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Featured Application: Elasticity is predicted to play a significant role in the formation of vortices
in polymeric flow in a sharp bend. The polymer dilution and the flow rate determine if the
formation of the vortices occurs upstream or downstream of the bend corner.

Abstract: Fluid dynamic simulations using the FENE-P model of polymer physics are compared to
those of an incompressible Newtonian fluid base case in order to understand the role of elasticity
in the formation of vortices in a 90◦ bend narrow channel. The analysis bridges the flow behavior
of a purely elastic fluid and that of a Newtonian fluid. We evaluated how four dimensionless
numbers—Reynolds number (Re), Weissenberg number (Wi), viscosity ratio (β), and elasticity
number (El)—affect the formation of vortices. It is shown that increasing Re and Wi, or lowering β

will cause vortices to grow in size. Two phase space diagrams, β vs. El and β vs. Re, were created to
show the range of values where inertial and elastic vortices form. Both diagrams have three zones.
Depending on the polymer viscosity ratio and the elasticity number, the vortices form either upstream
of the bend (elasticity driven) or form downstream of the bend (inertia driven), are suppressed. Our
predictions are in good agreement with previous experimental and numerical works.

Keywords: elasticity; polymer; vortex; bend; flow

1. Introduction

Many modern-day products, such as rubber tires and plastic bags, are made from
polymers. These items are made by specialized processing machines that handle polymer
solutions in pipes, conduits, and accessories such as bends and elbows. These polymeric
solutions, as with any other liquid, are subjected to many fluid dynamic effects. One such
effect is the formation of recirculation zones, or vortices in abrupt, changes of flow direction
as in contractions and bends. These vortices are a feature where some amount of the fluid
becomes trapped in a cyclone like structure near or around corners, justifying those authors
that refer to them as separation bubbles [1]. Recirculation zones can have detrimental
effects on the flow of polymers and polymer solutions, affecting their manufacturing
processes. As a result, it is important to know the conditions under which vortices form.
The presence of vortices near or around corners is one of the most significant alterations
in channel flow for both non-Newtonian and Newtonian fluids. Vortices are well known
to form in Newtonian fluids due to the effect of inertia [2]. However, for polymers and
polymer solutions not all the physics involved are fully understood [3,4].

Understanding the flow behavior of polymers and polymer solutions is essential to
design and optimize fluid flow systems in many practical applications. For example, in
microfluidics the polymer concentration has a significant effect on viscoelastic behavior by
altering the base flow or result in flow instabilities. In that regard, Gulati et al. [5] studied
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the flows of dilute and semi-dilute polymer solutions in sharp 90◦ micro-bends in channels
of rectangular cross-section. Their flow visualizations show that a vortex is present in the
inner, upstream corner of the bend and grows with increasing Reynolds and Weissenberg
numbers for flows of shear-thinning, semi-dilute polymeric solutions. They reported that
secondary flows were not present for Newtonian flows under similar conditions and that
a vortex is absent for flow of a dilute, non-shear thinning PEO solution. They concluded
that shear-thinning appears to be central to the presence of an elastic secondary flow in
this geometry. Their experiments were carried at very low Reynolds number (10−6 < Re <
0.03), and Weissenberg numbers ranging from 0.42 to 126.

More recently, Kim et al. [6] reported instabilities in viscoelastic flow in a 90◦ bent
channel. They observed that the flow instability in an aqueous PEO solution occurs when
the concentration of PEO is as low as 50 ppm. Investigating the effects of the polymer
concentration, flow rate, and elasticity number, they found that the flow is stabilized in
shear-thinning fluids, whereas the flow instability is amplified when both elastic and
inertial effects are pronounced. Their experiments were carried out at Reynolds numbers
ranging from 0.3 to 3.0 and Weissenberg numbers of 0 (Newtonian flow) to 40.

Both studies [5,6] coincide in pointing to the shear thinning properties of the solution,
a decrease in viscosity under shear strain, as the main reason for the formation of vortices
and secondary flows.

At the macroscopic level, it is also well known that polymers, as well as surfactants,
are frequently added to Newtonian fluids with the purpose of reducing friction losses in
straight pipe turbulent flow. In some cases, the drag-reducing rate is as high as 75% [7]
making them attractive for using in complex industrial pipe flow systems. Friction losses
in industrial piping systems are mostly due to accessories such as bends, tees, and valves,
rather than in the straight pipes. Understanding how polymers affect the Newtonian
flow in bends and accessories would help in evaluating their drag reduction potential and
application in intricate piping systems.

Munekata et al. [8] studied the bend flow characteristics of two surfactant solutions,
experimentally and numerically. They found that the drag, friction coefficient, increases
or reduces depending on the average bulk velocity of the solution. As the solution con-
centration increases a larger bulk velocity is required to observe a reduction in the drag.
Although the drag reduction’s effects of the surfactants in the solution are lower in bend
flow than in a straight pipe, the authors attribute the drag reduction to the suppression of
the centrifugal effect and reducing the secondary flow due to the viscoelastic properties
of the solutions (normal stress effect). Their analysis was performed at a high Reynolds
number for both a Newtonian fluid and a highly viscoelastic fluid. They observed and
predicted smaller velocity gradients near the wall for viscoelastic fluid flow than that for
Newtonian fluid flow.

