
applied
sciences

Article

A Paired Learner-Based Approach for Concept Drift Detection
and Adaptation in Software Defect Prediction

Arvind Kumar Gangwar 1 , Sandeep Kumar 1,* and Alok Mishra 2,3,*

����������
�������

Citation: Gangwar, A.K.; Kumar, S.;

Mishra, A. A Paired Learner-Based

Approach for Concept Drift Detection

and Adaptation in Software Defect

Prediction. Appl. Sci. 2021, 11, 6663.

https://doi.org/10.3390/app11146663

Academic Editors: Peng-Yeng Yin

and José Carlos Bregieiro Ribeiro

Received: 14 May 2021

Accepted: 9 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Indian Institute of Technology Roorkee,
Roorkee 247667, India; agangwar@cs.iitr.ac.in

2 Faculty of Logistics, Molde University College—Specialized University in Logistics, 6410 Molde, Norway
3 Department of Software Engineering, Atilim University, 06830 Ankara, Turkey
* Correspondence: sandeep.garg@cs.iitr.ac.in (S.K.); alok.mishra@himolde.no (A.M.);

Tel.: +91-7579024426 (S.K.); +47-71195880 (A.M.)

Abstract: The early and accurate prediction of defects helps in testing software and therefore leads to
an overall higher-quality product. Due to drift in software defect data, prediction model performances
may degrade over time. Very few earlier works have investigated the significance of concept drift
(CD) in software-defect prediction (SDP). Their results have shown that CD is present in software
defect data and tha it has a significant impact on the performance of defect prediction. Motivated
from this observation, this paper presents a paired learner-based drift detection and adaptation
approach in SDP that dynamically adapts the varying concepts by updating one of the learners in
pair. For a given defect dataset, a subset of data modules is analyzed at a time by both learners
based on their learning experience from the past. A difference in accuracies of the two is used to
detect drift in the data. We perform an evaluation of the presented study using defect datasets
collected from the SEACraft and PROMISE data repositories. The experimentation results show that
the presented approach successfully detects the concept drift points and performs better compared to
existing methods, as is evident from the comparative analysis performed using various performance
parameters such as number of drift points, ROC-AUC score, accuracy, and statistical analysis using
Wilcoxon signed rank test.

Keywords: concept drift; naive Bayes; random forest; software defect prediction; software
quality assurance

1. Introduction

To minimize software testing efforts by predicting defect-prone software modules
beforehand, many software defect-prediction (SDP) approaches, as described in [1–8], have
been presented so far. These studies showed that SDP models analyze software metrics
data to predict and fix bugs early in the software-development process to improve software
testability and to therefore improve the overall software quality [9].

These prediction models perform well (more accurately) if the software metrics data
analyzed are stable. However, the prediction performance of these models may degrade
if metrics data evolve dynamically over time. This change is affected by the variation in
the underlying properties of the metrics data. This variation in the properties of the data
over time is known as concept drift (CD) [10]. One of the causes of these changes might be
the change in hidden variables of data that cannot be measured directly [11].

SDP aims to ease the allocation of constricted Software Quality Assurance (SQA)
resources optimally via prior prognosis of the defect-proneness of software components [9].
The degradation in performance of prediction due to the presence of CD may significantly
affect the detection of bugs in the software, thereby putting a negative impact on software-
testing efforts and causing an increase in the software-development cost. As a result,
the quality of the software, which is an important factor in the software-development

Appl. Sci. 2021, 11, 6663. https://doi.org/10.3390/app11146663 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4069-5789
https://orcid.org/0000-0002-3250-4866
https://orcid.org/0000-0003-1275-2050
https://doi.org/10.3390/app11146663
https://doi.org/10.3390/app11146663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146663
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146663?type=check_update&version=2

Appl. Sci. 2021, 11, 6663 2 of 24

life cycle process, can degrade. Therefore, one solution of this problem is to first detect
drift in the currently processed data and to therefore handle the detected drift before
further prediction.

Only a couple of studies [10,12–14] have examined CD in SDP. Ekanayeke et al. were
the first to investigate the presence of CD in SDP. They proved that software-defect data are
prone to CD. The recent work by Kabir et al. [13] used an existing Drift Detection Method
(DDM) [15] to detect CD and its related impacts on SDP performance. They evaluated
the statistical significance of this method using the chi-square test with Yates continuity
correction. Bennin et al. [14] recently assessed the existence of CD and its impact on
performance of SDP. These works create the foundation and are the motivational factors
for discovering and handling concept drift in software-defect prediction. Therefore, further
work is required to better detect CD points and to adapt the detected CD in SDP. To the
best of our knowledge, none of them used the paired learner (PL) to discover concept drift
in SDP.

