Stiffening Effect of Fillers Based on Rheology and Micromechanics Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimen Preparation
2.2. Testing
2.2.1. Physical Properties
2.2.2. Rheological Properties
2.2.3. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD)
2.3. Micromechanics Models
2.3.1. Einstein Model for Diluted Composites
2.3.2. Maron–Pierce Model
2.3.3. Lewis and Nielsen Model
2.3.4. Mooney’s Equation
2.3.5. Krieger–Dougherty Model
2.3.6. Chong Model
2.3.7. Robinson Model
2.3.8. Hashin Model
2.4. Master Curve Construction
3. Results and Discussion
3.1. Compositional and Effective Volume
3.2. Morphological Characteristics
3.3. Mineralogical Characterisation
3.4. Rheological Properties
3.5. Stiffening Effects
3.5.1. Stiffening Effects Based on Laboratory Testing
3.5.2. Micromechanics Modelling Based on Laboratory Testing
3.5.3. Goodness-of-Fitting
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamim, A.; Md Yusoff, N.I. The Use of Stabilisation Materials in Cold-in Place Recycling of Flexible Pavement. J. Kejuruter. 2013, 25, 1–9. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.; Wang, L. Evaluation of physicochemical interaction between asphalt binder and mineral filler through interfacial adsorbed film thickness. Constr. Build. Mater. 2020, 252, 119135. [Google Scholar] [CrossRef]
- Milad, A.A.; Ali, A.S.B.; Yusoff, N.I.M. A review of the utilisation of recycled waste material as an alternative modifier in asphalt mix-tures. Civ. Eng. J. 2020, 6, 42–60. [Google Scholar] [CrossRef]
- Chen, J.-S. Rheological Properties of Asphalt-Mineral Filler Mastics. Doboku Gakkai Ronbunshu 1997, 571, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.; Hafeez, I.; Zaidi, S.B.A.; Nasir, M.A.; Rizwan, M. A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture. Constr. Build. Mater. 2020, 239, 117817. [Google Scholar] [CrossRef]
- Liao, M.-C. Small and Large Strain Rheological and Fatigue Characterisation of Bitumen-Filler Mastics. Ph.D. Thesis, The University of Nottingham, Nottingham, UK, 2007. [Google Scholar]
- Liu, G.; Yang, T.; Li, J.; Jia, Y.; Zhao, Y.; Zhang, J. Effects of aging on rheological properties of asphalt materials and asphalt-filler interaction ability. Constr. Build. Mater. 2018, 168, 501–511. [Google Scholar] [CrossRef]
- Shashidhar, N.; Romero, P. Factors Affecting the Stiffening Potential of Mineral Fillers. Transp. Res. Rec. 1998, 1638, 94–100. [Google Scholar] [CrossRef]
- Taylor, R. Surface Interactions between Bitumen and Mineral Filler and Their Effects on the Rheology of Bitumen-Filler Mastics. Ph.D. Thesis, The University of Nottingham, Nottingham, UK, 2007. [Google Scholar]
- Wu, J.; Han, W.; Aiiey, G.; Yusoff, M.; Izzi, N. The Influence of Mineral Aggregates on Bitumen Ageing. Int. J. Pavement Res. Technol. 2014, 7, 115–123. [Google Scholar]
- Lesueur, D.; Little, D.N. Effect of Hydrated Lime on Rheology, Fracture, and Aging of Bitumen. Transp. Res. Rec. 1999, 1661, 93–105. [Google Scholar] [CrossRef]
- Anderson, D.A.; Bahia, H.U.; Dongre, R. Rheological Properties of Mineral Filler-Asphalt Mastics and Its Importance to Pavement Per-formance. In Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance; Meininger, R.C., Ed.; ASTM International: West Conshohocken, PA, USA, 1992; pp. 131–153. ISBN 978-0-8031-5204-5. [Google Scholar]
- Chen, Y.; Xu, S.; Tebaldi, G.; Romeo, E. Role of mineral filler in asphalt mixture. Road Mater. Pavement Des. 2020, 1–40. [Google Scholar] [CrossRef]
- Richardson, C. The Theory of the Perfect Sheet Asphalt Surface. J. Ind. Eng. Chem. 1915, 7, 463–465. [Google Scholar]
- Rigden, P.J. The use of fillers in bituminous road surfacings. A study of filler-binder systems in relation to filler characteristics. J. Soc. Chem. Ind. 1947, 66, 299–309. [Google Scholar] [CrossRef]