Even in purely Newtonian fluid flow, understanding the hydrodynamic behavior in a
bend channel or a pipe elbow remains relevant today. Matsumoto et al. [1] investigated
the flow dynamics for a Newtonian fluid in a bent channel via two-dimensional direct
numerical simulations. They investigated the flow structure along the channel as a function
of both the bend angle and the Reynolds number. Their numerical work suggests a scaling
relation between the shape of the separation bubble, a downstream vortex after the bend
corner, and the flow conductance. Their simulations were carried at high Reynolds number
but only for a Newtonian fluid. Nevertheless, they present an integrated phase diagram
for the flow dynamics, where depending on bend angle and Reynolds number either the
flow is uniform with no recirculation vortex forming, a vortex forms downstream of then
bend corner, or vortices shed intermittently from the bend corner.

In this paper we address the role of elasticity in the formation of vortices. With our
analysis we are bridging the flow behavior of a polymeric fluid and that of a Newtonian
fluid in a 90◦ bend narrow channel.

In agreement with previous works [5,6], we predict the formation of elastic and inertial
vortices for polymer solutions with specific rheological properties and flow conditions. Our
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primary interest is exploring the possibility of controlling the alteration of the flow, either
suppressing or promoting a vortex or separation bubble, by modifying the underlying
properties of the polymer solution.

The remainder of this paper is organized as follows. In Section 2, we introduce our
hydrodynamic and polymer models. In Section 3, we describe in detail our numerical
procedure including simulation parameters, and the computational domain including a
few details about the meshing. In Section 4, we present the numerical results, specifically
comparing Newtonian and polymer flow and discussing the role of elasticity and Reynolds
number on vortex formation. We also construct two flow phase diagrams. In Section 5, we
summarize our results and briefly comment on the future perspectives of the present work.

2. Materials and Methods
2.1. Governing Equations

Two types of fluids were studied in this research, a Newtonian fluid and a polymeric
fluid. Newtonian flows are characterized by Navier–Stokes equations. Polymer flows
require additional equations to characterize the elastic behavior of the polymer chains. In
this work, the polymer chains are characterized using the FENE-P model (finitely extensible
nonlinear elastic model with Peterlin closure [9]). The FENE-P model was chosen due to
its versatility and simplicity in characterizing polymer behavior. In the FENE-P model,
polymers are represented as dumbbells, two masses connected by a spring, as in many
other polymer models [10]. Nevertheless, in the FENE-P model the spring has a finite
stretching limit.

For this work it is assumed that the fluid is incompressible for both Newtonian and
polymer-based flows, for which the continuity equation becomes:

∇·→v = 0, (1)

where
⇀
v is the velocity of the fluid. The general momentum equation of motion is given by:

ρ

(
∂
→
v

∂t
+
→
v ·∇→v

)
= −∇·Π + ρ

→
g , (2)

where Π is the total stress tensor:
Π = τ + pI, (3)

with τ as the extra stress tensor, p the hydrostatic pressure, and I the identity tensor.
For an incompressible Newtonian fluid, the stress tensor τ is given by:

τ = −ηs
.
γ, (4)

.
γ =

[
∇→v +

(
∇→v

)T
]

, (5)

where ηs is the Newtonian shear viscosity, and
.
γ is the strain rate tensor.

Combining (3)–(5), substituting into (2), and neglecting the effects of gravity yields the
well-known Navier–Stokes equation of fluid dynamics, see below. For a detailed derivation
of (6) see ref. [11].

ρ

(
∂
→
v

∂t
+
→
v ·∇→v

)
= −∇p + ηs∇2→v . (6)

For complex fluids such as polymers and polymer solutions, Equation (4) is not
sufficient to describe the dynamics of the flows. An additional stress term is added to the
Newtonian constitutive equation. For complex fluids:

τ = τN + τP, (7)
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where τN denotes the Newtonian stress component, and τP denotes the stress component
characterizing the polymer behavior.

The equation used to estimate τP depends on the particular model of polymer physics
being employed. For the purposes of this research, the FENE-P constitutive equation is
given by [10]:

τP = GO f
(

I − A
)
, (8)

λA
(1) + f

(
A− I

)
= 0, (9)

where GO is the elastic modulus, and λ is the relaxation time of the polymers. The conforma-
tion tensor A measures the stretch and orientation of the polymers. The upper-convective
derivative [12], denoted by ( )(1), is given by:

∂( )

∂t
+
→
v ·∇( )−

((
∇→v

)T
·( ) + ( )·∇→v

)
, (10)

and:
f =

b
b− trA

, (11)

with b representing the square of the maximum extensibility.
The total stress in the polymer solution is then obtained by combining Equations (7)

and (8), and substituting that result back into (3):

Π = GO f
(

I − A
)
− ηs

.
γ + pI. (12)

2.2. Computational Methodology
2.2.1. Numerical Solver

The numerical solver implemented to solve the governing equations for the present
work is the open-source programming package RheoTool. RheoTool is an open-source
toolbox based on the OpenFOAM® library to simulate the flow of Generalized Newtonian
Fluids (GNF) and viscoelastic fluids [13].

