory migration policy that migrates only the referenced pages to the cur-
rent node where the requesting task is running. Terboven et al. [11] proposed a user-level
implementation of a Next-touch approach in Linux. The mprotect() system call is used to
change protection on a memory region, so the successive reads and writes incur segmenta-
tion faults. A signal handler that handles segmentation fault is implemented and invokes
the move_pages() system call to migrate the accessed page to the node on which the task is
currently running. Goglin and Furmento [13,14] presented two different implementations
of a Next-touch approach in Linux. The user-space implementation also uses the mprotect()
system call and a segmentation fault signal handler to migrate the accessed page. The
kernel-level implementation uses the madvise() system call and modifies the kernel page
fault handler to migrate the accessed page. The results show that the kernel-based imple-
mentation is more efficient than the user-space implementation. However, if the memory
page is not accessed again after it is migrated, the cost of accessing the remote memory
page may be less than the cost of migrating it.

In the Linux kernel, all threads of one multithreaded process share memory address
space and use the same page table. If these threads run on different nodes, it is hard to
determine whether pages should be migrated to the node where the requesting thread
runs and to track the memory access pattern for an individual thread. Therefore, it is
more challenging to perform thread mappings or data mappings to reduce remote memory
access. To overcome these difficulties, Diener et al. [7] modified the kernel page fault
handling routines to track the memory access patterns for any threads. The present flag
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of the page table entry is cleared so that whenever one memory page is accessed, a page
fault occurs, even though the faulted memory page has already been in the memory. This
identifies which thread on which node accesses this memory page and its access pattern.
This mechanism is named kMAF [7] and uses the memory access patterns to determine
which threads are more relevant and migrates them to the same node to allow better thread
mappings. For data mappings, kMAF migrates one memory page to the node where the
frequency of faults for this page is exclusive, so the page is mostly accessed from that node.
This reduces remote memory access.

For methods using page fault to trigger migrating the faulted page to the same node as
the faulting thread, the induced faults reduce performance. Existing studies also use page
faults on the same page table for all threads for one multithreaded process to determine the
memory access pattern for data mappings or thread mappings. Since several threads of a
multithreaded process may fault one page, Gennaro et al. [8] indicated that this might result
in an inaccurate estimation of the working-set of individual threads for one multithreaded
process performance is decreased in terms of thread mappings. They then proposed a
solution that uses the multi-view address space (MVAS). If MVAS is switched on while one
multithreaded process runs, one individual page table is created for each of its threads.
The memory access pattern for different threads can be separately tracked in different page
tables until MVAS is switched off for the multithreaded process. MVAS does not incur
extra page faults, so it can support those studies [11,13,14] that use page faults to perform
page migrations to reduce remote memory access.

Lepers et al. [9] studied the placement of threads and data on NUMA nodes and
the asymmetry of interconnecting links for nodes connected by links of different band-
widths. A dynamic thread and memory placement algorithm was developed in Linux to
minimize contention for asymmetric interconnect links and maximize bandwidth between
communicating threads. Li et al. [10] also studied the effect of hardware asymmetry. The
AMPS scheduler is implemented in the Linux kernel to support asymmetric multicore
architectures for which cores in the same processor have different performances. The Linux
kernel is modified to track the memory usage for each thread on each node and predicts
the migration overhead for a thread. Threads are migrated to faster cores when they are
under-utilized. However, if the predicted migration overhead is too high or the thread is in
the memory allocation phase, this thread cannot be migrated across nodes.

2.3. The Kernel-Based Memory-Aware Load Balancing (kMLB) Mechanism

Inter-node task migration is necessary for an operating system to balance the load
between NUMA nodes, and migrating different tasks for inter-node load balancing incurs
a different amount of remote memory access. As shown in Figure 2, migrating the first task
in the source runqueue, i.e., Task#3, incurs 3-page remote memory access but migrating
Task#10 incurs 5-page remote memory access. However, the unmodified Linux kernel
always selects the first task that can be migrated to run on the destination core. It allows
rapid selection, but the first task may not incur the least remote memory access after the
inter-node migration.

A previous study [4] shows that it is better to select the task that involves less remote
memory access after migration. The kernel-based Memory-aware Load Balancing (kMLB)
mechanism was proposed to select suitable tasks to migrate between nodes to allow better
load balancing in the Linux kernel. The memory usage for each task on each node is
tracked. Depending on a task’s current running node, the physical pages that it occupies
on each node are identified as local or remote. The load balancer then uses this information
to determine the most suitable task for inter-node migration.

In the Linux kernel, the Resident Set Size (RSS) [1] for one process is the number of
page frames occupied by this process. The original RSS only tracks the total number of
page frames that are occupied by each process. The kMLB mechanism modifies the kernel
operations to track the RSS counters on each node for each process, including dynamic
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memory allocation and releases, demand paging, swapping, system calls, and inter-node
page migration.