In this paper, we present a dynamic approach based on paired learner to detect and
adapt to the concept drift in software-defect prediction. Dynamic behavior occurs as the
learned experience from the processed modules is used to predict the presence of drift in
unseen modules. We investigate the presence of sudden and gradual drifts in software-
defect data. The presented approach first divides the validation dataset into assorted
separate subsets using a partitioning technique, and then, trains one of the learners using
modules in all subsets exercised previously and the other learner from the modules in the
recent subset only. Afterwards, both learners are used to disjointedly predict on unseen
data modules; then, the difference in predictions of the two learners is compared to a
threshold value for the purpose of detecting drift. If drift is detected, the first learner is
updated to handle the CD.

The following are the contributions of this study:

1. We present a dynamic approach based on paired learner to detect and adapt to CD
in SDP.

2. An exhaustive assessment of the presented method for several defect datasets col-
lected from different open source data repositories is presented. We evaluate the
presented method in terms of the improvement in detection of concept drift points
using the prediction model in SDP.

3. We present a comparative evaluation of the presented method with the base learning
methods used in the study.

In our current study, we aim to answer the following research questions, which were
not answered by previous studies:

1. RQ1—Available studies on CD in SDP are mainly focused on showing the proneness
of defect data to concept drift. Therefore, there is a need to explore how significantly
the concept drift points in numbers are present in defect data used for SDP.

2. RQ2—Studies in other domains of data analysis proved that CD adaptation is required
to prevent performance degradation of the prediction model. No previous studies in
SDP ever used paired learner for CD adaptation in SDP. Therefore, how would the
proposed approach adapt to the CD discovered in SDP?

In this work, we provide a procedure for concept-drift detection and adaptation in
SDP along with a comparative analysis of the number of drift points discovered to answer
question 1. In order to answer question 2, we provide an algorithmic procedure to explain
the CD adaptation procedure and a comprehensive comparative performance analysis of
the results as proof by implementing the window-based approach.

The remainder of this paper is organized into the following sections. The background
of the study is presented in Section 2. Section 3 presents the synopsis of the related studies.
A detailed description of the proposed approach is presented in Section 4. The experimental
settings are presented in Section 5. Section 6 presents the experimentation results and

Appl. Sci. 2021, 11, 6663 3 of 24

discussion. The comparative analysis results are provided in Section 7. Section 8 describes
the threats to validity. Finally, Section 9 concludes the paper.

2. Background
2.1. Definition of Concept Drift

Concept drift has been previously studied by many researchers in different domains.
The authors in [16,17] provided a formal definition of concept drift in terms of the statistical
properties of a target variable over a period of time and the joint probabilities of the feature
vector and target variable. These researchers discovered three sources of CD in terms of the
joint probabilities of a feature vector and a class variable. Using these relations between
probabilities, the authors characterized two types of drifts i.e., virtual and real. In terms of
statistical properties of target variable, we can define CD as follows—

If Dt represents the statistical properties of target variable at time t and Dt+1 represents
the statistical properties of target variable at time t + 1, then there is CD if Dt != Dt+1.

2.2. Concept-Drift Types

The change in concept over a period of time is known as concept drift. This concept
change may happen in four ways, giving four types of CD categories, defined as follows:

1. There is a concept change within a short duration of time (Sudden).
2. An old concept is gradually replaced by a new concept over a period of time (Gradual).
3. A new concept is incrementally reached over a period of time (Incremental).
4. The old concept reoccurs after some time (Reoccurring).

2.3. Concept-Drift Handling

Dong et al. in [18] proved and showed that a well-trained defect-prediction model
may output inaccurate results if the data distribution changes over time. They also proved
that training a prediction model becomes more difficult in such scenarios. This points out
that concept drift must be handled if data distributions change over time. In our current
study, we present an approach to detect and handle concept drift in SDP.

While predicting defects in software, drift could happen when the trained predic-
tor does not perform well due to the presence of a changing concept. Therefore, these
changing concepts must be discovered to update the predictor. Our proposed approach,
as described in the following sections, efficiently discovers the concept-drift points in
software-defect data.

3. Related Work

A few investigations revealing assessments of CD in SDP are found in the literature.
Below, we talk about these works, which are summarized in Table 1.

Rathore et al. [8] evaluated various fault-prediction research studies from 1993 on-
wards. They classified the revision of these studies into three groups: data-quality issues,
fault-prediction techniques, and software metrices. They found that most fault-prediction
studies experimented eith publicly available, object-oriented and process metrics data.
They also found that the performance of fault prediction models vary with datasets used
for prediction.

Hall et al. [7] reviewed the prediction performance of thirty-six defect-prediction
techniques published during 2000 to 2010 in software engineering. The major contributions
of that study were centered on the classification of techniques on the grounds of a prediction
model, software metrics, the dependency of variables, and the prediction performance of
SDP. They proved that prediction methods using naive Bayes and linear regression (LR)
produced better defect predictions than C4.5 and support vector machine. The prediction
results for object-oriented software metrics were found to be better than other LOC or
complexity metrics. On the other hand, they did not provide any taxonomical classification
of SDP models.