RheoTool is a modification of the viscoelastic solver available in the OpenFOAM ® tool-
box [14]. The main goal of the modification was to improve its stability for differential-type
constitutive equations. The major contributions of RheoTool are using the log-conformation
approach to solve Oldroyd-B type constitutive equations, handling high-resolution schemes
with a componentwise and deferred correction approach to discretize the convective terms,
and introducing a new stress–velocity coupling term together with the well-known SIM-
PLEC algorithm for pressure–velocity coupling [15].

In the present work, the polymer is characterized by the FENE-P model which is solved
using the log-conformation approach [16,17], and selecting the stress–velocity coupling as
the stabilization method.

In terms of discretization, gradient terms are discretized using the Gauss scheme with
linear interpolation, Laplacian terms are discretized using the Gauss scheme (only choice)
with linear interpolation and the corrected scheme for the surface normal gradient, and the
convective terms are discretized using the CUBISTA scheme [18].

The solver chosen for all (asymmetric) equations is the Preconditioned (bi-) Conjugate
Gradient with the Diagonal incomplete-Cholesky (LU) preconditioner.

The solution is advanced in time using the Euler scheme with adjustable time steps.
A minimum time step of 10−6 s is set together with a maximum Courant number of 2.0
and a maximum time step of 10−2 s. This time step condition allows for speed up of the
convergence of transient simulations to steady state.

2.2.2. Simulation Parameters

The main goal of this research is to evaluate the role that elasticity plays in the
formation of vortices in flow around a sharp corner. For that purpose, we performed
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multiple simulations to create two phase diagrams in order to show the overall effects of
four dimensionless parameters, Wi, Re, El, and β. These parameters are defined as follows:

• The Weissenberg number Wi = λ·U/H, where λ is the relaxation time of the polymer, U is
the characteristic velocity, and H is the characteristic length scale of the geometry (channel
height). The Weissenberg number is a ratio of the polymeric timescale to a convective
timescale, akin to an elastic to viscous forces ratio in the context of this work.

• The Reynolds number Re = ρ·U·H/η0, where ρ and η0 are, respectively, the density
and the zero-shear rate viscosity of the solution. The Reynolds number is a measure
of the ratio of inertia to viscous forces.

• The elasticity number, a derived parameter, characterizes the balance of elastic and
inertial forces in the fluid and is defined as El = Wi/Re.

• The solvent viscosity ratio β = ηs/ηo, where ηs is the Newtonian solvent viscosity and
ηo is the zero-shear rate viscosity of the solution.

An important note about the elasticity number El and the viscosity ratio β is that
they are both material parameters that depend on ηo, and are independent of the fluid
velocity. The zero-shear rate viscosity, ηo, physically corresponds to the concentration of
polymers in the solution. A decreasing El indicates a decrease in the polymer concentration.
Conversely, an increase in β corresponds also to a decrease in the polymer concentration,
which is the parameter typically varied during experimental work.

Two sets of simulations were conducted in order to meet this goal. The first group
of simulations conducted during this research were used to create a Weissenberg number
versus Reynolds number phase space diagram. The Weissenberg numbers evaluated were
0.5, 1, and 1.5. Simulations were run with viscosity ratios, β values, ranging from 0 to 1 in
0.1 increments. A β value of 0 represents a polymer melt. A β value of 1 represents the
viscosity of a Newtonian fluid (solvent). A second group of simulations was conducted in
order to create a viscosity ratio, β, versus elasticity number, El, phase diagram. All of these
simulations were performed with a constant value for the Weissenberg number (Wi = 1).

2.2.3. Computational Domain

Figure 1 shows a representation of the computational domain used to model the
right-angle bend geometry. The fluid flows into the system at the top left, where a uniform
inlet velocity (for a given flowrate Q) is imposed, travels around the sharp bend, and
then exits out at the bottom, where the outlet pressure is set. At the walls, no-slip and
no-penetration conditions are set for the velocities, and zero gradient for the pressure and
the stress tensors.
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Figure 1. Computational domain, right-angle bend geometry. Q, volumetric flow rate; H, channel
height; inlet/outlet branches length is 10 times H.

The bend used in the simulations has a ten to one ratio of length to channel height,
H, in both branches. This ratio is more than enough to obtain a fully developed flow
well upstream of the corner bend and for the exit, being far enough away to prevent
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any upstream effect from the outlet boundary conditions, see references [19,20], and also
Appendix A. The geometry used follows the experimental work of Gulati et al. [5] and
is typical of benchmark cases and similar configurations that have been evaluated both
numerically and experimentally, see [1,6,21,22].