- Anderson, D.A.; Goetz, W.H. Mechanical Behavior and Reinforcement of Mineral Filler-Asphalt Mixtures; Technical Paper, FHWA/IN/JHRP-73/05; Joint Highway Research Project, Indiana Department of Transportation and Purdue University: West Lafayette, IN, USA, 1973. [Google Scholar]
- Faheem, A.F.; Bahia, H.U. Conceptual Phenomenological Model for Interaction of Asphalt Binders with Mineral Fillers. J. Assoc. Asph. Paving Technol. 2009, 78, 679–720. [Google Scholar]
- Heukelom, O.; Wijga, P.W.O. Viscosity of Dispersions as Governed by Concentration and Rate of Shear. J. Assoc. Asph. Paving Technol. 1971, 40, 418–437. [Google Scholar]
- Hashin, Z. The Elastic Moduli of Heterogeneous Materials. J. Appl. Mech. 1962, 29, 143–150. [Google Scholar] [CrossRef]
- Christensen, R.; Lo, K. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 1979, 27, 315–330. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X.; Chen, X. Effects of mineral fillers on hot-mix asphalt laboratory-measured properties. Int. J. Pavement Eng. 2007, 8, 1–9. [Google Scholar] [CrossRef]
- Hesami, E.; Jelagin, D.; Kringos, N.; Birgisson, B. An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Constr. Build. Mater. 2012, 35, 23–29. [Google Scholar] [CrossRef]
- Gubler, R.; Liu, Y.; Anderson, D.; Partl, M. Investigation of the System Filler and Asphalt Binders by Rheological Means. J. Assoc. Asph. Paving Technol. 1999, 68, 284–302. [Google Scholar]
- Yusoff, N.I.M.; Ibrahim Alhamali, D.; Ibrahim, A.N.H.; Rosyidi, S.A.P.; Abdul Hassan, N. Engineering characteristics of nanosili-ca/polymer-modified bitumen and predicting their rheological properties using multilayer perceptron neural network model. Constr. Build. Mater. 2019, 204, 781–799. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Nielsen, L.E. Generalized Equation for the Elastic Moduli of Composite Materials. J. Appl. Phys. 1970, 41, 4626–4627. [Google Scholar] [CrossRef]
- Maron, S.H.; Pierce, P.E. Application of ree-eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 1956, 11, 80–95. [Google Scholar] [CrossRef]
- Lewis, T.B.; Nielsen, L.E. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 1970, 14, 1449–1471. [Google Scholar] [CrossRef]
- Halpin, J. Stiffness and Expansion Estimates for Oriented Short Fiber Composites. J. Compos. Mater. 1969, 3, 732–734. [Google Scholar] [CrossRef]
- Tsai, S.W. US Government Dept. of Commerce, Rep. 1968. Available online: https://apps.dtic.mil/sti/citations/AD0834851 (accessed on 1 May 2021).
- Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Chong, J.S.; Christiansen, E.B.; Baer, A.D. Rheology of concentrated suspensions. J. Appl. Polym. Sci. 1971, 15, 2007–2021. [Google Scholar] [CrossRef]
- Robinson, J.V. The Viscosity of Suspensions of Spheres. J. Phys. Colloid Chem. 1949, 53, 1042–1056. [Google Scholar] [CrossRef]
- Robinson, J.V. The Viscosity of Suspensions of Spheres. III. Sediment Volume as a Determining Parameter. Trans. Soc. Rheol. 1957, 1, 15–24. [Google Scholar] [CrossRef]
- Rutgers, I.R. Relative viscosity and concentration. Rheol. Acta 1962, 2, 305–348. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Little, D.N. Linear Viscoelastic Analysis of Asphalt Mastics. J. Mater. Civ. Eng. 2004, 16, 122–132. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Chailleux, E.; Airey, G.D. A Comparative Study of the Influence of Shift Factor Equations on Master Curve Construction. Int. J. Pavement Res. Technol. 2011, 4, 324–336. [Google Scholar]
