Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Lubricating Condition Monitoring (LCM)
1.2. Diagnostics and Prognostics Using Hidden Markov Model (HMM)
- The state space is prespecified based on experience, assumption, or data segmentation;
- There is no possible update to the state space based on the trend of the degradation data second item;
- The number of parameters is limited;
- The analysis is based purely on the healthy portion of the oil data with minimal inherent nonlinearity.
- RUL prediction requires one or more historical degradation time-series patterns;
- Nonlinearity and nonmonotonicity of degradation trends affect the RUL prediction accuracy;
- Degradation states and state evolution trends cannot be extracted and estimated.
2. Model Framework and Methodology
2.1. Simulation of Degradation Data
- 5.
- Oil replenishment is an external event, and oil consumption is precisely equal to oil replenishment;
- 6.
- Wear production rate is equal to wear rate;
- 7.
- Wear debris are homogeneously distributed in the oil with negligible mixing time;
- 8.
- The system is in the wear-out (abnormal) phase of its life cycle;
- 9.
- Oil is changed every time the WDC reaches a threshold of 40 ppm.
2.2. Hidden Markov Model (HMM)
2.3. Hierarchical Dirichlet Process (HDP)-HMM
2.4. Sticky (HDP)-HMM
3. Model Evaluation
3.1. Hyperparameter Optimization
3.2. State-Space Estimation
4. Prediction of Residual Life
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Mukherjee, P.S.; Misra, N.M. Advancement and current status of wear debris analysis for machine condition monitoring: A review. Ind. Lubr. Tribol. 2013, 65, 3–11. [Google Scholar] [CrossRef]
- Wu, J.; Mi, X.; Wu, T.; Mao, J.; Xie, Y.-B. A wavelet-analysis-based differential method for engine wear monitoring via on-line visual ferrograph. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 1356–1366. [Google Scholar] [CrossRef]
- Wu, T.; Peng, Y.; Wu, H.; Zhang, X.; Wang, J. Full-life dynamic identification of wear state based on on-line wear debris image features. Mech. Syst. Signal Process. 2014, 42, 404–414. [Google Scholar] [CrossRef]
- Cao, W.; Dong, G.; Chen, W.; Wu, J.; Xie, Y.-B. Multisensor information integration for online wear condition monitoring of diesel engines. Tribol. Int. 2015, 82, 68–77. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, T.; Wang, S.; Peng, Z. Wear state identification using dynamic features of wear debris for on-line purpose. Wear 2017, 376–377, 1885–1891. [Google Scholar] [CrossRef]
- Wang, S.; Wu, T.; Wu, H.; Kwok, N. Modeling wear state evolution using real-time war debris features. Tribol. Trans. 2017, 60, 1022–1032. [Google Scholar] [CrossRef]
- Henneberg, M.; Eriksen, R.L.; Jørgensen, B.; Fich, J. A quasi-stationary approach to particle concentration and distribution in gear oil for wear mode estimation. Wear 2015, 324–325, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Henneberg, M.; Eriksen, R.L.; Fich, J. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring. Wear 2016, 362–363, 153–160. [Google Scholar] [CrossRef]
- Tambadou, M.S.; Chao, D.; Duan, C.; Chaoqun, D. Lubrication Oil Anti-Wear Property Degradation Modeling and Remaining Useful Life Estimation of the System Under Multiple Changes Operating Environment. IEEE Access 2019, 7, 96775–96786. [Google Scholar] [CrossRef]
- Yan, L.; Chen, J.; Yu, P.; Yu, Y.; Cao, K.; Huang, S. Model parameter estimation and residual life span prediction of pneumatic diagram pump based on hidden Markov model in intelligent spraying. Intell. Manuf. Robot. 2019, 16, 1729881419874636. [Google Scholar]
- Telford, R.; Galloway, S. Fault classification and diagnostic system for unmanned aerial vehicle electrical networks based on hidden Markov models. IET Electr. Syst. Transp. 2015, 5, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Mba, C.U.; Makis, V.; Marchesiello, S.; Fasana, A.; Garibaldi, L. Condition monitoring and state classification of gearboxes using stochastic resonance and hidden Markov models. Measurement 2018, 126, 76–95. [Google Scholar] [CrossRef]
- Sadhu, A.; Prakash, G.; Narasimhan, S. A hybrid hidden Markov model towards fault detection of rotating components. J. Vib. Control 2017, 23, 3175–3195. [Google Scholar] [CrossRef]
- Choo, K.H.; Tong, J.C.; Zhang, L. Recent applications of Hidden Markov models in computational biology. Genom. Proteom. Bioinform. 2004, 2, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Najkar, N.; Razzazi, F.; Sameti, H. A novel approach to HMM-based speech recognition systems using particle swarm optimization. Math. Comput. Model. 2010, 52, 1910–1920. [Google Scholar] [CrossRef]