2.2.4. Meshing

Figure 2 presents an enlarged portion of the bend corner geometry with the progres-
sion in mesh refinement used for the simulations. Preliminary runs were performed in
the coarse mesh shown in Figure 2a. The mesh was halved twice for the final run of every
simulation, Figure 2c. An even finer fourth mesh was used in a few simulations to estimate
grid convergence regarding the size predicted for inertial and elastic vortices including the
phase maps.
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Figure 2. Uniform meshing size progression: (a) coarse, ∆x = ∆y = 1/50·H; (b) medium, ∆x = ∆y = 1/100·H; (c) fine,
∆x = ∆y = 1/200·H.

Figure 3 presents a sample of the grid convergence analysis performed in choosing the
grid for the simulations and estimate the numerical errors of the predictions. The profiles in
the figure correspond to a case with an elastic vortex located upstream of the bend corner.
They were created along the white vertical line highlighted in Figure 2c; the grid chosen
for the numerical analysis. The line crosses the elastic vortex roughly in the middle.
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Figure 3. Grid convergence analysis, Wi = 1.0, El = 100, β = 0.1: (a) horizontal velocity; (b) vertical velocity; (c) axial stress.

Figure 3a compares the streamwise velocity component for the four grids evaluated.
The weighted average deviation error outside the vortex for the fine grid is 1.3% and 5.5%
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inside the vortex. Similarly, Figure 3b compares the spanwise velocity component for the
same four grids. The weighted average deviation error outside the vortex is 14% and 26%
inside the vortex, respectively (in both cases, note the very low actual value of the predicted
velocity). Lastly, Figure 3c compares the axial stress. The weighted average deviation error
outside the vortex is 4.0% and 8.3% inside the vortex, respectively.

Similar analyses were conducted for many cases, including those with inertial vortices
located downstream of the bend corner. In a typical high Reynolds number case, Re = 100,
the weighted average deviation errors of all variables are significantly smaller. For the
streamwise velocity component, the weighted average deviation error outside the vortex
for the fine grid is 0.02% and 0.4% inside the vortex, respectively. For the spanwise velocity
component, the weighted average deviation error outside the vortex is 0.09% and 0.5%
inside the vortex, respectively. Additionally, for the strain rate, the weighted average
deviation error outside the vortex is 0.04% and 0.28% inside the vortex, respectively.

In general terms, it was found that predicting the location and length of the vortex is
the most significant challenge in attaining grid convergence. Outside the vortex and far
from it, the grid convergence index (GCI) for the fine grid is excellent, ranging from 0.0 to
1.5% in all variables. Within the vortex, the GCI for the fine grid is acceptable, ranging from
0.1% to 25% in all variables. Again, it should be noted that actual values for the spanwise
velocity and the normal stress within the vortex are significantly smaller when compared
to the streamwise velocity and the axial stresses, by two to three orders of magnitude.
The mesh and grid convergence analyses were conducted following the Procedure for
Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications by
Roache et al. [23].

The formation of vortices in polymer flow has been studied extensively in planar
contractions and the size and strength have been shown to be strongly dependent on the
mesh [15,24,25]. For example, the effect of mesh refinement on the size of the vortices
was highlighted by Alves et al. [26] when developing benchmark solutions for the flow of
Oldroyd-B and PTT fluids in planar contractions. They found that a very high degree of
mesh fineness was required to obtain accurate results with the Oldroyd-B fluid, while the
PTT fluid in general did not require the finest meshes. These authors relied on Richardson’s
extrapolation to measure the level of convergence.

3. Results
3.1. Newtonian Flow

To better understand the effects the elasticity of polymers have on the formation of vortices
in a right angle bend geometry, simulations of Newtonian fluid flow were conducted first in
order to obtain a baseline or reference. It is well known that in Newtonian flow vortices form
downstream of a bend corner at sufficiently high Reynolds number [22,27].

To establish the baseline, the Reynolds number value at which the vortices first
appear was sought. This value, called Recrit for the duration of this paper, was found to
be approximately 30. For Reynolds number values larger than 30, a clear vortex forms
downstream of the bend corner. This critical Reynolds number value is in line with other
numerical work [1,2].

For Newtonian fluids, the Reynolds number is the single parameter required to describe
the flow. It is expected that higher Reynolds numbers should lead to larger vortices downstream
of the bend corner. We refer to these vortices forming downstream as inertial vortices from
now on. Figure 4 presents two inertial vortices. The vortex in Figure 4a corresponds to a flow
with a Reynolds number of 50, while Figure 4b corresponds to Re = 100.
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Figure 4. Downstream inertial vortices, Newtonian Flow: (a) Reynolds number Re = 50; (b) Reynolds
number Re = 100.