Figure 2. Migrating different tasks incurs a different degree of remote memory access after migration.

The following details task selection policies that are used with the kMLB mechanism.
For the example in Figure 2, Table 1 shows the selected task for each policy according to
the specific metric used.

Table 1. Selecting a task using different selection policies.

Policy
Tasks Waiting in the Source Core’s Runqueue

Selected Task
Task#3 Task#9 Task#10

First-Fit N/A N/A N/A Task#3
TM 3 + 7 = 10 3 + 3 = 6 5 + 10 = 15 Task#9
MB 7 − 3 = 4 3 − 3 = 0 10 − 5 = 5 Task#10
BCE (7 − 3)/3 = 1.333 (3 − 3)/3 = 0 (10 − 5)/5 = 1 Task#3

• Total Min (TM) Policy [3] selects the task in the source core’s runqueue with the
minimal total memory size. It is possible to have the least influence caused by task
migration since the selected one occupies the least amount of memory for access
after migration.

• Most Benefit (MB) Policy selects the task in the source core’s runqueue that can reduce
the maximum amount of remote memory access when migrated. This policy considers
the memory that is occupied by each task on the source and destination nodes. The
task with the maximum difference is selected. The following metric is used to select
the target task with the maximum value, in which RSSp(i) is the RSS value for task p
on NUMA node i and dest_node and src_node are the IDs for the destination and source
NUMA nodes, respectively:

MBp = RSSp(dest_node) − RSSp(src_node)

• Best Cost-Effectiveness (BCE) Policy selects the task in the source core’s runqueue for
which inter-node migration is the most cost-effective. Based on the MB policy, the
BCE policy also considers the maximum cost of page migration, which is the amount
of memory occupied by one task on the source node. The selected task is the one that
can reduce the maximum remote memory access relative to the maximum migration
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cost when it is migrated. The following metric is used to select the target task with the
maximum value:

BCEp = (RSSp(dest_node) − RSSp(src_node))/RSSp(src_node)

3. Improved Inter-Node Load Balancing for Multithreaded Applications

The kMLB mechanism [4] tracks the number of physical pages per node occupied
by each task. For each movable task in the overloaded core’s runqueue, the modified OS
scheduler uses this information to calculate the metric to determine the most suitable task
for inter-node migration. However, the kernel scheduler must evaluate each task in the
runqueue to identify a target task to be migrated. The source (i.e., the busiest) and the
destination (i.e., the idlest) runqueues must be locked, so the target task must be identified
efficiently because it runs in the critical path of the kernel scheduler. Besides, the threads of
one multithreaded application share memory pages and may be distributed on different
nodes. When threads running on different nodes access their shared memory pages on the
remote node, cache misses and remote memory access slow access.

This study improves inter-node task migration for multithreaded applications in
two respects. This section first introduces multithreaded applications and their memory
access in Linux. Section 3.2 describes the improvements in selecting tasks for migration
between nodes for multithreaded applications. Section 3.3 presents the proposed thread-
aware task selection policy for inter-node migration for multithreaded applications.

3.1. Multithreaded Applications and Their Memory Access in Linux

During the execution of a multithreaded application, threads are created as needed.
In Linux, these threads form one thread group. The first thread in a multithreaded process
is the thread group leader, and other threads are the members of this thread group. Each
thread is regarded as one schedulable entity in the Linux kernel, so it is one task. Threads
of the same thread group share the same memory address space and page table.

When a task is created, the OS scheduler dispatches it to the core with the least load
to maintain load balance within multi-core systems. On NUMA systems, threads of the
same thread group may be distributed on different nodes, and their memory pages can
also be allocated on several nodes, as shown in Figure 3. Therefore, memory pages are local
memory pages for some threads and remote memory pages for others. Access to Data0 is
local access for threads T0, T1, and T7 and remote access for threads T2, T3, T4, T5, and T6.
The difference in the total memory access cost for a thread group when one of its threads is
migrated across nodes must be determined.

As depicted in Figure 4, threads within one thread group can be scheduled to run on
different nodes, and their memory spaces can be on different nodes. A thread group’s total
memory access cost sums up the local memory access costs and the remote memory access
costs for threads in this thread group. For a NUMA system with n nodes for which the
memory access latency from a remote node to the local node is constant, the number of
threads within a specific thread group on the NUMA node i is denoted as Ni. The number
of memory pages allocated to this thread group on the NUMA node i is denoted as Ri.

Regardless of the locality of memory references, the latency for all threads in the
thread group to access the entire memory allocated to the thread group, which is the
estimated total memory access cost, is shown in Equation (1). The local memory access
cost is shown in Equation (2). Equation (3) shows the remote memory access cost, in which
f is the NUMA factor that represents the ratio between the remote memory access latency
and the local memory access latency.
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Figure 3. The memory pages and threads for a multithreaded process can be scattered on differ-
ent nodes.