Appl. Sci. 2021, 11, 6663 4 of 24

Table 1. Related works.

Feature [12] [10] [13] [14] This Work

Prediction
Model

CPE,
Linear

Regression

48 DT
(CPE), Linear

Regression

DDM, Naive
Bayes,

Decision Tree

NB, NN,
KNN, RF,
XGBoost

Paired
Learners

of NB
and RF

Evaluation
Measure

ROC, AUC
Pearson

correlation,
RMSE, MAE

ROC, AUC
Pearson

correlation,
RMSE, MAE

Accuracy,
Error-rate

Recall,
AUC,

Probability
of false
alarms

Accuracy,
ROC,
AUC

Tested
Dataset

Eclipse,
Mozilla,

OpenOffice,
Netbeans

Eclipse,
Mozilla,

OpenOffice,
Netbeans

jm1
prop

Eclipse,
Mozilla,
Bugzilla,
Columba,

PostgreSQL

KC1,
jm1,
prop

Tools
Used Weka Weka Statistical

Tool R Weka Sci-kit Learn,
Python

Statistical
Test No

Mann–
Whitney

signed rank
test,

Wilcoxon
signed

rank test

Chi-square
test with

Yates
continuity
correction

No
Wilcoxon

signed
rank test

These exhaustive review studies on SDP showed that the SDP models are trained
using the historical metrics data. Thereafter, these models use this learned experience
to predict the number of faults or the presence/absence of faults in the currently used
software modules. This provided the basis for diagnosing the effects of changing data
distributions in SDP processes. Only a few studies in this domain have been presented so
far, as reviewed below:

Ekanayake et al. [10,12] were the first to explore the idea of CD in SDP and provided
the basis for predicting the occurrence of CD in these studies and for inspecting and
evaluating the causes of CD in prediction performance. The authors in those studies
determined that the accuracy of prediction changes when chronological datasets are used
for training a prediction model. They attributed the altering outputs to changes in the
data characteristics. Using an analysis of the files and the defect-fixing procedure of
software programs, the authors noticed that changes made to software files tend to drift
the concept in the distribution of data, accordingly affecting the outcome of the defect
prediction. They evaluated their model on CVS and bugzilla data from four open-source
projects: Mozilla, Eclipse, Open Office, and Netbeans. They discovered that variations in
the bug-fixating process and the coders responsible for editing the implementation codes
are mainly responsible for changes in the quality of the prediction.

Kabir et al. [13] used a CD-detection method proposed by Gama et al. to discover
CD in defect datasets. They applied the Chi-square statistical test with Yates continuity
correction to detect CD. They selected two windows for data analysis, recent and overall,
through Naive Bayes (NB) and Decision Tree (DT) classifiers and used the accuracy measure
to detect drifting points in the data.

A recent study by Kwabena E. Bennin et al. [14] investigated the impact of CD in SDP.
They used defect datasets from five open-source projects and showed that the performance
of prediction models is not stable over time when using historical datasets for training the
static predictor. They suggested designing a tool to detect the CD before training.

Appl. Sci. 2021, 11, 6663 5 of 24

The research in these studies did not provide any solution for handling concept drift
in SDP, and they did not explore paired learner for CD adaptation in SDP. Therefore, in our
current work, we provide the solution to overcoming the listed shortcomings. We proposed
a dynamic approach for detecting CD in SDP. Thereafter, we perform a comprehensive
comparative analysis of the results using the Wilcoxon statistical test.

4. Proposed Approach

In this section, we present the proposed approach to handling CD in software-defect
prediction. The concept of paired learner was previously discussed by Bach and Mal-
oof [19].

4.1. Paired Learner

Bach and Maloof [19] presented their study on a new CD adaptation method named
paired learner. This method consists of two learners (stable and reactive) as a pair, hence
the name paired learner. Stable PL learns from all data samples from beginning or from the
last drift point onward, while the reactive learner utilizes learning from the data samples
from the window in recent time. They used reactive learner to discover drift in the data,
whereas the stable learner was used for prediction. The difference in accuracies of these
two learners along with a threshold parameter value was used to discover drift in two
synthetic and three real-world datasets. Their proposed method analyzes data in online
mode processing one example at a time.

Zhang et al. in [20] presented their study using a long-term stable classifier and a
dynamic classifier to detect both sudden and gradual changes. They presented a paired
ensemble for online learning for CD and class imbalance.

4.2. Proposed Approach Based on PL

In this section, we present a PL-based approach in which batches of data examples
are processed at a time to predict the presence of defects in the batch. The stable learner is
trained using past data, whereas the reactive one always learns from the recent window
only. Both the stable and reactive learners of the pair predict at the same time using
the software metrics data samples in the currently processed window. The difference in
accuracies of the learners in the pair is used to detect drift in the data. If drift is detected,
then it is assumed that the past learned experience of the stable learner is causing harm as
the reactive one performs better. Therefore, it is time to update the stable learner of the
pair. As a consequence, the algorithm forces the stable learner to be updated by making
a new instance of it and therefore training the newly created stable learner with the data
samples in the currently processed window only. This removes the chances of affecting the
performance of the paired learner from the learned experience using old data examples.