Comparing both figures, it can be seen that the second vortex at Re = 100 is predicted
to be significantly larger than the vortex that forms at Re = 50. This comparison shows
that a higher Reynolds number value leads to a larger inertial vortex in Newtonian flow. It
should be noted that the size (length) of the vortices in these and all figures that follow was
determined numerically by the change in direction of the tangential velocity near the wall,
equivalent to a change in sign of the shear stress (skin friction), see Appendix B.

To validate both, the statement that the inertial vortex size increases with Reynolds
number and that ‘RheoTool’ is a valid numerical open source tool for the solution of both
Newtonian and non-Newtonian flow, we modeled the bend Newtonian flow using the
commercial tool ANSYS Fluent v19.1. Figure 5 compares the non-dimensional vortex
length (vortex length to channel height ratio) predicted with both Fluent and Rheotool up
to a Reynolds number of 250. The values predicted by RheoTool are within 1% of those
predicted by Fluent. The figure clearly shows that the vortex length (l) increases with
Reynolds number. Additionally, the comparison also indicates that RheoTool is as good
as Fluent in solving the Navier–Stokes equations for Newtonian flow. It should be noted
that this Newtonian inertial vortex would become unstable at a sufficiently high Reynolds
number value [1].
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3.2. Polymer Flow

As previously discussed, there are four dimensionless numbers—Wi, Re, El, and β—
typically used to characterize polymer fluid dynamics. Nevertheless, the elasticity number
(El) is defined as the ratio of the Weissenberg and Reynolds numbers. Consequently,
only three dimensionless parameters are effectively needed to characterize polymer flow.
Evaluating and predicting the effect on these parameters on polymer flow and vortex
formation is the main goal of this research.

It has already been shown, for the Newtonian case, that a difference in Reynolds
number means a difference in vortex size. For polymer fluids, even though elasticity is
present, this should be no different. Holding the Weissenberg number constant comparing
two simulations with different elasticity numbers should give insight into how the Reynolds
number affects the vortices.

3.2.1. Inertial Vortices

The vortices in Figure 6 correspond to flows at different Reynolds numbers for the
same Weissenberg number of 1.5 and a viscosity ratio of 0.1. Larger downstream vortices
are predicted as the Reynolds number is increased. With both Wi and β held constant, it
should be this variation in Reynolds number that is accountable for the increase in vortex
size. It should be noted that increasing the Reynolds number while holding both Wi and β

constant is equivalent to reducing the elasticity number.
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It can then be stated that larger Reynolds numbers lead to larger inertial vortices in
polymer flow. Conversely, reducing the Reynolds number by increasing the elasticity of
the polymer solution should reduce the inertial vortex size.

Like Newtonian flow, current predictions indicate that larger Reynolds numbers in
polymer flow should lead to larger inertial vortex sizes. This is consistent with laminar
Newtonian flow physics, but what role do the polymers play in inertial vortex sizes? A
way to evaluate the effect of the polymers on the flow would be to compare a Newtonian
inertial vortex to a polymer vortex at the same Reynolds number.

Figure 7 compares predicted inertial vortices between Newtonian Flow and Polymer flow
at the same Reynolds number but different Weissenberg numbers. The vortex in Figure 7a
corresponds to Newtonian flow at a Reynolds number equal to 100. The vortex in Figure 7b
corresponds to polymer flow with Wi = 0.5. (El = 0.005). The vortex in Figure 7c corresponds
to polymer flow with Wi = 1.0 (El = 0.01). Additionally, the vortex in Figure 7d corresponds to
a polymer flow with Wi = 1.5 (El = 0.015). All three polymer inertial vortices are predicted to
be comparable in size, within 5%; with the one corresponding to a Weissenberg number of 1.0
being the only one significantly larger than its Newtonian counterpart, but only about 10%,
just slightly above the average grid convergence error of 8%. This is an indication that adding
polymers to the flow at this high Reynolds number is predicted to have a slight to nonexistent
effect on the fluid dynamics of the flow around a bend. The Weissenberg number effect on
inertial vortices at high Reynolds numbers is predicted to only be moderate.
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Flow. At Wi = 1.5, polymer inertial vortices are predicted to be slightly smaller than the 
Newtonian counterpart as the Reynolds number is reduced. 

Figure 7. Downstream inertial vortices, Newtonian vs. polymer flow (β = 0.1.) for Re =100: (a) New-
tonian flow; (b) polymer flow, (Wi = 0.5, El = 0.005); (c) polymer flow, (Wi = 1.0, El = 0.01); (d) polymer
flow, (Wi = 1.5, El = 0.015).

The contour plots in Figure 8 show two inertial vortices both corresponding to a
moderate Reynolds number of 50 also with β = 0.1. The first vortex, Figure 8a, has a
Weissenberg number of 0.5, while the second, Figure 8b, corresponds to Wi = 1.0. Again,
these inertial polymer vortices are comparable in size, in this case within 2%, indicating
that the influence of the polymer in the size of the inertial vortex is also predicted to be
moderate at a moderate Reynolds number.
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Figure 8. Downstream inertial vortices, Re = 50. Effect of Weissenberg Number (Polymer flow):
(a) Wi = 0.5 and El = 0.01; (b) Wi = 1.0 and El = 0.02.