Figure 4. Migrating one thread of a specific thread group across nodes.

Total memory access cost (TMA) = Local memory access cost (LMA) + Cache miss cost + Remote memory access cost (RMA) (1)

Local memory access cost (LMA) = ∑n−1
i=0 Ni ∗ Ri (2)

Remote memory access cost (RMA) = (∑n−1
i=0 ∑∀ j 6=i Ni ∗ Rj) ∗ f (3)

Therefore, for the case in Figure 4, the estimated total memory access cost for this
thread group is the value that is shown in Equation (4):

TMA = ∑3
i=0 Ni ∗ Ri+Cache miss cost + (∑3

i=0 ∑∀ j 6=i Ni ∗ Rj) ∗ f
= N0R0 + N1R1 + N2R2 + N3R3 + Cache miss cost+

(N0R1 + N0R2 + N0R3 + N1R0 + N1R2 + N1R3 + N2R0 + N2R1 + N2R3 + N3R0 + N3R1 + N3R2) ∗ f
(4)

Because only the values of N0 and N2 change, and the others remain the same, the
difference between the total memory access cost after a thread is migrated from node 0 to
node 2 is simplified and calculated using Equation (5):
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Difference = TMA (after the migration of one thread from node 0 to node 2) − TMA (before the migration)
= (R2 − R0) ∗ (1 − f )

(5)

That is, if one thread is migrated, the difference between the total memory access
cost after the migration is calculated using Equation (6), where RD is the RSS value in the
destination node, RS is the RSS value in the source node, and f is the NUMA factor:

Difference = (RD − RS) ∗ (1 − f ) (6)

Regarding inter-node task migration, the RSS values for a thread group on the source
and the destination nodes have the most significant effect on the total memory access cost.
Therefore, Most Benefit (MB) [4], which uses the same metric to select the most beneficial
task is also appropriate for multithreaded applications.

3.2. Enhancements for Selecting Tasks for Inter-Node Migration for Multithreaded Applications

Selecting a suitable task for inter-node migration requires additional overhead because
the selection procedure must evaluate all tasks in the runqueue in order. The evaluation cost
increases as the number of tasks in the runqueue increases. For multithreaded applications,
some evaluations are superfluous and can be eliminated because some tasks are less
suitable than the candidate task. In this study, the thread group leaders are not migrated.
The thread group leader’s current node is determined when its thread group members are
evaluated, and only one thread member per thread group is evaluated. Some tasks for the
evaluation are eliminated if they match one of these aspects. Therefore, only the subset of
movable tasks in the runqueue is evaluated, and the procedure for selecting tasks is more
efficient. Figure 5 shows the flow for the improvements, and these methods are explained
in the following subsections.

3.2.1. Eliminating the Thread Group Leader for Migration

The thread group leader is not selected because the Linux kernel uses the first-touch
method [16] for physical memory allocation. A physical memory page is allocated the
first time a thread accesses it and on the same node as the requesting thread. We observe
the memory consumption for multithreaded applications, the first thread that touches
the memory page is usually the thread group leader. The PARSEC 3.0 [6] benchmark
suite contains 30 multithreaded applications, including 13 programs from PARSEC 2.0,
14 programs from the SPLASH benchmark suite, and three network programs. Table 2
shows these benchmark programs [4,6].

Each benchmark program’s memory consumption was measured during its execution
on the AMD server [18]. In Linux, the free command is used to obtain the current status
for memory usage. A script that executes the free command every 0.1 s is used to record
the memory usage footprint for the entire system. The increased memory usage during
the benchmark program’s execution is then attributed to the benchmark program. Each
benchmark program is run with different threads, ranging from 1, 2, 4, 8, 16, and 32.

The results show that memory consumption is independent of the number of created
threads for some benchmark programs. Other benchmark programs consume more mem-
ory as the number of created threads increases. Figure 6a shows the former situation for
the benchmark program parsec.canneal. For this type of benchmark program, the memory
pages of a multithreaded process are first touched by the first thread. For the benchmark
program splash2x.fmm in Figure 6b, the individual threads first touch the memory pages
of a multithreaded process. The results in Table 2 show that 22 of 30 applications allocate
and initialize the allocated memory pages in the initializing thread (i.e., the thread group
leader). The thread group leader for each multithreaded process is not migrated to reduce
the scattering of memory pages on different nodes.
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Table 2. The characteristics of benchmark programs in PARSEC 3.0.

