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Abstract: Quality estimation (QE) has recently gained increasing interest as it can predict the quality
of machine translation results without a reference translation. QE is an annual shared task at the
Conference on Machine Translation (WMT), and most recent studies have applied the multilingual
pretrained language model (mPLM) to address this task. Recent studies have focused on the perfor-
mance improvement of this task using data augmentation with finetuning based on a large-scale
mPLM. In this study, we eliminate the effects of data augmentation and conduct a pure performance
comparison between various mPLMs. Separate from the recent performance-driven QE research
involved in competitions addressing a shared task, we utilize the comparison for sub-tasks from
WMT20 and identify an optimal mPLM. Moreover, we demonstrate QE using the multilingual BART
model, which has not yet been utilized, and conduct comparative experiments and analyses with
cross-lingual language models (XLMs), multilingual BERT, and XLM-RoBERTa.

Keywords: quality estimation; neural machine translation; pretrained language model; multilingual
pre-trained language model; WMT

1. Introduction

Quality estimation (QE) refers to automatically predicting translation quality using
only source sentence and machine translation (MT) output [1]. The goal of QE is to estimate
translation quality scores or categories for MT outputs without reference sentences at
various levels of granularity (i.e., sentence, phrase, word). It is necessary to compare the
MT output with a reference sentence to determine the quality of the translation in general.
However, it is not easy to obtain a reference sentence, and constructing such a sentence
requires large costs and human labor. Based on these issues, the need for QE research is
increasing, and a considerable number of studies are being conducted in this area.

In the QE process, the quality of the MT output is indicated using quality annotations,
such as numerical values or error tags. This allows the user to select or rank the system that
exhibits the best translation results [2]. In addition, for low-quality sentences, efficiency can
be increased during automatic post editing [3] by modifying only the low-quality words
or phrases using quality annotations. Therefore, QE is an important process that can be
widely applied.

According to recent research trends, there are a number of cases in which the QE task
is conducted based on multilingual pretrained language models (mPLMs) [4-6]. mPLM is
a case where a multilingual representation is learned by extending pretrained language
model to multiple languages. In QE, where two languages are concatenated and entered as
input, such a representation is required, so mPLMs are mostly used in this task. However,
most studies are focused on improving performance by simply applying data augmentation
while finetuning the QE task based on a large-capacity mPLM such as multilingual BERT
(mBERT) [7], cross-lingual language model (XLM) [8], or XLM-RoBERTa (XLM-R) [9]. In
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addition, there are many cases in which QE models are trained based on XLM-R, which
is the latest model with a state-of-the-art (SOTA) performance for cross-lingual transfer
tasks [10,11] achieved by pretraining using an extremely large dataset [5,12-14]. However,
unlike evaluation benchmarks for cross-lingual understanding that deal with multiple
languages, QE differs from these because it requires measuring translation quality while
referencing two languages at the same time. Thus, performance comparisons with other
models should be preceded, but many papers tend to overlook this and simply use the
XLM-R model [15].

Zhou et al. [16] compare the performance difference between mBERT and XLM-MLM
for sub-task 1, and Baek et al. [13] additionally compare the performance difference of XLM-
CLM, Ranasinghe et al. [17] compare the performance of mBERT and XLM-R. However,
XLM models including the English and German languages are quite diverse, and, in
particular, there has been no comparison with XLM-TLM models that learn information
between languages in addition to multiple languages.

Unlike other previous studies that mostly utilize the SOTA model, we remove the
effects of data augmentation that are utilized to achieve performance improvement and
perform a comparative study between representative mPLMs based on sub-tasks 1 and
2 from WMT20. Each mPLM has a different capacity, training data size, or pretraining
objective, and even the same model has different performance depending on how many
languages it contains. Therefore, comparative analysis of various mPLMs in QE can serve as
a good indicator of which model performs well for each task in future studies. In addition,
because we compare pure performance, we can expect high performance by using data
augmentation and new methodologies based on the model with high performance.

This study addresses two questions:

e Which mPLM is best for QE sub-tasks?
*  Does the input order of the source sentence and the MT output sentence affect the
performance of the model?

Considering the first question, the finetuning performance of mPLMs for a QE task
can be validated using a quantitative analysis. To achieve this, we apply multilingual
BART (mBART) [18], which has not been used in previous QE studies, and compare it
with the existing mBERT, XLM, and XLM-R models. For XLM, we conduct performance
comparisons between the causal language model (CLM), mask language model (MLM),
and translation language model (TLM). In the case of XLM-MLM, the performances are
compared according to the number of languages used for learning.