- Yusoff, N.I.M.; Shaw, M.T.; Airey, G. Modelling the linear viscoelastic rheological properties of bituminous binders. Constr. Build. Mater. 2011, 25, 2171–2189. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, N.I.M.; Jakarni, F.M.; Nguyen, V.H.; Hainin, M.R.; Airey, G. Modelling the rheological properties of bituminous binders using mathematical equations. Constr. Build. Mater. 2013, 40, 174–188. [Google Scholar] [CrossRef]
- Heukelom, W. The Role of Filler in Bitumen Mixes. J. Assoc. Asph. Paving Technol. 1965, 34, 396–429. [Google Scholar]
- Diba, F.S.; Boden, A.; Thissen, H.; Bhave, M.; Kingshott, P.; Wang, P.-Y. Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Adv. Colloid Interface Sci. 2018, 261, 102–127. [Google Scholar] [CrossRef] [PubMed]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Influence of the geometrical and physical properties of filler in the filler–bitumen interaction. Constr. Build. Mater. 2015, 76, 322–329. [Google Scholar] [CrossRef]
- Winniford, R.S. The Rheology of Asphalt-Filler Systems as Shown by the Microviscometer. ASTM Spec. Tech. Publ. 1961, 309, 109–120. [Google Scholar]
- Ishai, I.; Craus, J. Effects of Some Aggregate and Filler Characteristics on Behavior and Durability of Asphalt Paving Mixtures. Transp. Res. Rec. J. Transp. Res. Board 1996, 1530, 75–85. [Google Scholar] [CrossRef]
- Faheem, A.F.; Bahia, H.U. Modelling of Asphalt Mastic in Terms of Filler-Bitumen Interaction. Road Mater. Pavement Des. 2010, 11, 281–303. [Google Scholar] [CrossRef]
- Abbas, A.; Masad, E.; Papagiannakis, T.; Shenoy, A. Modelling asphalt mastic stiffness using discrete element analysis and micromechanics-based models. Int. J. Pavement Eng. 2005, 6, 137–146. [Google Scholar] [CrossRef]
Bitumen. | Penetration (dmm) | Softening Point (°C) | Density (g/cm3) |
---|---|---|---|
40/60 | 53 | 50.4 | 1.030 |
Filler | Abbreviation of Mastic | Particle Density (g/cm3) | Rigden Voids (%) |
---|---|---|---|
Limestone | Ls | 2.62 | 33 |
OPC | OPC | 3.02 | 45 |
Gritstone | Gs | 2.81 | 40 |
Granite | Gr | 2.71 | 38 |
Filler | Mass of Filler | Specific Gravity | Mass of Bitumen | Compositional Volume | Rigden Voids | Effective Volume | Free Bitumen Volume Content |
---|---|---|---|---|---|---|---|
Mf | Sf | Mb | Vf | ε | Ve | FBV | |
Limestone (Ls) | 209.84 | 2.623 | 200 | 29 | 33 | 44 | 56 |
OPC | 241.6 | 3.02 | 200 | 29 | 45 | 53 | 47 |
Gritstone (Gs) | 224.64 | 2.808 | 200 | 29 | 40 | 49 | 51 |
Granite (Gr) | 216.48 | 2.706 | 200 | 29 | 38 | 47 | 53 |
Limestone | Granite | ||
---|---|---|---|
Mineral | % | Mineral | % |
Calcite | 72.8 | Quartz | 68.8 |
Dolomite | 20.2 | Calcite | 23.7 |
Quartz | 4.7 | Vandendriesscheite | 5.1 |
Colusite | 1.4 | Cuprite | 2.4 |
Model | Limestone Mastic | Granite Mastic | ||
---|---|---|---|---|
φm | KE | φm | KE | |
Maron–Pierce | 0.77 | - | 0.82 | - |
Krieger–Dougherty | 0.47 | 3.39 | 0.46 | 3.01 |
Mooney | 0.79 | 2.02 | 0.49 | 1.43 |
Lewis Nielsen | 0.49 | 5.24 | 0.41 | 3.27 |
Chong | 0.48 | 5.66 | 0.40 | 3.01 |
Robinson | 0.53 | 4.91 | 0.42 | 3.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, A.; Milad, A.; Yusoff, N.I.M.; Airey, G.; Thom, N. Stiffening Effect of Fillers Based on Rheology and Micromechanics Models. Appl. Sci. 2021, 11, 6521. https://doi.org/10.3390/app11146521
Rahim A, Milad A, Yusoff NIM, Airey G, Thom N. Stiffening Effect of Fillers Based on Rheology and Micromechanics Models. Applied Sciences. 2021; 11(14):6521. https://doi.org/10.3390/app11146521
Chicago/Turabian StyleRahim, Abdur, Abdalrhman Milad, Nur Izzi Md Yusoff, Gordon Airey, and Nick Thom. 2021. "Stiffening Effect of Fillers Based on Rheology and Micromechanics Models" Applied Sciences 11, no. 14: 6521. https://doi.org/10.3390/app11146521
APA StyleRahim, A., Milad, A., Yusoff, N. I. M., Airey, G., & Thom, N. (2021). Stiffening Effect of Fillers Based on Rheology and Micromechanics Models. Applied Sciences, 11(14), 6521. https://doi.org/10.3390/app11146521