Benchmark Suite Benchmarks Memory Allocated & Initialized

PARSEC 2.0
blackscholes, bodytrack, canneal, dedup, raytrace,

streamcluster, swaptions by thread group leader

facesim, ferret, fluidanimate, freqmine, vips, x264 by individual threads

SPLASH-2x
barnes, cholesky, fft, lu_cb, lu_ncb, ocean_cp, ocean_ncp,

radiosity, radix, raytrace, volrend, water_spatial by thread group leader

fmm, water_nsquared by individual threads

Network netdedup, netferret, netstreamcluster by thread group leader

Figure 5. The modified flow for the efficient selection of tasks for inter-node migration.
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Figure 6. Memory consumption for benchmark programs running with different numbers of threads. (a) parsec.canneal;
(b) splash2x.fmm.

3.2.2. Evaluating Only Those Tasks with Thread Group Leaders on Other Nodes

The observation presented in Section 3.2.1 shows that most of the memory pages
allocated to a multithreaded process are on the node where the thread group leader is
located. Therefore, ensuring that threads are executed on the same node as the thread
group leader involves more local memory access.

For the proposed design, during the task evaluation for inter-node task migration,
each task in the runqueue is classified into three types, according to where its thread group
leader is currently located. Different decisions are made as follows. If the thread group
leader is on the destination node, migrating this task to the destination node may involve
more local memory access. Therefore, it is migrated directly instead of evaluating the
remaining tasks in the runqueue. Suppose the thread group leader is on the source node.
In that case, it is not selected for the migration because migrating it to the destination node
may involve more remote memory access after migration. Therefore, only those tasks for
which the thread group leaders are currently located on other nodes are evaluated.

Figure 7 illustrates several multithreaded processes running on a 4-node NUMA
system. There are four thread groups and 19 tasks. The thread group leaders are denoted as
“TGLR.” Because Core#3 is idle, the OS scheduler performs the load balancing mechanism
to migrate tasks from the overloaded runqueue (Core#1 on Node#0). The thread group
leader for Task#3 is on the source node, so Task#3 is not selected for migration. Similarly,
Task#11 is the target task and is migrated immediately because its thread group leader is
on the destination node. If more tasks must be migrated to achieve load balancing, the
remaining tasks (Task#19, Task#6, Task#16, and Task#9) are evaluated to determine which
is best suited to inter-node migration.

3.2.3. Evaluating Only the First Thread Member in a Thread Group

In the source runqueue, only the first member in a thread group is evaluated in the
selection procedure. This is because threads in the same thread group share the physical
memory pages; their RSS counter values are the same. Figure 8 shows that the Linux kernel
represents each thread with a task_struct structure, but all threads in the same thread group
share the same memory management information (i.e., mm_struct structure) and page table.
Their RSS counter values (i.e., mm_rss_stat structure) are also shared.

For the proposed design, while several tasks in the source runqueue are examined,
only the first encountered thread member of a thread group is evaluated; other thread
members in the same thread group are not evaluated. Therefore, the identical metric
calculations to evaluate the threads of the same thread group in the runqueue are omitted.
In the example of Figure 7, for Task#19, Task#6, Task#16, and Task#9, only Task#19 and
Task#6 are evaluated.
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Figure 7. Several multithreaded processes running on a 4-node NUMA system.

Figure 8. Tasks in a thread group share memory management information.

3.3. Task Selection Policy with Exclusivity for Multithreaded Applications

For existing policies, except for the First-Fit policy used in the unmodified Linux kernel,
memory-aware policies, such as MB [4] and BCE [4] work with the kMLB mechanism. The
Linux kernel must be modified to allow the kMLB mechanism to be used to determine the
per-node memory pages per task. When the invoked functions or required data, structures
are changed in the newer kernel, these memory-aware policies and the kMLB mechanism
also require modification.

This study proposes a new thread-aware policy named Exclusivity (Excl) that does not
require the kMLB mechanism. Instead, it considers the exclusivity of thread distribution
on nodes for a thread group. The more evenly the threads of a thread group are distributed
to nodes, the less beneficial it is for data mapping and thread mapping. Migrating a task
across nodes also changes the thread distribution for the thread group. It is better to select
a task for which its thread group’s threads are distributed more evenly on nodes. The
Excl policy selects the task for which the thread group is least exclusive in terms of thread
distribution for inter-node migration.

Figure 9 illustrates an example in which 10 tasks belong to two thread groups. Most
threads of one thread group are distributed on Node #0, but threads of the other group are
evenly distributed on nodes. Migrating Task#10 is more beneficial.
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Figure 9. Two thread groups with different levels of exclusivity.

For the proposed policy using the thread distribution of its thread group, for each
movable task p in the runqueue, Equation (7) is used to evaluate the exclusivity of this
thread group. thrd_nri means the number of threads on NUMA node i, and n is the number
of nodes. For tasks in the source core’s runqueue, the task for which the thread group has
the minimum value for exclusivity is selected. For tasks with equal exclusivity, the first
one to be evaluated is the target task:

Exclp = max
0≤i≤n−1

thrd_nri/ ∑n−1
i=0 thrd_nri (7)

In Figure 9, threads in hexagon have the value of exclusivity 0.8, and threads in the
rectangle have the value of exclusivity 0.4. In Figure 7, Task #11 is selected because it is the
least exclusive. The evaluation is listed in Table 3.