Figure 9 summarizes all inertial vortex length predictions for polymer flow at high
Reynolds number. Both solutions for Newtonian flow, RheoTool and Fluent, are added
for comparison. Predictions for Wi equal to 0.5 and 1.5 are similar to that of Newtonian
Flow. At Wi = 1.5, polymer inertial vortices are predicted to be slightly smaller than the
Newtonian counterpart as the Reynolds number is reduced.



Appl. Sci. 2021, 11, 6588 12 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 20 
 

 
Figure 9. Non-dimensional inertial vortex length for polymer flow vs. Reynolds number. 

From Figure 9 it could be inferred that adding polymers to the solution does not affect 
the size of the inertial vortices. Figure 10 presents the same data as Figure 9 but as a func-
tion of the elasticity number. At every Weissenberg number, the predictions clearly indi-
cate that increasing elasticity leads to a rapid decrease in vortex size. This figure also high-
lights that it is the Reynolds number, indeed the inertial effects, that is predicted to drive 
the size of the inertial vortex, with the Weissenberg number playing a secondary role. This 
figure also seems to indicate that there is a maximum size for the inertial vortex at any 
given Reynolds number. This maximum vortex size is predicted for the cases where the 
inertial and elastic forces are balanced: Weissenberg equal to 1.0. 

 
Figure 10. Non-dimensional inertial vortex length for polymer flow vs. elasticity. 

3.2.2. Elastic Vortices 
As the Reynolds number is reduced, the downstream or inertial vortices are pre-

dicted to disappear. However, as the Reynolds number is reduced further, vortices are 
predicted to form upstream of the corner bend. We refer to these vortices forming up-
stream of the bend corner as elastic vortices. At low Reynolds numbers, it is the Weissen-
berg number that is predicted to determine the size of the elastic vortex. To evaluate how 
changing the Weissenberg number affects vortices that form upstream of the bend corner, 
Figure 11 compares an elastic vortex for Wi = 1 and El = 1·106 to a vortex for Wi = 1.5 and 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 25 50 75 100 125 150

l/H

Re

Inertial Vortex Size
RheoTool Wi=0
RheoTool Wi=0.5
RheoTool Wi=1.0
RheoTool Wi=1.5
Fluent v19.1
Log. (Fluent v19.1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.01 0.02 0.03 0.04

l/H

El

Inertial Vortex Size
Wi=1.5
Wi=1.0
Wi=0.5

50

Re
100 

75

Figure 9. Non-dimensional inertial vortex length for polymer flow vs. Reynolds number.

From Figure 9 it could be inferred that adding polymers to the solution does not
affect the size of the inertial vortices. Figure 10 presents the same data as Figure 9 but as a
function of the elasticity number. At every Weissenberg number, the predictions clearly
indicate that increasing elasticity leads to a rapid decrease in vortex size. This figure also
highlights that it is the Reynolds number, indeed the inertial effects, that is predicted to
drive the size of the inertial vortex, with the Weissenberg number playing a secondary role.
This figure also seems to indicate that there is a maximum size for the inertial vortex at any
given Reynolds number. This maximum vortex size is predicted for the cases where the
inertial and elastic forces are balanced: Weissenberg equal to 1.0.
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Figure 10. Non-dimensional inertial vortex length for polymer flow vs. elasticity.

3.2.2. Elastic Vortices

As the Reynolds number is reduced, the downstream or inertial vortices are predicted to
disappear. However, as the Reynolds number is reduced further, vortices are predicted to form
upstream of the corner bend. We refer to these vortices forming upstream of the bend corner
as elastic vortices. At low Reynolds numbers, it is the Weissenberg number that is predicted to
determine the size of the elastic vortex. To evaluate how changing the Weissenberg number
affects vortices that form upstream of the bend corner, Figure 11 compares an elastic vortex for
Wi = 1 and El = 1·106 to a vortex for Wi = 1.5 and El = 1.5·106. Both simulations correspond to
a viscosity ratio of 0.1 and a Reynolds number of 1·10−6. It is clear that the two vortices are
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predicted to be of different sizes, with the vortex for Wi = 1.5 being larger. Since the elasticity
number and the Weissenberg number are linked, the vortices are predicted to be different in
size, most likely due to the difference in Weissenberg numbers.
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Lastly, we evaluate the effect of the viscosity ratio. As explained previously, this ratio
can take any value between 0 and 1. Since a β value of 1 defines a purely Newtonian fluid,
we expect that fluids with viscosity ratios less than 1 should exhibit polymer behavior
similar to increasing the Weissenberg number in polymer flow. The elastic vortex should
therefore be larger for smaller β values because of its reliance on elasticity to form.