- Li, J.; Najmi, A.; Gray, R. Image classification by a two-dimensional hidden Markov model. IEEE Trans. Signal Process. 2000, 48, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Bunke, H.; Roth, M.; Schukat-Talamazzini, E. Off-line cursive handwriting recognition using hidden markov models. Pattern Recognit. 1995, 28, 1399–1413. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, X.; Fang, Z.; Zeng, Y.; Xu, K. High-order Hidden Markov Model for trend prediction in financial time series. Phys. A Stat. Mech. Appl. 2019, 517, 1–12. [Google Scholar] [CrossRef]
- Smyth, P. Hidden Markov models and neural networks for fault detection in dynamic systems. Pattern Recognit. 1994, 27, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Monplaisir, M.H.; Arumugadasan, N.S. Maintenance decision support: Analyzing crankcase lubricant condition by Markov process modelling. J. Oper. Res. Soc. 1994, 45, 509–518. [Google Scholar] [CrossRef]
- Li, X.; Duan, F.; Mba, D.; Bennett, I. Multidimensional prognostics for rotating machinery: A review. Adv. Mech. Eng. 2017, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Mor, B.; Garhwal, S.; Kumar, A. A Systematic Review of Hidden Markov Models and Their Applications. Arch. Comput. Methods Eng. 2021, 28, 1429–1448. [Google Scholar] [CrossRef]
- Du, Y.; Wu, T.; Makis, V. Parameter estimation and remaining useful life prediction of lubricating oil with HMM. Wear 2017, 376–377, 1227–1233. [Google Scholar] [CrossRef]
- Zhu, J.; Yoon, J.M.; He, D.; Bechhoefer, E. Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines. Wind Energy 2015, 18, 1131–1149. [Google Scholar] [CrossRef]
- Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P. A review on lubricant condition monitoring information analysis for maintenance decision support. Mech. Syst. Signal Process. 2019, 118, 108–132. [Google Scholar] [CrossRef]
- Khaleghei, A.; Makis, V. Model parameter estimation and residual life prediction for a partially observable falling system: Parameter estimation and residual life prediction. Nav. Res. Logist. 2015, 62, 190–205. [Google Scholar] [CrossRef]
- Si, X.-S.; Wang, W.; Hu, C.-H.; Zhou, D.-H. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [Google Scholar] [CrossRef]
- Kim, M.J.; Makis, V.; Jiang, R. Parameter estimation for partially observable systems subject to random failure. Appl. Stoch. Model. Bus. Ind. 2012, 29, 279–294. [Google Scholar] [CrossRef]
- Qi, Y.; Paisley, J.W.; Carin, L. Music Analysis Using Hidden Markov Mixture Models. IEEE Trans. Signal Process. 2007, 55, 5209–5224. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.R. Hidden Markov models. Curr. Opin. Struct. Biol. 1996, 6, 361–365. [Google Scholar] [CrossRef]
- Tanwar, M.; Raghavan, N. Lubricating Oil Remaining Useful Life Prediction Using Multi-Output Gaussian Process Regression. IEEE Access 2020, 8, 128897–128907. [Google Scholar] [CrossRef]
- Fox, E.B.; Sudderth, E.B.; Jordan, M.I.; Willsky, A.S. The sticky HDP-HMM: Bayesian nonparametric hidden Markov models with persistent states. In MIT Laboratory for Information and Decision Systems Technical Report; P-2777; MIT LIDS: Cambridge, MA, USA, 2009; pp. 1–59. [Google Scholar]
- Sun, Z.; Zhang, N. Analysis of the Health Status of Railway Vehicle Bearings Based on Improved HDP-HMM. In 2018 5th International Conference on Systems and Informatics (ICSAI), Proceedings of the 2018 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, 10–12 November 2018; IEEE: Washington, DC, USA, 2018; pp. 507–513. [Google Scholar]
- Fan, B.; Li, B.; Feng, S.; Mao, J.; Xie, Y.-B. Modeling and experimental investigations on the relationship between wear debris concentration and wear rate in lubrication systems. Tribol. Int. 2017, 109, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Teh, Y.W.; Jordan, M.I.; Beal, M.J.; Blei, D.M. Hierarchical Drichlet Process. J. Am. Stat. Assoc. 2006, 101, 1566–1581. [Google Scholar] [CrossRef]
- Fox, E.B.; Sudderth, E.B.; Jordan, M.I.; Willsky, A.S. An HDP-HMM for systems with state persistence. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 June 2008. [Google Scholar]
- Sheng, Y. Comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection. Hydrol. Sci. J. 2004, 49, 1–37. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanwar, M.; Park, H.; Raghavan, N. Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework. Appl. Sci. 2021, 11, 6603. https://doi.org/10.3390/app11146603
Tanwar M, Park H, Raghavan N. Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework. Applied Sciences. 2021; 11(14):6603. https://doi.org/10.3390/app11146603
Chicago/Turabian StyleTanwar, Monika, Hyunseok Park, and Nagarajan Raghavan. 2021. "Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework" Applied Sciences 11, no. 14: 6603. https://doi.org/10.3390/app11146603
APA StyleTanwar, M., Park, H., & Raghavan, N. (2021). Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework. Applied Sciences, 11(14), 6603. https://doi.org/10.3390/app11146603