Figure 1 below depicts the working of the proposed approach. A batch size of six
samples from defect data was selected to depict the pictorial representation of the concept.
At any point of time, the stable learner (SL) of the pair is trained using all examples from
the beginning or last drift points onward and the reactive learner (RL) is trained using the
examples in recent batch. As soon as a new batch of examples arrives, both SL and RL
make predictions based on their training until then, as described earlier. The approach uses
actual values of a target variable to compute the performances of SL and RL in terms of
correct classifications and misclassifications. As RL and SL predict on the same test data,
the difference in their performances is used to detect drift. If CD is detected, the approach
forces the SL of the pair to be reinitialized by the current learning experience of the RL.
Then, both SL and RL are trained using the examples in the currently tested batch and RL
is made to forget its learning from the previous batch. Therefore, at any point of time, RL’s
learning experience is only from the examples in the recent window.

Algorithm 1 presents the algorithmic procedure of the proposed approach. The input
to the algorithm (line 1) is a collection of example instances from the defect dataset, window
size (k) (line 4), threshold value (θ) (line 5) and the learners (S, R) (line 6,7). Both stable and

Appl. Sci. 2021, 11, 6663 6 of 24

reactive learners of the pair are initially trained (line 12) with the data samples in the first
window. A loop (line 13) repeats the execution until all samples in the dataset are evaluated.
The stable learner predicts (line 14), whereas the reactive one performs prediction (line 15)
using the data samples in the currently processing window. The number of places in
the current window where predictions of the reactive learner are correct whereas that of
the stable learner are incorrect are computed (lines 16–20). This count is then compared
with the user-supplied threshold value for detecting drift. If drift is detected (line 21), it
is handled by updating the stable learner (line 23). Finally, the training experiences of
both the learners are enhanced by the data examples in the currently exercised window
(lines 27–28) before the next iteration proceeds.

The workings of the algorithm are described in Figure A1. This diagram represents
the block diagram showing various steps followed in the proposed approach.

Algorithm 1 PL-based approach for CD detection and adaptation in SDP.

. Inputs to the Algorithm
1: Input: D = (~Xi, Yi)

n
i=1 : n is the size of defect dataset

2: ~Xi: ith vector of independent variables
3: Yi: The value of ith dependent variable
4: k: size of the window
5: θ : threshold for drift detection
6: S: stable learner
7: R: reactive learner
8: Ŷs: k predicted values by stable learner
9: Ŷr: k predicted values by reactive learner

10: C: count to hold miss-classifications, initially 0
11: index: start counter for stable, initially 1

. Initially Train the models using samples in the first window
12: S.train(~Xk

1, Yk
1), R.train(~Xk

1, Yk
1)

13: for i← 2 to n/k do
. Make Classification using stable learner

14: Ŷs← S.classi f y(~Xk∗i
k∗(i−1))

. Make Classification using reactive learner
15: Ŷr ← R.classi f y(~Xk∗i

k∗(i−1))

. Count misclassifications
16: for j← 1 to k do
17: if Ŷs[j] 6= Y[(k ∗ i) + j] and Ŷr[j] == Y[(k ∗ i) + j] then
18: C = C + 1
19: end if
20: end for

. Detecting CD in current batch of data samples
21: if θ < C.makeProportion() then
22: Output concept drift at i and adapt to drift

. New instance of SL
23: S← newStableLearner()
24: index = i
25: end if
26: C = 0

. Train the learners with corresponding set of data
27: R.Train(~Xk∗i

k∗(i−1), Yk∗i
k∗(i−1))

28: S.Train(~Xk∗i
k∗(index−1), Yk∗i

k∗(index−1)

29: end for

Appl. Sci. 2021, 11, 6663 7 of 24

Figure 1. Concept of the proposed approach based on PL.

5. Experimental Settings

The study by Žliobaitė et al. [21] showed that machine learning models can be applied
in software engineering. The study by Lin et al. [22] presented a three-stage process
(Learning–>Detection–>Adaptation) for handling CD. In our presented study, we chose to
use machine learning models for finding and adapting to concept drift while predicting
defects in software-defect datasets.