Considering the second question, it is possible to determine the criteria indicating
which input structure should be adopted for QE embedding. Previous studies have used
the input structure of [BOS] Source sentence [EOS] [EOS] MT output [EOS] or [BOS] MT
output [EOS] [EOS] Source sentence [EOS] without a clear standard. Therefore, we investigate
this process through a quantitative analysis by utilizing different input structures for all
mPLMs. The contributions of this study are as follows:

*  We conduct comparative experiments on finetuning mPLMs for a QE task, which is
different from research concerning the performance improvement of the WMT shared-
task competition. This quantitative analysis allows us to revisit the pure performance
of mPLMs for the QE task. To the best of our knowledge, we are the first to conduct
such research;

¢  Through a comparative analysis concerning how to construct an appropriate input
structure for QE, we reveal that the performance can be improved by simply changing
the input order of the source sentence and the MT output;

¢ In the process of finetuning mPLMs, we only use data officially distributed in WMT20
(without external knowledge or data augmentation) and use the official test set to
ensure objectivity for all experiments.
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2. Related Work and Background

A quality estimation (QE) task is a branch of machine translation. Representative
metrics of NMT such as BLEU [19], METEOR [20] require reference sentences to evaluate
quality of MT output. QE does not require access to reference outputs, and quality is
indicated by OK/BAD tokens, numerical values, or spans, etc. QE research can be divided
into three categories: the use of statistical methods, the use of recurrent neural networks
(RNN) and long short-term memory (LSTM) after the advent of deep learning, and the use
of pre-training and finetuning approaches with the advent of pretrained language models.

Most conventional QE studies have been conducted by extracting or selecting fea-
tures to evaluate the quality of MT. When selecting such features, machine learning algo-
rithms, such as Gaussian processes [21,22], support vector machines [23,24], and regression
trees [1,25] are used. In the case of feature extraction, some studies have extracted useful
features, such as linguistic features [26] and pseudo-reference features [27], using external
resources such as parsers, taggers, and named entity recognizers [23,28]. However, these
studies are focused on determining the complex relationship between features and refer-
ences, and the process of selecting and extracting optimized features requires heuristic
processes and high costs.

With the advent of deep learning, research using RNN and LSTM was mainly con-
ducted in QE, and it achieved much higher performance improvement than statistical
methods [29,30]. Kim et al. [31] proposed a new structure referred to as predictor-estimator.
Predictor is a bilingual and bidirectional RNN-based word prediction model, which ran-
domly selects and masks a word in a target sentence from a parallel corpus and then
generates feature vectors by predicting it. In estimator, the generated feature vector is used
as transferred knowledge to learn the QE model. This structure was able to alleviate the
issue of data shortage while allowing an additional parallel corpus to be utilized for a
limited amount of QE data, and it led to a dramatic performance improvement. Similar to
this architecture, Wang et al. [32] constructed a QE brain model with two phases. In the first
phase, features were extracted with the transformer model to be used as prior knowledge,
and in the QE phase, these features were combined with human-craft features and fed into
the Bi-LSTM structure to train for QE. A superior performance was also obtained using
this method.

Since the advent of pre-trained language models (PLMs), the research flow of QE
is mostly done based on mPLM. By designing the QE model based on the large-scale
pretrained model, the performance is greatly improved. Kepler et al. [33] replaced the
predictor component with a pretrained BERT or XLM model while training using the
structure of a predictor-estimator. Kim et al. [34] finetuned the QE task based on mBERT.
Ranasinghe et al. [35] proposed two unique approaches: MonoTransquest and Siamese-
Transquest. The former finetuned for a single XLM-R, while the latter used two separate
XLM-R models for each of the source and target sentences, and the cosine similarity of
both outputs was measured to predict the translation quality at the sentence level. Lee [12]
performed data augmentation using a parallel corpus and pretrained pseudo data with
XLM-R. After the process, finetuning was performed using QE data provided by WMT.
Wang et al. [36] considered the pretrained transformer model as a predictor and the task-
specific regressors or classifiers as an estimator instead of mPLM. In the learning process,
a bottleneck adapter layer was newly added to improve the efficiency of transfer learning
and prevent over-fitting.

3. Multilingual Pretrained Language Models for QE

In this section, we describe mPLMs for QE performance comparison. We used mBERT,
XLM, XLM-R, and mBART, which are multilingual pretrained models that include English
and German.



Appl. Sci. 2021, 11, 6584

40f15

3.1. Multilingual BERT

BERT [37] is built on a transformer [38] architecture, which consists solely of an
encoder structure.

BERT performs a self-supervised learning process for large-scale mono-lingual corpus.
Because the self-supervised learning process performs supervision on raw text on its own,
it does not require labeled data, so it can utilize large amounts of raw data. After perform-
ing user-defined problems such as masked language model (MLM) and next sentence
prediction (NSP) on unlabeled raw data, transfer learning is performed for downstream
tasks. More specifically, the user generates arbitrary tasks and labels for raw text to learn
language information, and uses the representations obtained through this process as ini-
tialization values for downstream tasks. For the case of BERT, MLM, and NSP are used as
pretraining schemes.