Table 3. The evaluation of the Exclusivity policy. (a) The evaluation for tasks in Figure 9; (b) The evaluation for tasks
in Figure 7.

(a)

Thread Group Thread Group Members in
Core#0 Runqueue Exclp Selected Task

hexagon TGLR, Task#4, Task#5 4/5 = 0.8
Task#10

rectangle Task#10 2/5 = 0.4

(b)

Thread Group Thread Group Members in
Core#1 Runqueue Exclp Selected Task

pentagon Task#3 3/4 = 0.75

Task#11rectangle
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However, exclusivity is not the sole criterion for consideration. There is an exceptional
case for a multithreaded process for which most of the memory pages are allocated on some
nodes, but most threads are on other nodes. In this situation, much remote memory access
is necessary. As shown in Figure 10, the thread group in the hexagon and the thread group
in the rectangle both have the same value of exclusivity 0.8. However, more remote memory
access is necessary for the thread group in the hexagon. Suppose the task for which the
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thread group is least exclusive is selected. In that case, the highly exclusive thread group
may still involve much remote memory access because the thread group leader is on a
node different from those where most of the thread group members are located.

Figure 10. A highly exclusive thread group may involve much remote memory access.

To ensure that threads and the data for a thread group are located on the same node,
the proposed policy incorporates the consideration of a thread group leader in the task
selection procedure. This makes members of a thread group remain on the same node as
the thread group leader. Besides, as described in Section 3.2, most memory pages for a
multithreaded process may be allocated by the thread group leader.

Each task in the runqueue is classified into three types according to the node where
the thread group leader is currently located. If the thread group leader for a task is on the
destination node, this task is not evaluated and is migrated immediately. A task for which
its thread group leader is on the source node is not selected for migration. For tasks for
which the thread group leader is on other nodes, Equation (7) is used to select the target
task for inter-node migration.

4. Performance Evaluation

To measure the performance improvement due to the use of an enhanced inter-node
load balancing procedure and the proposed policy for multithreaded applications, the
benchmark suite PARSEC 3.0 [3] is used to test systems using different task selection
policies and running benchmarks with various numbers of threads. The experiments
record the elapsed running time for each test case, several performance counter events, and
the elapsed running time for each benchmark program. The results are used to determine
the reasons for an increase or decrease in performance.

Section 4.1 details the experimental environment, Section 4.2 describes the experimen-
tal design, and Section 4.3 presents the experimental results. Summary and discussions for
experimental results are also provided.

4.1. Experimental Environment

The experiments are performed on the NUMA system, Supermicro A+ 4042G-72RF4 [18].
The software and hardware specifications are listed in Table 4. This is a 4-node NUMA
system with a constant NUMA factor, and each node is installed with one AMD Opteron
6320 processor [19]. This processor has eight cores, so there is a total of 32 cores in the system.
The kMLB [4] mechanism and task selection policies are implemented in the Linux kernel.
The Linux numactl tool on the system shows that 1.6 times more access is required for remote
memory than for local memory.
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Table 4. Software and hardware specifications.

System Supermicro A + 4042G-72RF4 [18] with 4 NUMA Nodes

Processor 4 AMD Opteron 6320 8-core Processor, 2.80 GHz

Motherboard Supermicro H8QG7-LN4F

Memory controller 2 per node

Interconnect 6.4 GT/s AMD HyperTransport

Cache sizes per processor

L1 Data cache: 16 KB per core
L1 Instruction cache: 64 KB per 2-core

L2 cache: 2 MB per 2-core
L3 cache: 8 MB among all cores per memory controller

Memory DDR3 1600 16 GB per node (64 GB total)

Operating System Ubuntu 13.10 Server Edition (Linux kernel 3.11.0-12-generic [20])

The PARSEC 3.0 [6] is a multithreaded benchmark suite that provides a convenient
interface for building and running each benchmark program, as shown in Table 2 of
Section 3.2.1. The multithreaded configuration “gcc-pthreads” is used to construct most
benchmark programs, but the configuration “gcc-openmp” is used to construct the bench-
mark program parsec.freqmine. The input set “native” is used for performance analysis on
real machines to run benchmark programs. The interface allows each benchmark program
to be run with the specified number of threads.

4.2. Experimental Design

This study focuses on reducing remote memory access by improving inter-node load
balancing. A sufficient number of benchmark programs must be run simultaneously on
the experimental system, such that the kernel scheduler migrates tasks between nodes to
balance the load when the nodes have an imbalanced load. 29 benchmark programs with
a specific number of threads are run simultaneously for each test case. The numbers of
threads range from 1, 2, 4, 8, 16, and 32. The elapsed running time for each test case and the
elapsed running time for each benchmark program are measured using the performance
counter statistics. For each test case, eight to ten runs are performed.