5.1. Choosing the Base Learners

For our experimentation, we used paired learners of naive Bayes (NB) and random
forest (RF) classifiers (also known as PL-NB and PL-RF). We chose these learners due to the
following reasons:

Naive Bayes has been widely used in the literature [13,19,23]. NB stores the distribu-
tions for every class and for every attribute given the class. It also stores the frequency
counts of each value for symbolic attributes and the sum of the values along with sum
of the squared values for numeric attributes. These distributions are estimated from the
training data. NB computes the prior and conditional probabilities for each class, assuming
that the attributes are conditionally independent. Afterwards, it uses the Bayes theorem to
predict the most probable class as follows:

Let the prior probability for each class Hi be P(Hi).
The conditional probability for each class is P(Ij)/P(Hi); here, Ij is the instance j.
Then, the most probable class H is argmaxHi P(Hi)π

n
j=1P(Ij/Hi) These steps, involve

adding and subtracting counts and values to/from the appropriate distributions, are easy
and efficient to implement for NB.

Appl. Sci. 2021, 11, 6663 8 of 24

Previous studies [1,2] showed that RF outperformed other classification techniques.
The random forest classifier consists of many decision trees operating as an ensemble. Each
tree in the random forest makes a class prediction, and the class with the majority of votes
becomes the model’s prediction. The probability of making correct predictions increases
as the number of uncorrelated trees are increased in the RF model. Random forest is an
efficient algorithm for large datasets. It generates an internal unbiased estimate of the
generalization error as the building of forests progresses.

We also evaluated a few available learners including decision tree (DT), K-nearest
neighbor (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM)
used in the defect-prediction literature. While predicting the defects in a software dataset,
the accuracy scores reported by these learners are used to select two top-performing
classifiers (NB and RF) for our experimental study.

5.2. Choosing the Dataset

We chose the versions of publicly available NASA (JM1 and KC1) and Jureczko
PROP datasets because they have already been used in past research [1,3,13,24–29] on
CD and the Jureczko datasets has been better explained by Jureczko in [30]. We ran the
proposed methods PL-NB and PL-RF on these selected defect datasets one by one and
computed their performance measures (accuracy and area under the ROC curve). We
summarized the experimentation results in both tabular and graphical representations
for better understanding.

Summary of Datasets

We conducted our experiments on the datasets collected from the PROMISE and
SEACraft online public repositories. The JM1 and KC1 datasets consist of Lines of Code,
McCabe’s [31], and Halstead metrics [32] attribute data, whereas the prop dataset consists
of C & K object-oriented metrics [33] attribute data. The McCabe and Halstead metrics
represent the measurements of complexity of the code modules in different forms, whereas
the Lines of Code metrics are what the name suggest. McCabe in [31] presented a metric
set that measures the code module’s complexity by computing the possible paths in the
program. Furthermore, it used cyclomatic complexity as the main metric in this category
and demonstrated that, as the number of branches (paths) in the program increases, the cy-
clomatic complexity also increases. McCabe focused his intention to deliver a measuring
metric that could tell the developers that their software code is over complicated and
should be segmented into smaller modules. McCabe suggested to further break-up the
software module if its cyclomatic complexity exceeds ten. These metrics were later used for
defect prediction in software modules with the reason that modules with higher complexity
more probably carry defects. On the other hand, Halstead metrics originated in [32] and
are based on the readability and operations (operators and operands) complexities of the
modules. These measurements are used in defect prediction with the notion that, if a
program module is hard to read, it will be more likely to carry defects. Eventually, LOC
metrics along with the number of comments are used to predict defects in software with
the idea that longer modules are more likely to carry defects.

The Chidamber & Kemerer object-oriented metrics suite originated in [33] and con-
sists of six metrics (WMC, DIT, NOC, CBO, RFC, and LCOM1) computed for each class.
The weighted method count (WMC) is simply a number representing the count for methods
of a class and is a measure of how much effort and time is required to develop the class.
Researchers later found that a high value of WMC leads to more defects. The depth of
inheritance tree (DIT) represents the maximum inheritance path from the derived class up
to the root class. Deep inheritance trees stipulate more design complexity. A recommended
DIT value is five or less. A high value of DIT has been found to add more defects [33].
Number of Children (NOC) represents the count for immediate child classes derived from
the base. NOC is a measure of the breadth of the class hierarchy. Possibly due to reuse,
a high value of NOC has been found to indicate less defects [33]. Coupling between objects

Appl. Sci. 2021, 11, 6663 9 of 24

(CBO) represents the number of classes to which a class is coupled. A high value of CBO is
not considered good in programming and has been found to indicate defect proneness [33].
Response for a class (RFC) represents the number of methods in a response set of a class,
which is the set of methods that is executed in response to a message received by an object
of that class. A large value of RFC indicates that the class is more complex and harder
to understand and has been found to indicate more defects. A high value of the lack of
cohesion of methods (LCOM) metric also indicates more defects.

Catal and others in [2] categorized the metrics used in software-defect prediction
into six groups: quantitative value-level metrics, process-level metrics, component-level
metrics, file-level metrics, class-level metrics, and method-level metrics. The McCabe and
Halstead metrics used in this study correspond to the method-level metrics group, whereas
C & K object-oriented metrics correspond to the class-level metrics group. The study in [2]
reported that the WMC, CBO (coupling between object), RFC (response for a class), LCOM
(lacks of cohesion of methods), and LOC (lines of code) metrics are very useful in predicting
defect-proneness in software modules. A more detailed description of the metrics can be
found in [32].