MLM is a procedure of randomly masking tokens in the original sentence with [MASK]
tokens. The objectives is to correctly predict these masked tokens based on left and right
context of the sentence. In particular, the last hidden vector corresponding to the mask token
goes through softmax and returns as the word with the highest probability in the vocabulary.
In the process of masking, 15% of the original sentences are randomly sampled, then among
them, 80% of these selected tokens are replaced by [MASK], 10% are replaced by random
tokens in the vocabulary, and 10% remain unchanged. Through this masking process, a de-
fective sentence X = {%1, %y, ..., X, } is generated from an unlabeled monolingual sentence
X = {x1,x2,..., x4 }. In the training process, X is fed into a BERT model, which is param-
eterized by 6, and the model is then trained to return X. This task can be described by
Equation (1).

n
max Z ZlogP(xiMl,...,in,Q) (1)
(X,X)eDi=1

This equation indicates that a model is trained to predict an original token x; by
considering a defective sentence X. By referring to nearby context while restoring a [MASK]
token, a model can be trained using bidirectional contextual representation.

NSP is a binary classification task that aims to train by understanding sentence re-
lationships. In the training process, two sentences are concatenated to construct inputs,
and these sentences are then selected from an unlabeled monolingual corpus based on a
probability. Successive sentences are selected for half of the time, while randomly picked
sentences are chosen otherwise. The main objective of NSP is to distinguish whether these
input sentences are successive or not. Through this training process, a model can obtain an
improved understanding of relationships between sentences.

Multilingual BERT (mBERT) [7] is a BERT-based multilingual model. The same pre-
training schemes as BERT (MLM and NSP) are adopted for mBERT. However, unlike
BERT, mBERT is trained with a multilingual unlabeled corpus, which is comprised of
104 languages.

The way we adapt mBERT to a QE task is as follows. For the assessment of an entire
sentence, we leverage the first hidden representation obtained from the mBERT model.
By applying a linear classification head without the activation function, we can obtain the
final prediction score of the sentence. Therefore, the sentence assessment score scoresentence
is derived from an encoded representation of the input sentence, H = {hy,hy,..., hy},
as shown in Equation (2).

scoresentence = W - hy +b )

In Equation (2), W € R*Hdden and p € R1*1 are trainable parameters where hidden
indicates the hidden layer size of pretrained mBERT. During the QE training process,
the mean squared error (MSE) loss between scoreseptence and the label score is considered.

3.2. Cross-Lingual Language Model

XLM [8] is a transformer-based model that extends existing language model pre-
training methods, which mainly focus on a monolingual language representation, to the
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multiple language representation. XLM is pretrained through MLM and CLM by leveraging
a multilingual unlabeled corpus. To achieve a better multilingual language understanding,
TLM, which is a pretraining scheme utilizing a parallel corpus, is applied. Unlike mBERT,
NSP is not considered during pretraining.

CLM is a pretraining scheme in which the objective is to model the probability of a
word given the previous words in a sentence. This can be described as in Equation (3).

n
max Y Y logP(x; | x¢<i,6) ®)
XeDi=1

It can be said that the goal of CLM is to maximize the probability of a token based on
preceding tokens. Through this process, a model can obtain an improved language under-
standing.

TLM is an extension of MLM and improves cross-lingual understanding by utilizing
parallel data in the pretraining phase. The source and target sentences of a parallel corpus
are first connected, and then some tokens in these sentences are replaced with [MASK]
tokens. The training objective of TLM predicts masked tokens the same as in mBERT.
However, masked tokens can be predicted by referring to the surrounding context of the
masked tokens, as well as sentences from other languages concatenated. It is characterized
by TLM that by predicting masked tokens by referencing both languages simultaneously,
a representation containing information between languages can be obtained.

This can be described as shown in Equation (4).

max ) Y logP(x; | X:Y,0)+ ) logP(yj| X:Y,0) 4)
% (xy,XY)eD |i€Mx jeMy

In Equation (4), X : Y indicates corrupted input data where X is a source sentence
component and Y is a target sentence component. My and M, are index sets that consist of
the indices indicating masked tokens in the source and target sentences, respectively. When
predicting a masked word in a source sentence during the training process, a model can
refer to the nearby source language context, as well as target sentence. This can encourage
the model to acquire a better understanding of multilingual representation. Addition-
ally, to obtaining decent multilingual representation, distinct language embeddings, and
respective position embeddings are applied to each language.

XLM utilizes Wikipedia data for the pretraining of various languages. As the amount of
established Wikipedia data differs for each language, bias towards high-resource languages
can be obtained if such data are utilized without any preprocessing. To alleviate the
data imbalance problem, different sampling ratios are applied in the training process.
The applied sampling ratios are determined using a multinomial distribution, which is
denoted in Equation (5).

n;
where p; = ——— ®)
Li=1Pj 1 Ejlil 1y

Here, q; indicates a sampling ratio for the i language data, with amount 1;, among the
total dataset that comprises N languages. « is a hyperparameter that is set to 0.7 for the
pretraining of XLM, such that the sampling ratio is increased for low-resource languages
and decreased for high-resource languages.