For each run, the system is rebooted to prevent buffer caching. During each run, the
performance counter events in Table 5 are also recorded for each benchmark program.
These are used to determine the cause of any change in performance: Instructions Per
Cycle (IPC), Last Level Cache (LLC), and Miss Per Kilo Instructions (MPKI) to estimate
runtime patterns. Other performance data is obtained from numastat command-line utility
and vmstat in the proc file system.

Table 5. Collected performance counter events.

Event Description

Elapsed Time Used to evaluate the efficiency of running one benchmark program

CPU Cycles Used to calculate the number of Instructions Per Cycle (IPC)

Instructions Used to calculate IPC and Last Level Cache (LLC) Miss Per Kilo Instructions (MPKI)

LLC-load-misses Used to calculate LLC MPKI. LLC-store-misses is not supported.

Page Faults Number of page faults incurred by threads of one thread group

CPU Migrations Number of task migrations for one thread group

This study also enhances existing task selection policies as described in Section 2.3
for multithreaded applications, so the experiments use different task selection policies,
as shown in Table 6. The First-Fit policy is used in the unmodified Linux kernel. As
presented in Section 3.1, the MB [4] policy considers the memory occupied by one task
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on the destination and source nodes to select a target task for inter-node migration. This
policy is suited to multithreaded applications. However, additional overhead is incurred
because the policy relies on the information provided by the kMLB mechanism [4].

Table 6. The experimental system running different task selection policies.

Experimental
System

Task Selection
Policy

Need kMLB
Mechanism Features

(A) Default No The unmodified Linux kernel with the first-fit policy.

(B) MB Yes The modified Linux kernel with kMLB mechanism and
MB policy.

(C) MB+ Yes Based on the MB policy.
Enhanced task selection procedure.

(D) Exclbase No The modified Linux kernel that selects the task for which
the thread group has the minimum value of exclusivity.

(E) Excl No Based on the Exclbase policy.
Enhanced task selection procedure.

To allow faster selection of tasks, we also enhance the MB policy to be MB+. Each task
in the runqueue is evaluated only when its thread group leader is currently not located on
the destination or the source nodes. Therefore, only the subset of tasks in the runqueue
must be evaluated. Besides, a thread group leader is not migrated across nodes, and a task
is migrated directly if its thread group leader is on the destination node.

4.3. Experimental Results
4.3.1. Performance Comparison for Varying Numbers of Threads

The benchmark programs were run with varying numbers of threads, ranging from 1,
2, 4, 8, 16, and 32. The average elapsed time, the standard deviation, and the ratio of these
times to an unmodified Linux kernel are calculated for different task selection policies and
the specific number of threads. Figure 11 shows the results.

Figure 11. Experimental results for different numbers of threads. (a) Average elapsed time of each test case; (b) Standard
deviation of each test case; (c) The performance increase over the unmodified Linux kernel.
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Figure 11a shows that all test cases behave similarly in terms of average elapsed
time for different numbers of threads. As the number of threads increases, multithreaded
benchmarks run faster since a multi-core system’s parallel computing capability increases
performance as well. Besides, since more threads wait in the runqueue, an effective task
selection policy can select a more suitable one among them for migration. The proposed
task selection policies allow more efficient inter-node task migration for the load balancing
mechanism on the experimental NUMA system. These perform better than the First-Fit
policy that is used in the unmodified Linux kernel.

However, the parallel computing capability of a multi-core system is limited, the
elapsed time measured depends on the number of cores in the target system. Because
the experimental system has 32 cores, if there are too many threads for a multithreaded
benchmark, contention for cores and memory slows down the performance. On the
contrary, if the number of threads in a multithreaded benchmark is much smaller, multi-
core is not fully utilized. Besides, few or no threads wait in runqueue, then task selection
policies are not triggered or used effectively. Therefore, the increase in performance is not
so great when the numbers of threads are 1, 2, and 32, as shown in Figure 11c.

4.3.2. The Effect of Enhancing the Task Selection Procedure

The procedure for selecting tasks runs in the critical path of the kernel scheduler, so
the target task for the migration must be identified as efficiently as possible. Therefore, this
study selects the target task more quickly to allow more efficient inter-node task migration
for multithreaded applications. Only the task in the runqueue for which the thread group
leader is currently on nodes rather than destination and source nodes is evaluated. No
thread group leader is migrated across nodes.