Tables 2 and 3 present the summary of the attributes used in the selected datasets for
our experiment.

Table 4 represents the summary selected datasets for our experiment. There are 22
attribute features in the NASA datasets and 21 attribute features in the Jureczko datasets.
The last attribute in these datasets is the target feature.

Table 2. Attribute details of the NASA datasets.

Sr. No. Metric Type Description Attribute Category

1 McCabe’s cyclomatic
complexity v(g) numeric

2 McCabe’s design
complexity iv(g) numeric

3 McCabe’s essential
complexity ev(g) numeric

4 McCabe’s line count
of code loc numeric

5 Halstead count of
blank lines lOBlank numeric

6 Halstead count of lines
of comments lOComment numeric

7 Halstead difficulty D numeric

8 Halstead effort E numeric

9 Halstead effort
estimate b numeric

10 Halstead intelligence I numeric

11 Halstead line count lOCode numeric

12 Halstead program
length L numeric

13 Halstead time
estimator T numeric

14 Halstead total Optrs
+operands N numeric

15 Halstead volume v numeric

Appl. Sci. 2021, 11, 6663 10 of 24

Table 2. Cont.

Sr. No. Metric Type Description Attribute Category

16 LOC LOC lOC & C numeric

17 Operator unique
operators uniq_Op numeric

18 Operands unique
operands uniq_Opnd numeric

19 Operator total ops total_Op numeric

20 Operands total opnds total_Opnd numeric

21 Branch
Count

BC of the
flow graph bcount numeric

22 Class
Variable

defect/ no
defect T/F Boolean

Table 3. Attribute details of the Jureczko prop dataset.

Sr No Metric Description Attrib Category

1 C & K weighted
method count wmc numeric

2 C & K depth of
inheritance dit numeric

3 C & K number of
children noc numeric

4 C & K coupling
between objects cbo numeric

5 C & K response for
a class rfc numeric

6 C & K lack of cohesion
in methods lcom numeric

7 Martin’s afferent
couplings ca numeric

8 Martin’s efferent
couplings ce numeric

9 QMOOD number of
public methods npm numeric

10 H-S lack of cohesion
in methods lcom3 numeric

11 LOC line of code loc numeric

12 QMOOD data access dam numeric

13 QMOOD measure of
aggregation moa numeric

14 QMOOD
measure of
functional
abstraction

mfa numeric

15 QMOOD cohesion among
methods cam numeric

Appl. Sci. 2021, 11, 6663 11 of 24

Table 3. Cont.

Sr No Metric Description Attrib Category

16 C & K
Extn.

inheritance
coupling ic numeric

17 C & K
Extn.

coupling
between
methods

cbm numeric

18 C & K
Extn.

average method
complexity amc numeric

19 McCabe’s max cyclomatic
complexity max_cc numeric

20 McCabe’s avg cyclomatic
complexity avg_cc numeric

21 Class
Variable

number of
defects bug numeric

Table 4. Summary of datasets.

Dataset Modules in Dataset Faulty Modules % of Faulty Modules

NASA jm1 9593 1760 18.3%

NASA KC1 2109 326 15.5%

prop V4 3022 214 07.1%

prop V40 4053 337 08.3%

prop V44 4620 295 06.4%

prop V85 3077 942 30.6%

prop V192 3598 85 02.4%

prop V236 2231 76 03.4%

prop V256 1964 625 31.8%

prop V318 2395 364 15.2%

prop V355 2791 924 33.1%

5.3. Choosing the Window

Previous studies [13,16,17] on CD have proven that the selection of an appropriate
window size is a challenging task because, in scenarios, a small window size may accu-
rately reflect the current data distribution and may identify sudden concept changes more
accurately, but it worsens the performance of the system in stable periods. In contrast, a
large window improves the performance of the system in stable periods, but its reaction is
slow in changing concepts. The training window size can be fixed or variable.

We selected the best fixed, small window based on the ROC-AUC scores and accuracy
of prediction for each dataset after repeatedly experimenting with the procedure for differ-
ent values of the window sizes starting from 100 to 500 samples; refer Table 5. We were
successful in detecting the sudden drift in the experimented software defect data.

Appl. Sci. 2021, 11, 6663 12 of 24

Table 5. ROC-AUC scores of the models for various window sizes.