For the XLM-based QE model, the overall training process is similar to Section 3.1, ex-
cept that positional embeddings that encode absolute positions and language embeddings
that indicate the language of each token are applied.
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3.3. XLM-RoBERTa

Because XLM learns using Wikipedia, there is a limitation in that data on low resource
language is insufficient. In XLM-R [9], the data are expanded to a much larger scale. XLM-R
is a multilingual masked language model that adopts large-scale pretraining by utilizing
CommonCrawl data [39], which comprises 100 languages. XLM-R gains state-of-the-art
performance for cross-lingual classification, question answering, and sequence labeling.
Among the three pretraining schemes for XLM, only MLM is utilized for XLM-R training,
and MLM proceeds in the same way as XLM. By expanding the model capacity and
leveraging larger data sizes than permitted for XLM, XLM-R alleviates the performance
degradation caused by the curse of multilinguality.

The curse of multilinguality represents a trade-off between the number of languages
in the training data and the model performance at a fixed model capacity. Increasing
the number of languages in training data can encourage an improved performance for
monolingual and cross-lingual benchmarks to a certain extent because the understanding
of low-resource languages is supported by similar high-resource languages. However,
if the model capacity is fixed, an excessive number of languages will lead to the overall
performance degradation of this method because of the decrease in the per-language
capacity. XLM-R alleviates this problem by extending the number of model parameters.

XLM-R adopts a multinomial distribution (5) for applying different sampling ratios
to each language. Unlike XLM, XLM-R sets « to 0.3 to strengthen the sampling ratio of
low-resource languages. The training process for the XLM-R-based QE model is similar to
that of Section 3.1.

3.4. Multilingual BART

BART [40] is a denoising autoencoder that corrupts the text by adding arbitrary noise
and trains the model to restore it to the original text. mBART [18] is an extension of BART
that has been applied to large monolingual corpora across multiple languages. mBART
was trained using a 25-language corpus from CommonCrawl data (CC25).

BART utilizes 5 pretraining schemes leveraging a monolingual corpus: token masking,
token deletion, text infilling, document rotation, and sentence permutation. Among these
pretraining schemes, mBART adopts text infilling and sentence permutation. In the case
of text filling, unlike MLM in which one token in the original sentence is replaced with
one [MASK] token, spans of tokens are replaced with one masked token. The total number
of selected tokens is 35% of the entire sentence, and the length of the masked token is
determined based on the Poisson distribution, which is described in Equation (6).

Ale=A
n!

f(n:A) = (6)

Here, f(n : A) indicates the probability of selecting n as the masking length. mBART
sets A to 3.5 for pretraining. By training to reconstruct masked sentences, which are gener-
ated by text infilling, a model can be trained for bidirectional contextual understanding, as
well as to determine how many tokens should be restored from a single mask token.

In the case of sentence permutation, the text is corrupted by changing the order
of the sentences within each instance. In the process of restoring the noise injected by
sentence permutation to the original text, the model can understand information about the
relationship between sentences.

Similar to XLM and XLM-R, mBART adopts an up-down sampling method to achieve
improved training for low-resource languages. The sampling ratio A; applied to the ‘"
language data is provided by Equation (7).

_ 1 p
PiL pf

@)

i
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Here, p; is the percentage of each language in the total dataset. The amount of training
data for each language are rebalanced according to Equation (7), and, therefore, sampling
from high-resource languages is relatively suppressed while sampling from low-resource
languages is encouraged. The training process of the QE model leveraging mBART is
similar to that of Section 3.1, wherein the same input structure as in pretraining is utilized.

4. Brief Introduction of the WMT20 QE Sub-Tasks
4.1. Sub-Task 1

Sub-task 1 is a sentence-level direct assessment task. This task consists of scoring MT
output according to a perceived quality score called direct assessment. A limitation of
human translation error rate (HTER) [41] is that it does not capture the extent to which MT
errors affect the overall quality of a sentence. The objective of sub-task 1 is to measure the
overall quality of sentences through direct assessment (DA) by translation experts. One of
the goals of QE in relation to this task is to investigate the relationship between a model for
predicting DA scores and a model trained to predict post-editing tasks [15]. The DA score is
a value obtained by evaluating the quality of the MT output from 0 to 100 by at least three
professional translators. Using a total of 7K training data and 1K evaluation data, systems
participating in this sub-task measure quality by predicting the mean z-standardized DA
score of the MT output.

4.2. Sub-Task 2

Sub-task 2 is word- and sentence-level post-editing efforts. The objective of sub-task 2
is to improve post-editing by tagging which tokens have been mistranslated, along with the
overall quality of the sentence. At the word level, this task consists of evaluating whether
the translation was successful for each token in the MT output and source sentence based
on the human post-edited sentences. The tokens of the source and target sides are tagged
as OK or BAD. In the case of the target sentences, a gap tag is added considering the case
of missing words between the tokens. If the number of tokens in the target sentence is N,
the total number of tag tokens is 2N+1. Participating systems predict tags for MT output
tokens and source sentence tokens.