Figure 12 shows the different improvement ratios. The Exclbase policy achieves a
more significant improvement than the MB policy. This enhancement has a different effect
on each because the MB policy evaluates each task in the runqueue to select the most
beneficial task for migration. For the MB+ policy, though this enhancement allows faster
task selection by only evaluating the subset of tasks in the runqueue, the selected target
task may not result in a greater benefit than the most beneficial task. If there are a few tasks
in the runqueue, the saved evaluation costs can be negated by selecting a target task that is
not the most suitable.

Figure 12. Improvement ratio for enhancing the task selection procedure.

The Exclbase policy selects the task for which the thread group is least exclusive
regarding the thread distribution on nodes. The Exclbase policy does not consider the
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examined task’s thread group leader, so the selected task can be migrated to the node
different from where its thread group leader is currently located. Moving tasks away from
its thread group leader can involve more remote memory access after migration. In contrast,
the Excl policy incorporates the proposed enhancements for task selection procedure into
the Exclbase policy. The Excl policy evaluates the task for which the thread group leader
is on other nodes and migrates the task to the node the thread group leader is on. Most
memory pages are first touched by the thread group leaders, as presented in Section 3.2, so
the Excl policy successfully enhances the Exclbase policy and improves the performance.

4.3.3. Performance Counter Statistics

We analyze the causes of performance improvements using the measurement data
obtained from the performance counter. Since 29 benchmark programs were run with
varying numbers of threads, ranging from 1, 2, 4, 8, 16, and 32. They were run on the
NUMA server with the Linux kernels using different task selection policies. Lots of figures
are obtained from experimental results. From the measurement of the standard deviation
of each test case, shown in Figure 11b, the standard deviations for test cases using 4 or
16 threads are relatively small for various task selection policies. Since there are 32 cores
in the system, a sufficient number of threads must be run simultaneously on the system.
The kernel scheduler then migrates threads between nodes to balance the load when the
nodes’ loads are imbalanced. As the number of threads increases, more threads wait in the
runqueue, and an effective task selection policy can select a more suitable one for migration.
Therefore, we observe the runtime patterns for these test cases that use 16 threads. Figure 13
shows the result.

Figure 13. Experimental results for systems using different policies. (a) Instructions per CPU cycle; (b) LLC misses per
1000 instructions; (c) The number of page faults; (d) The number of tasks that are migrated; (e) The number of pages that
are migrated.
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Figure 13a,b shows the Instructions Per Cycle (IPC) and the Last Level Cache (LLC)
misses per 1000 instructions (LLC MPKI) for systems that use different task selection
policies. IPC is used as a reference to evaluate the CPU utilization rate. Cores fetch
instructions or data from caches for execution. If the LLC misses, the required instructions
or data are then accessed from the main memory. Hence, the LLC MPKI is used as a
reference to evaluate the frequency of memory access. The results show that systems using
the proposed task selection policies outperform the unmodified Linux kernel, which uses
the default First-Fit policy.

We also record the number of page faults, task migrations, and page migrations for
each test case, and the results are respectively shown in Figure 13c,d. During the execution
of tasks, page faults, task migrations, and page migrations increase the runtime overhead.
Systems that use the proposed task selection policies all incur fewer of these operations
and have a lower overall runtime overhead than the unmodified Linux kernel, so they
perform better.

4.3.4. Performance Results for Various Benchmarks

The performance improvement is measured for each benchmark program. Figure 14
shows the results for each benchmark program running on systems that use different
task selection policies for the test cases with 16 threads. We observe that the benchmark
programs for which the running time is longer (e.g., parsec.facesim and splash2x.raytrace)
obtain more performance gains on systems that use the proposed task selection policies.
The benchmark programs (e.g., splash2x.cholesky and parsec.vips) show no performance
improvement because their running time is too short. Tasks requiring a longer elapsed
time have more chances to be migrated and thus gain more performance improvement.

4.3.5. Summary and Discussion

As the analysis presented in Section 3.1, MB is still effective for multithreaded applica-
tions. The experimental results demonstrate that MB and MB+ achieve good performance.
The experimental results also demonstrate that the Exclusivity policy is competitive. Al-
though its 10.7% performance improvement over the unmodified Linux kernel is still
slightly less than the 11.1% performance improvement over the same for MB+ with the
kMLB mechanism.

As presented in the study [4], the MB policy works with the kMLB mechanism, and
the implementation includes two major works. First, the kernel’s memory management
routines and exception handling routines are modified to obtain per-task memory usage
on each node. Second, the kernel’s inter-node load balancing procedure is modified to
incorporate the task selection policy. Therefore, to support the kMLB mechanism in the
Linux kernel, all kernel operations that update the values of RSS counters and related data
structures are modified to track the RSS counters on each node for each process. In detail,
seven types of operations are affected and modified, regarding dynamic memory allocation
and releases, demand paging, copy-on-write mechanism, swapping, related system calls,
and inter-node page migration. However, the latest version of the Linux kernel [20] still
does not support the separate counting of memory usage on each node for each process.