Dataset Window Size Basic-NB PL-NB Basic-RF PL-RF

jm1 100 * 0.5099 0.5694 0.8356 0.8716

jm1 200 0.5110 0.5318 0.8308 0.8636

jm1 300 0.5108 0.5580 0.8207 0.8611

jm1 400 0.5105 0.5311 0.8201 0.8437

jm1 500 0.5130 0.5239 0.8053 0.8339

KC1 100 0.9347 0.9516 0.8688 0.9185

KC1 200 0.9366 0.9575 0.8466 0.8908

KC1 300 0.89 0.9063 0.838 0.8671

KC1 400 * 0.9522 0.9722 0.8193 0.8421

KC1 500 0.951 0.9563 0.8409 0.8589

P-V4 100 0.601 0.592 0.5952 0.59

P-V4 200 0.6065 0.5892 0.5996 0.5856

P-V4 300 0.6054 0.6398 0.5843 0.5860

P-V4 400 0.6074 0.6485 0.5803 0.5851

P-V4 500 * 0.5977 0.6323 0.5754 0.5760

P-V40 100 * 0.658 0.6794 0.6454 0.6513

P-V40 200 0.6275 0.6506 0.6078 0.6096

P-V40 300 0.6232 0.6454 0.5996 0.5985

P-V40 400 0.5839 0.5909 0.565 0.5601

P-V40 500 0.5834 0.5817 0.5411 0.5411

P-V44 100 0.5986 0.6183 0.643 0.6431

P-V44 200 0.5974 0.6176 0.6248 0.6229

P-V44 300 0.6037 0.5883 0.6202 0.619

P-V44 400 * 0.5994 0.5989 0.6276 0.6314

P-V44 500 0.6019 0.6059 0.6329 0.6139

P-V85 100 0.5742 0.5733 0.6977 0.6902

P-V85 200 0.5715 0.5615 0.6928 0.6949

P-V85 300 0.5669 0.5666 0.6915 0.6968

P-V85 400 * 0.5579 0.5877 0.6295 0.6309

P-V85 500 0.5695 0.5834 0.7063 0.7084

P-V236 100 0.6346 0.6091 0.5783 0.5721

P-V236 200 0.6439 0.6291 0.5543 0.5681

P-V236 300 0.5977 0.5977 0.5833 0.5836

P-V236 400 0.6401 0.6401 0.5516 0.5698

P-V236 500 * 0.6264 0.635 0.5845 0.5852

P-V318 100 0.6653 0.6694 0.702 0.6834

P-V318 200 0.6966 0.6826 0.7232 0.7149

P-V318 300 0.7007 0.6987 0.719 0.6871

P-V318 400 * 0.6879 0.6992 0.7198 0.7352

P-V318 500 0.7152 0.7152 0.6839 0.6951
Note: * denotes selected window.

Appl. Sci. 2021, 11, 6663 13 of 24

5.4. Performance Evaluation Measures

AUC-ROC: We used the area under the ROC curve to compare the performance of
the proposed approach. The accuracies of the PL-NB and PL-RF are computed based on
the true and false positive and negative values of prediction. Additionally, the number of
misclassifications by the stable learner in the window where the corresponding reactive
learner made correct classifications along with a user specified threshold value is used to
detect CD. Accuracy alone is not used for drift detection to avoid mis-detection in scenarios
where the stable learner’s predictions are correct and reactive learner’s predictions are
wrong for the first half of the window whereas the reactive learner’s predictions are correct
and stable learner’s predictions are wrong for the next half of the window. In such a
scenario, as the reactive learner’s accuracy increases and the stable learner’s accuracy
decreases because of a changing concept, the accuracies of both the stable learner and
the reactive learner are 50%. Hence, the accuracy measure could not detect the changing
concept in such a situation. To avoid such misclassifications, the second proposed measure,
i.e., the difference in misclassifications of two learners, is used to detect CD.

The area under the ROC curve corresponds to the confidence in positive classifications.
As none of the true positive and false positive rates consider the number of true negatives,
the classifier performance is not impacted by the skewed class distribution. Therefore, we
chose to use these rates to evaluate the performance of the classification in spite of the
accuracy measure, which was the same method employed by Lessmann et al. in [1].

TPR =
TruePositives
TotalPositives

,

FPR =
FalsePositives
TotalNegatives

Cost–Benefit Analysis: To determine the cost-effectiveness of SDP models, a cost–
benefit analysis of the employed CD detection and adaptation technique is undertaken.
In the context of SDP, Wagner first developed the concept of a cost–benefit analysis [34].
In another real-time application for IoT devices, Anjos et al. [35] proposed a dynamic cost
model to minimize the energy consumption and task execution time to meet the restricted
QoS requirements and battery limitations. Using the outputs of SDP models in conjunction
with the software-testing process in the software development life cycle, this analysis
estimates the amount of testing effort and cost that may be saved. To estimate the defect
removal cost of a certain defect prediction model, the analysis model considers the defect
removal cost and the defect identification efficiency of different testing phases generated
from case studies of different software organizations. Kumar et al. [36] looked into how
a cost–benefit analysis could be used in SDP. We used the model offered in our study to
assess the cost-effectiveness of the CD-detection and -adaptation approach.