Similar to sub-task 1, a sentence-level post-editing effort task is used to measure the
quality score for the MT output based on the human translation error rate (HTER) [41].
HTER is similar to the translation error rate (TER), wherein the TER compares the MT
output with a reference translation and counts how many edits (substitutions, deletions,
and insertions) must be performed to obtain a correct sentence. This value divided by
the reference length is the TER score. HTER differs from TER in that humans create new
reference translations for the MT output. Using these new reference translations can lead
to correct sentences with minimal modifications compared to the use of other reference
translations. Referring to the source sentence and the MT output, the participating system
predicts the quality of the MT output sentence based on the HTER.

5. Question 1: Which mPLM Is Best for QE Tasks?
5.1. Dataset Details

In this study, we conducted experiments concerning sub-tasks 1 and 2 at the sentence-
level of WMT20 based on various mPLMs. We experimented using the English—-German
language pair and used train, dev and test data provided by WMT20 (http:/ /www.statmt.
org/wmt20/quality-estimation-task.html, accessed on 15 July 2021). Table 1 shows a
summary of the data for each sub-task.

In the case of sub-task 1, there is a total of 7k training data, and the numbers of
source and MT output tokens are 98,127 and 97,453, respectively. The average of the mean
z-standardized DA score is —0.008 and the median is 0.162. The development and test
data consist of a total of 1K data, and there are approximately 14K source and MT output
tokens. The development and test data provide average scores of —0.049 and 0.040, and the
respective median scores are slightly higher at 0.211 and 0.319.
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In the case of sub-task 2 at the sentence-level, the number of sentences is 7K in the
training data and 1K in each of the development and test data, as in sub-task 1. The average
HTER score is distributed around 0.3, and the median value either does not significantly
differ or is slightly lower than the average value. HTER is centered around values lower
than the error rate of 0.5.

Table 1. Summary of the QE dataset. We denote the number of instances in each dataset as # Instance.
# SRC Token and # MT Token refer to the number of tokens in source- and target-side sentences for
each dataset, respectively.

Sub-Task 1 Sub-Task 2
Train Dev Test Train Dev Test
# Instance 7000 1000 1000 7000 1000 1000
# SRC Token 98,127 14,102 14,043 114,980 16,519 16,371
# MT Token 97,453 14,003 14,019 112,342 16,160 16,154
Average Score —0.008 —0.049 0.040 0.318 0.312 0.312
Median Score 0.162 0.211 0.319 0.3 0.295 0.286

5.2. Model Details

We conducted a finetuning performance comparison using a total of 9 models includ-
ing XLM-R base, XLM-R large, mBERT, mBART, XLM-CLM, XLM-MLM, XLM-MLM-17,
XLM-MLM-100, and XLM-TLM. English-German was used as the language pair for this
experiment, and performance comparisons were conducted for each mPLM at sub-task 1
and sub-task 2 sentence-levels. These models are described as follows:

*  XLM-R-base: Pretraining was performed with 220M parameters, 12 layers, 8 heads,
and 768 hidden states.

e XLM-R-large: Pretraining was performed using 550M parameters. The hidden states
were expanded to 1024, and 24 layers, and 16 heads were used, which is twice the
scale of the base model.

e mBERT: The model parameters of mBERT were 110M, 12 layers, 768 hidden states,
and 12 heads.

e mBART: mBART was pretrained with 610M parameters, 24 layers, 1024 hidden states,
and 16 heads.

¢ XLM-CLM: A pretrained CLM for English and German. In total, 6 layers, 1024 hidden
states, and 8 heads were used.

e XLM-MLM: A pretrained MLM for English and German. In total, 6 layers, 1024
hidden states, and 8 heads were used.

¢ XLM-MLM-17: Pretraining was conducted by expanding the MLM into 17 languages.
It was trained using 570M parameters, 16 layers, 1280 hidden states, and 16 heads.

¢ XLM-MLM-100: Pretraining was conducted by expanding the MLM into 100 languages.
It was trained using 570M parameters, 16 layers, 1280 hidden states, and 16 heads.

e XLM-TLM: TLM was performed for 15 languages. In total, 12 layers, 1024 hidden
states, and 8 heads were used.

We performed finetuning using the pretrained model released in HuggingFace’s trans-
formers library [42]. We did not proceed with additional pretraining and data augmentation
so that the pure performances of the mPLMs could be objectively evaluated and compared
in the QE task.

In preprocessing, we performed subword tokenization using the tokenizer provided
for each model in HuggingFace. For the model input, we added segment embeddings for
mBERT, listing tokens separated by 0 and 1 to give a distinction between sentence 1 and
sentence 2. XLM has added a position embedding that gives a number corresponding to



Appl. Sci. 2021, 11, 6584

9of 15

the token index for each source sentence and MT output, as well as a language embedding
that is segmented by a unique number for each language.