The elastic vortices in Figure 12 show the effect of decreasing β; from β = 0.4 to
β = 0.1. The second elastic vortex, lower viscosity ratio, is larger than expected, indeed,
significantly larger, roughly three times. Reducing β is predicted to have a similar effect
to that of increasing the Weissenberg number, increasing the size of the elastic vortex.
However, the presence of elasticity is not sufficient to produce elastic vortices; it was found
that elastic vortices are only predicted to form for viscosity ratios not exceeding a certain
value. In other words, a dilute polymer solution, mostly solvent with a viscosity ratio near
1, is always predicted to have Newtonian-like flow behavior without a vortex forming
upstream of the bend corner. Conversely, a concentrated polymer solution, mostly polymer
with a viscosity ratio near 0, is predicted to have secondary flows, vortices upstream of
the bend corner, for a large range of Reynolds numbers. These predictions are in line with
the experiments of Gulati [5] who found that stable elastic vortices form within the flow of
semidilute DNA solutions in a 90◦ micro bend channel above a certain threshold for the
solution elasticity.
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Based on these findings we created a map to evaluate the effect of the three parameters,
Wi, β, and El on the formation of elastic and inertial vortices. Figure 13 shows a phase
diagram mapped for viscosity ratio versus elasticity number for Wi = 1.0. This value was
chosen so the inverse of the elasticity number, El, is exactly the Reynolds number, Re. Three
regions form in this phase diagram: the ‘devoid region’, no vortex forms; the ‘inertia region’,
downstream or inertial vortices form; and the ‘elastic region’, upstream or elastic vortices
form. As can be seen in the diagram, the boundary between the elastic region and the devoid
region is a horizontal line at about β = 0.6. This is interesting because it suggests that there
is a critical viscosity ratio needed for the elastic vortex to form. It might be possible that this
boundary is not asymptotic, and that it is dependent on the Weissenberg and the Reynolds
numbers. Take note of the logarithmic x-axis. The effect of the Weissenberg number on this
predicted flow map will be the subject of a follow-up paper.
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The graph in Figure 14 is the same phase diagram as Figure 13, but the x-axis is now
the Reynolds number (the inverse of the elasticity number for Wi = 1.0). In the figure, it is
easier to see that elastic vortices only form at small Reynolds number values and viscosity
ratios less than 0.6. As it has already been shown that viscosity ratio has a similar effect
on vortex development to that of increasing the Weissenberg number, the question arises
as to whether or not β will delay the onset of inertial vortices. Looking at the figure, the
boundary of the inertial region is essentially a vertical line (Re = 29–37) indicating that β is
predicted to have only a very subtle effect on the onset of inertial vortices. In other words,
the Reynolds number is predicted to be the parameter with a primary role in determining
the onset of inertial vortices.
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Lastly, Figure 15 plots the vortex length of elastic vortices versus the elasticity numbers
at which they form for three values of Weissenberg number (Wi = 0.5, 1.0, 1.5) and a
viscosity ratio β = 0.1. The figure shows that for elasticity numbers between 0.1 and
10 the size of the elastic vortex is predicted to depend on both the elasticity number,
El, and the Weissenberg number, Wi. On the other hand, the figure also shows that for
El = 10 and above, the elastic vortex size is predicted to be of the same size for a given
Weissenberg number independently of the elasticity number. These predictions indicate
that the Weissenberg number plays the primary role in determining the size of the elastic
vortex that forms upstream of the bend corner for a fixed viscosity ratio. As discussed
earlier, as the Weissenberg number increases so does the size of the elastic vortex. These
predictions are also consistent with the experiments of Gulati [5] who found that the
Weissenberg number is the parameter that determines the presence and size of the elastic
vortices forming within the flow of semidilute DNA solutions in a 90◦ micro bend channel.
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4. Discussion

It has been shown during this research paper that higher polymer concentrations and
higher inertia are both predicted to lead to larger vortices in a sharp bend geometry. Higher
polymer concentrations lead to elastic vortices located upstream of the bend. Conversely,
higher Reynolds numbers lead to inertial vortices located downstream of the bend.

It was also found that after vortices are formed their size is predicted to be primarily
determined by the properties of the polymer solution and the Reynolds number. In the case
of elastic vortices, the vortex size is set by both the Weissenberg number and the viscosity
ratio. In the case of inertial vortices, the vortex size is primarily set by the Reynolds number
with the Weissenberg number playing a secondary role.

What is more interesting is the fact that predictions indicate vortices can be suppressed
by adjusting the properties of the polymer solution, elasticity and viscosity ratio, for a
given solution volumetric flow rate. The transition to inertia driven vortices is predicted to
occur somewhat abruptly at elasticity numbers equivalent to the critical Reynolds number
for Newtonian flow. Above this critical Reynolds number, inertia vortices are predicted
to form downstream of the bend corner with polymer solution properties affecting the
size only moderately. Below this critical Reynolds number, all polymer solution properties
are predicted to affect not only the size but the formation of elastic vortices upstream of
the bend corner. The size of the vortex is predicted to be determined by the Weissenberg
number while the formation of the vortex itself is predicted to be determined by the
viscosity ratio, i.e., the polymer concentration in the solution.