In contrast, the Exclusivity policy does not require the kMLB mechanism. Instead,
only the kernel’s inter-node load balancing procedure is modified to incorporate the task
selection policy. Thus, adapting the Exclusivity policy to a newer Linux kernel is less
complicated than implementing memory-aware policies with the kMLB mechanism.

On the other hand, the proposed thread-aware mechanism aims to enhance inter-node
load balancing for multithreaded applications on NUMA systems. Therefore, it has some
limitations. A sufficient number of threads must be run simultaneously on the system, such
that the kernel scheduler then migrates threads between nodes to balance the load when the
nodes’ loads are imbalanced. As the number of threads increases, more threads are likely
to wait in the runqueue, and an effective task selection policy can select a more suitable
one among them for migration. In contrast, the default Linux kernel always migrates the
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first task in the runqueue. Therefore, as shown in the experimental results, its performance
is not stable and not good since the first task may not be a good one for migration.

Figure 14. Experimental results for systems running each benchmark program. (a) The average
elapsed time; (b) The standard deviation in the running time; (c) The speedup ratio.

However, the parallel computing capability of a multi-core system is limited and
depends on the number of cores in the target system. If there are too many threads running,
contention for cores and memory resource slows down the performance. On the contrary,
if there are too few or no threads wait in runqueue, task selection policies are not triggered
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or used effectively. The experimental results show that the increase in performance is not
significant when the numbers of threads are few or too many.

Regarding the power conservation issue, most modern CPUs support many frequen-
cies. The higher the clock frequency, the more energy is consumed over a unit of time. The
longer a thread is running, the more energy is consumed as well.

The Linux kernel supports CPU performance scaling through the CPUFreq (CPU
Frequency scaling) subsystem [21]. In our experiments, the Linux kernel uses the default
setting of CPU frequency governor “ondemand” [21], which sets the CPU frequency
depending on the current usage for all test cases. Since many benchmark programs with
many threads are running simultaneously, the system load is high. Therefore, CPUs are set
by the Linux kernel to run at the highest frequency during experiments. The experimental
results show that benchmark programs run 10.7% faster on the modified Linux kernel with
the proposed task selection policy than on the default Linux kernel. Under the same CPU
frequency, the shorter the benchmark programs run, the less energy is consumed. The
degree of energy-saving needs further experiments.

5. Conclusions

Multi-core systems feature a high throughput, but load imbalance can degrade perfor-
mance. For NUMA multi-core systems, there is non-uniform memory access, so migrating
tasks across nodes to achieve load balancing has a different memory access cost. Therefore,
the tasks to be migrated must be selected effectively and efficiently, especially the related
operations run in the critical path of the kernel scheduler.

On Linux-based NUMA systems, threads of a multithreaded application share the
memory address space and can be scheduled to run on different nodes. Memory pages
allocated to them can also be on different nodes. Several studies present specific mecha-
nisms to adjust threads and memory pages on nodes to reduce remote memory access and
achieve load balancing. However, strategies using page fault handling to migrate threads
or memory pages induce certain overhead. Besides, the kernel scheduler’s inter-node task
migration can mess up the arrangement. Differently, the kernel-level kMLB [4] mecha-
nism enhances inter-node load balancing for NUMA systems, which tracks the number
of memory pages on each node occupied by each task. This memory usage information
is then used by memory-aware task selection policies [4] to select the most suitable task
for inter-node migration. Despite the required overhead, the kMLB mechanism with task
selection policies increases the performance of NUMA systems.

This research studies the memory access for multithreaded processes and proposes a
thread-aware kernel mechanism to enhance inter-node load balancing for multithreaded
applications on NUMA systems. The proposed Exclusivity policy migrates the task for
which its thread group is least exclusive in the thread distribution. A thread group for
which tasks are distributed more evenly on different nodes has less impact after task
migration. The enhanced task selection procedure does not select the thread group leader
for migration to prevent memory pages for one multithreaded process from being scattered
on multiple nodes. Besides, only those tasks for which their thread group leaders are on
other nodes are evaluated. The proposed policy allows threads of the same thread group
to remain on the same node, so performance increases.

This study shows that the Most Benefit (MB) policy is still effective for multithreaded
applications, and the proposed Exclusivity policy is competitive with the MB policy. Com-
pared with unmodified Linux, the system that uses the MB+ policy with the kMLB mecha-
nism increases performance by 11.1%. The system that uses the Exclusivity policy, which
does not require the kMLB, increases performance by 10.7%. In comparison, it is less com-
plicated to adapt the Exclusivity policy to a newer Linux kernel than to use memory-aware
policies with the kMLB mechanism. Moreover, under the same CPU frequency, the shorter
the programs run, the less energy is consumed. We plan to adapt our work to a newer
Linux kernel and perform experiments on more NUMA systems and energy saving in
the future.
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