As a training procedure for finetuning, we first load mPLMs to initialize the parame-
ters. After that, additional embeddings for each model are put as input to the model along
with the sentences concatenated with the source and target sentences. We put the output
corresponding to the position of the [CLS] token among the last hidden states as an input
to the linear classifier and measured the loss between the predicted value and the label. We
use the mean squared error (MSE) loss as the loss function.

We found that the model has a diverse range of performance fluctuations depending
on the seed value, and we attempted to reduce the effect of the seed value on the gen-
eral performance of the model. To achieve this, we conduct five experiments using the
same model and compare the average values, as well as the minimum and maximum
performance values, thereby increasing the reliability of the experimental results.

5.3. Experimental Results for Question 1
5.3.1. Sub-Task 1
To check which model out of various mPLMs performs well for the QE task, we raise

question 1, and proceed with finetuning using mPLMs. The experimental results for the
QE of sub-task 1 (i.e., the direct assessment at the sentence-level) are shown in Table 2.

Table 2. mPLM finetuning results for the test set of the WMT20 sub-task 1.

Pearson MAE RMSE
Max Min Average Min Max Average Min Max Average
XLM-R-base 0.380 0.280 0.328 0.459 0.479 0.473 0.648 0.679 0.665
XLM-R-large 0.338 0.242 0.298 0.480 0.520 0.495 0.685 0.713 0.698
mBERT 0.407 0.322 0.382 0.452 0.468 0.458 0.642 0.672 0.655
mBART 0.402 0.306 0.351 0.465 0.534 0.490 0.642 0.729 0.677
XLM-CLM 0.296 0.168 0.253 0.474 0.516 0.489 0.683 0.703 0.691
XLM-MLM 0.219 0.192 0.206 0.493 0.526 0.503 0.693 0.728 0.708
XLM-MLM-17 0.318 0.143 0.253 0.465 0.525 0.490 0.670 0.731 0.696
XLM-MLM-100 0.256 0.191 0.232 0.482 0.536 0.498 0.690 0.702 0.695
XLM-TLM 0.442 0.336 0.394 0.451 0.683 0.517 0.631 0.805 0.681

As a result of the experiment, XLM-TLM showed the highest performance for sub-task
1 with a Pearson correlation coefficient of 0.442. In terms of the minimum and average
performances, this system consistently demonstrated the highest performance compared
to the other models. To investigate the cause of this result, we need to focus on the input
data of XLM-TLM in the pretraining process.

The XLM-TLM model utilizes parallel data during pretraining and can refer to the
context of either side when predicting the source- and target-side masked words. Likewise,
in the QE field, the concatenating sentences of the source and target language are provided
as an input to the model. This is similar to the form of the input for the XLM-TLM model
in that it provides sentences in both languages as the input, while the other models use the
mono data of multiple languages. According to Lample and Conneau [8], when predicting
a masked word during XLM-TLM learning, the model can be encouraged to align the
source and target language representations by attending the translated sentence along with
the surrounding masked word. Therefore, when using the aligned representation derived
between the source and target languages in the XLM-TLM model for QE, it is possible to
infer what part of the translated sentence is wrong. The model with the second highest
average performance is the mBERT model. This model provided approximately 0.012 less
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than that of the first-ranked model and demonstrates a comparable performance. mBART
did not show a strong performance in the regression task, but the maximum value only
showed a difference of about 0.005 compared to the mBERT model. Both models apply
various noising schemes during pretraining, and it can be predicted that this strategy will
help improve their performance.

In the case of XLM-R-large, many research groups that participated in WMT20 used
this model; however, for sub-task 1, it was not ranked high. When comparing the av-
erage Pearson correlation coefficients of the models based on XLM, XLM-MLM-17 was
0.021 higher than that of XLM-MLM-100, and XLM-MLM, which learned only English
and German, showed the lowest performance. XLM-MLM-17 and XLM-MLM-100 are
approximately twice the size of XLM-MLM considering the number of layers and hidden
states, etc. and the languages were also expanded to 17 and 100 languages, respectively. It
can be inferred that the number of languages and model capacity helped to improve the
performance for QE.

To answer subtask 2, we refer back to the question we posed. Which mPLM is best
for QE tasks? For the question, XLM-TLM model that learned cross-lingual understanding
performed the best in sub-task 1.