It should be noted that with our numerical approach we did not expect to predict or
capture any secondary flow that might be induced or be present in the actual 3D geometry
used as reference [5]. Similar works have found or predicted a minor effect of the aspect
ratio of the channel in the size of the lip vortex [21] or the presence of secondary flows [28].
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As the present work summarizes, our current primary interest was to evaluate the
role that elasticity plays in the formation of lip vortices in the flow around a sharp corner.
It is clear that modifying the underlying properties of the polymer solution predicts that
the fluid dynamics can be significantly altered. Vortices, elastic and inertial, could both
be suppressed or promoted by adjusting the polymer solution properties for a given
volumetric flow situation.

5. Further Work

The phase diagrams presented in Figures 13 and 14 were created for a single Weissenberg
number. The non-dimensional elastic vortex length behavior presented in Figure 15 was
created for one single viscosity ratio. Additional diagrams for different values of both might
confirm the universality of the predicted behavior.

In the present work, we used the FENE-P model to predict the behavior of the polymer
solution. This model is computationally stiff. Extreme care has to be taken to find fully
converged numerical solutions. Replicating the work with other polymer models would
further verify the present findings.

In the long term, our goal is exploring the possibility of developing polymer and
polymerlike solutions that respond to and change properties in a controlled manner based
on self-induced flow instabilities. Ideally, developing an experimental setup where polymer
flow could be tested to create a real phase diagram for the fluid dynamics would validate
what the current work promises, controlling the formation of vortices based on the polymer
solution’s properties.
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Appendix A

As discussed within the text, a 10:1 branches-to-channel height ratio for the geometry
under analysis was found to be sufficient to predict fully developed flow before the bend
corner. Figure A1 presents a comparison of the streamwise velocity component at two
different locations. We are comparing profiles at a distance equivalent to 7H and 8H from
the inlet.

Figure A1a presents the comparison for the same elastic vortex case discussed in the
grid convergence analysis outlined in Figure 3; recall that an elastic vortex forms before the
bend corner. The two profiles are nearly identical, indeed indistinguishable. The weighted
average difference between the two profiles is 0.02%.

Figure A1b presents the comparison for the same inertial vortex case discussed in the
grid convergence analysis section; recall that an inertial vortex forms after the bend corner.
The two profiles are also nearly identical. The weighted average difference between the
two profiles is 0.52%.
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Figure A1. Streamwise velocity upstream of the corner bend: (a) elastic vortex for Wi = 1.0, El = 100,
β = 0.1; (b) inertial vortex for Re = 100.

In both cases, it is clear the chosen length to height ratio is sufficient to obtain the fully
developed flow condition before the bend corner. Hence, the inlet boundary condition
should have no influence or effect on the size predictions of both elastic and inertial vortices.

As in Figure A1, Figure A2 presents a comparison of the streamwise velocity compo-
nent at two different locations. We are now comparing profiles at a distance equivalent to
7H and 8H after the bend corner, or 3H and 2H far from the geometry outlet, respectively.

Figure A2a presents the comparison for the same elastic vortex case discussed above.
The two profiles are nearly identical, again indistinguishable. The weighted average
difference between the two profiles is 0.01%.

Figure A2b presents the comparison for the same inertial vortex case discussed above.
The two profiles are again nearly identical. The weighted average difference between the
two profiles is 0.65%.
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In both cases, it is clear the chosen length to height ratio is enough to predict that
the flow will recover completely from the perturbation caused by the vortices before the
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geometry outlet, nearly reaching the fully developed flow condition. Hence, the outlet
boundary condition should also have no influence or effect on the size predictions of either
elastic or inertial vortices.

Appendix B

As discussed within the text, the size (length) of all predicted vortices was determined
numerically by the change in direction of the tangential velocity near the wall. We indicated
that doing this was equivalent to a change in sign of the shear stress or skin friction.

Figure A3 presents a comparison of the wall shear stress and the near wall streamwise
(tangential) velocity. To allow a direct comparison, we normalized both stress and velocity
by the maximum value along the respective walls.

Figure A3a presents the comparison for the same elastic vortex case discussed in
Appendix A. The two profiles cross the zero line at nearly the same x-coordinate location.
The length of the vortex determined by either method is the same with a 0.0% deviation.

Figure A3b presents the comparison for the same inertial vortex case discussed in
Appendix A. The two profiles cross the zero line at almost the same y-coordinate location. The
length of the vortex determined by either method is roughly the same, with a 0.5% deviation.
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Figure A3. Normalized wall shear stress and streamwise velocity near the wall in the vortex region:
(a) elastic vortex (xWss and Vx) for Wi = 1.0, El = 100, β = 0.1; (b) inertial vortex (yWss and Vy) for
Re = 100.

In both cases, elastic and inertial vortices, it is clear that determining the vortex size
by the change in direction of the tangential velocity near the wall is equivalent to a change
in the sign of the wall shear stress. Any deviation between the methods that could be
predicted is extremely small compared to the actual vortex sizes that were calculated.
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