5.3.2. Sub-Task 2

The finetuning results for sub-task 2 (sentence-level post editing effort) are shown
in Table 3. High performances were achieved in the descending order of XLM-TLM,
XLM-R-large, mBART, XLM-R-base, mBERT, XLM-MLM-17, XLM-MLM-100, XLM-MLM,
and XLM-CLM based on the average Pearson correlation coefficient. As a result of this
experiment, XLM-TLM showed the highest performance based on the average, minimum,
and maximum Pearson correlation coefficients, similar to the previous experimental re-
sults for sub-task 1. As analyzed in sub-task 1, because XLM-TLM was induced to learn
alignment information for language pairs using parallel corpus, it can be predicted that
this process contributes significantly to its performance improvement for QE, which re-
quires knowledge of relationships between languages. In sub-task 2, the XLM-R-large
model showed the best performance after XLM-TLM. A fairly comparable performance
was demonstrated with an average Pearson correlation coefficient of 0.498. XLM-R-large
is the latest model among the mPLM models considered in this study. As mentioned in
Section 3.3, a state-of-the-art performance among cross-lingual models was achieved by
expanding the number of parameters considering the large amount of data and the curse
of multilinguality. Nevertheless, XLM-R did not learn the relationship between the source
and target sentences because it learned the mono corpus in an unsupervised manner. In QE,
the source sentence and MT output are referenced together to determine which part has
been incorrectly translated, and, therefore, this characteristic did not produce an optimal
effect compared to XLM-TLM. Although mBART is a sequence-to-sequence model, it ranks
third in the regression task with a higher performance than all XLM models. As an exten-
sion of MLM, mBART uses a pretraining scheme referred to as text infilling and sentence
permutation, and an average Pearson correlation coefficient of 0.463 was obtained. This
result was significantly higher than those of XLM-MLM (0.334), XLM-MLM-17 (0.415),
and XLM-MLM-100 (0.409), which used only MLM. Therefore, it can be confirmed that the
additional strategy of mBART had a positive effect on the improvement of QE performance
during finetuning. mBERT showed an average Pearson correlation coefficient of 0.417
in sub-task 2 and did not demonstrate a very high performance when compared with
the sub-task 1 results. Considering the comparison of the various XLMs, XLM-MLM-17
performed slightly better than XLM-MLM-100 (as in sub-task 1), while XLM-CLM ranked
lower than XLM-MLM, which exhibited the lowest performance in sub-task 1.
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Table 3. mPLM finetuning results for the test set of the WMT20 sub-task 2.

Pearson MAE RMSE
Max Min Average Min Max Average Min Max Average
XLM-R-base 0.456 0.438 0.448 0.146 0.156 0.150 0.189 0.204 0.195
XLM-R-large 0.507 0.489 0.498 0.141 0.155 0.145 0.178 0.204 0.186
mBERT 0.435 0.389 0.417 0.149 0.182 0.160 0.189 0.230 0.204
mBART 0.475 0.452 0.463 0.142 0.148 0.144 0.179 0.195 0.184
XLM-CLM 0.309 0.275 0.298 0.158 0.161 0.159 0.196 0.200 0.198
XLM-MLM 0.358 0.303 0.334 0.156 0.160 0.158 0.194 0.199 0.197
XLM-MLM-17 0.433 0.408 0.415 0.149 0.157 0.154 0.188 0.192 0.190
XLM-MLM-100 0.421 0.381 0.409 0.152 0.164 0.158 0.190 0.207 0.198
XLM-TLM 0.522 0.498 0.510 0.152 0.222 0.177 0.199 0.273 0.227

To answer subtask 2, we refer back to the question we posed. Which mPLM is best for
QE tasks? For the question, we can explain that the XLM-TLM model also performed best
in sub-task 2.

6. Question 2: Does the Input Order of the Source Sentence and the MT Output
Sentence Affect the Performance of the Model?

6.1. Revisiting the QE Input Structure

In this section, we investigate the differences between the input structures used for
QE training. Existing QE studies generally construct an input using the following shapes:
[BOS] Source sentence [EOS] [EOS] MT output [EOS] or [BOS] MT output [EOS] [EOS] Source
sentence [EOS], where the beginning of sentence (BOS) and end of sentence (EOS) tokens
can be viewed as [CLS] and [SEP], respectively, depending on the pretraining methods
that were used. Previously, Baek et al. [13], Fomicheva et al. [14], Ranasinghe et al. [35]
adopted a prior structure as an input, while Moura et al. [4], Kepler et al. [33] adopted
a posterior structure. Although decent performances can be achieved by adopting these
structures, sufficient investigations concerning the selection of an input structure have not
been conducted. In other words, clear criteria for constructing an adequate input structure
have not yet been presented. Here, we focus on the inconsistent input structures utilized
in current QE studies and quantitatively analyze the differences derived from adopting
different input structures.

6.2. Experimental Results for Question 2

In order to check whether the order of the input sentence affects the performance
while performing QE finetuning, we raise question 2 and compare the sentence order
with the reversed sentence order when constructing the input sequence. The experimental
results for sub-task 1 are shown in Table 4. As a result of this experiment, it can be observed
that the model performance changes by simply reversing the order of the input sentence.
In this table, we denote Avg Diff as the difference between the average Pearson correlation
coefficients of the original input and reverse orders. As can be seen from the Avg Diff values,
when the input sentence order was reversed, the average Pearson correlation coefficient
of XLM-R-large improved by +0.032, while that of XLM-MLM-100 improved by +0.008.
However, for all other models, the performance deteriorated when the order of the input
sentences was reversed. Likewise, in Figure 1, it was confirmed that the overall reversed
order input sentences in sub-task 1 did not help to improve the performance of the model.
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Table 4. Results of mPLM finetuning with inverted inputs for the test set of WMT20 sub-task 1.

Pearson MAE RMSE
Max Min  Average AvgDiff Min Max Average Min Max  Average
XLM-R-base 0.365 0.272 0.326 —0.002 0.462  0.495 0.481 0.653  0.698 0.670
XLM-R-large 0.394 0.260 0.330 +0.032 0.447  0.508 0.479 0.644 0.729 0.681
mBERT 0.402  0.106 0.278 —0.104 0.453  0.553 0.498 0.648 0.762 0.700
mBART 0.388 0.277 0.346 —0.005 0.436  0.543 0.478 0.664 0.693 0.674
XLM-CLM 0.268 0.147 0.197 —0.056 0.483 0.515 0.502 0.688 0.714 0.698
XLM-MLM 0.250  0.128 0.177 —0.029 0.517  0.557 0.540 0.694 0.751 0.727
XLM-MLM-17 0.267 0.172 0.230 —0.023 0.482  0.502 0.491 0.682 0.713 0.693
XLM-MLM-100  0.314 0.189 0.260 +0.028 0.503  0.587 0.544 0.666  0.748 0.709
XLM-TLM 0.234 0.141 0.193 —0.201 0.563 1.115 0.896 0.739  1.237 1.061
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Figure 1. Comparison of the average Pearson correlation coefficients of original and reverse order inputs in sub-tasks 1
and 2.

Conversely, in the case of sub-task 2, the result of reversing the input sentences
provided a better overall performance. As can be seen in Table 5 and Figure 1, only two
models of XLM-CLM and XLM-MLM-17 declined in performance based on the average
Pearson correlation coefficient, while all other models consistently exhibited improved
performances. In particular, the range of performance fluctuations was high in both XLM-
TLM and mBERT. These two models also showed the highest variation in sub-task 1,
and it can, therefore, be said that these models respond most sensitively to the input
sentence order. The models with the lowest performance fluctuations were XLM-MLM-17
and mBART. In the case of mBART, there was little change in performance even in sub-
task 1, and there was no significant change in the performance in response to the varied
input structure.
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Table 5. Results of mPLM finetuning with inverted inputs for the test set of WMT20 sub-task 2.

Pearson MAE RMSE
Max Min  Average AvgDiff Min Max Average Min Max  Average
XLM-R-base 0.464 0.453 0.460 +0.012 0.144 0.153 0.148 0.184 0.199 0.191
XLM-R-large 0.523  0.501 0.509 +0.011 0.140 0.144 0.142 0.178 0.188 0.183
mBERT 0.449 0.434 0.441 +0.024 0.147 0.179 0.162 0.185 0.229 0.207
mBART 0.478  0.463 0.469 +0.006 0.141 0.151 0.145 0.179  0.196 0.187
XLM-CLM 0.297  0.283 0.287 —0.011 0.159  0.162 0.160 0.197  0.205 0.199
XLM-MLM 0.364 0.333 0.351 +0.017 0.153  0.159 0.156 0.193  0.200 0.196
XLM-MLM-17 0.420 0.405 0.411 —0.004 0.154 0.218 0.172 0.190 0.273 0.217
XLM-MLM-100  0.442  0.405 0.417 +0.008 0.151 0.183 0.161 0.187  0.220 0.196
XLM-TLM 0.552  0.526 0.538 +0.028 0.156  0.168 0.163 0.204 0.218 0.212

We refer again to the question we asked. Does the input order of the source sentence
and the MT output sentence affect the performance of the model? Through these experi-
ments, we determined that the performance fluctuation of the input order varies depending
on the sub-task. To the question, we can answer that the structure of the input is a factor
that affects the performance of the model, and it must, therefore, be considered before
conducting such experiments.

7. Conclusions

Most recent studies of QE apply data augmentation with finetuning based on state-of-
the-art large scale mPLM, such as XLM-R, to obtain a high performance for a WMT shared
task. In this study, unlike typical QE research that focused on the competition involving
a shared task, we conducted a pure performance comparison between various mPLMs.
As a result of the experiments, we confirmed that the XLM-TLM model performed best
on both sub-tasks, and that the induced learning of alighment between languages during
pre-training had a positive impact. Additionally, we conducted experiments using mBART
for the first time, and its additional noising schemes had a positive effect on QE research.
Therefore, we confirmed the feasibility of using the mBART model in further QE research.
We demonstrated that the order of the input sequence between the source sentence and
its MT output can affect the model performance. In the future, we will further investigate
data-centric issues that are not model-based [43,44]. By filtering data based on the HTER
score, we will explore which score ranges contribute significantly to the performance of a
model and provide a basis for future data-centric research on QE. In addition, we plan to
conduct an in-depth study on low resource language QE. We plan to study a methodology
that can automatically generate data based on a semi-supervised learning method.
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