When defect-prediction results are combined with the software-testing process, Equa-
tion (1) provides the estimated defect-elimination cost (Ec). The Ec value is computed
on the basis of the base model results. After executing the proposed CD-detection and
-adaptation approach, another E’c value is computed using the same equation. The nor-
malized defect-removal cost after the application of the CD-adaptation approach and its
interpretation is shown in Equation (2). The phenomenon of normalization has been previ-
ously presented by Silva et al. [37] for the computation of normalized RMSE in execution
of the hybrid control method for exoskeletons.

Ec = Cinitial + Cu ∗ (FP + TP) + δi ∗ Ci ∗ (FN + (1− δu) ∗ TP)

+ δs ∗ Cs ∗ ((1− δi) ∗ (FN + (1− δu) ∗ TP))

+ (1− δs) ∗ C f ∗ ((1− δi) ∗ (FN + (1− δu) ∗ TP)) (1)

NormCost =
E′c
Ec

(2)

Appl. Sci. 2021, 11, 6663 14 of 24

when:

(NormCost >= 1) = CD Detection and Adaptation is not useful
(NormCost<1) = CD Detection and Adaptation is useful

The definitions of the notations used are the same as those specified in one of the
studies by [36]:

“Ec: Estimated software defect elimination costs based on software defect predic-
tion results

NormCost: Normalized defect removal cost of the software when software defect
prediction along with CD handling is used

Cinitial : Initial setup cost for using software defect-prediction model (Ci = 0)
Cu : Normalized defect removal cost in unit testing
Cs : Normalized defect removal cost in system testing
C f : Normalized defect removal cost in field testing
Ci : Normalized defect removal cost in integration testing
FP: False positives in numbers
FN: False negatives in numbers
TP: True positives in numbers
δu : Defect identification efficiency of unit testing
δs : Defect identification efficiency of system testing
δi : Defect identification efficiency of integration testing”
The defect identification efficiency of various testing phases is defined as staff hour

per defect and is based on research by Jone [38]. In our study, we used the median of
Jone’s defect identification efficiency estimates taken as δu : = 0.25, δs : = 0.5, and δi : = 0.45.
The normalized defect-removal cost is derived from Wagner’s work [39,40] and is de-
fined as a staff hour per defect. We used the median of these data values in our study.
C f : = 27.6, Cs : = 6.2, Cu : = 2.5, and Ci : = 4.55 are the values used. The study [36] goes
into great detail about the cost–benefit analysis model that was used.

5.5. Statistical Test

Wilcoxon statistical test [41] is adopted to discover the statistically significant dif-
ference between the performances of the two classifiers over time. This test determines
whether two or more sets of pairings are statistically significantly different from one another.
This test is based on the assumption of independence, which means that the paired obser-
vations are picked at random and separately. In our analysis, the two sets of values for the
class variable are determined independently by two different learners. Therefore, Wilcoxon
signed rank test is suitable to discover the statistical significant difference between the
compared sets of values.

To test the hypothesis, Wilcoxon signed rank test is executed with the zero_method,
alternative, correction, and mode parameters in default settings. A significance level of
0.05 with a confidence interval of 95% is chosen. That is, for all of the experiments, the null
hypothesis is that there is no significant difference between the two data distributions
where the observed significance level is greater than or equal to 0.05. Otherwise, the null
hypothesis is rejected and the alternate hypothesis is assumed, declaring the detection of
concept drift.

The null hypothesis and the alternate hypothesis for the Wilcoxon statistical test may
be stated as follows:

Null Hypothesis H0: There is no difference between the distributions of the two populations.
Alternate Hypothesis Ha: There is significant difference between the distributions of

the two populations.
The p-values less than alpha (0.05) indicate that the Wilcoxon test rejects the null

hypothesis and accepts the alternate hypothesis.

Appl. Sci. 2021, 11, 6663 15 of 24

5.6. Experimental Procedure

This experimentation describes the presence of CD in software-defect datasets. It also
reports the improvements in prediction performance as part of handling the discovered
CD. Around 9600 sample instances from the NASA jm1 dataset, 2100 from the NASA KC1
dataset, and 27,750 from the Jureczko prop dataset are used for our experimentation. For
the jm1 and prop datasets, initially 500 samples are used to train the model. Thereafter,
samples in chunks of 500 are used to detect and handle CD in subsequent runs. For the KC1
dataset, chunks of 100 sample instances are used for the experiment following a similar
process. We trained the model by taking all of the samples in one window and the only
recently used chunk in another window. We iterated this process until all data samples
were experimented upon. We used paired learners of naive Bayes and random forest
classifiers for the prediction. A threshold value of 95% confidence interval along with
the predictions by stable and reactive learners of the pair was used to detect the change
in concept.

Initially, we executed the base versions of the NB and RF classifiers to compute the
accuracy and ROC-AUC scores.

Secondly, we executed the paired versions of NB and RF to find the concept-drift points.
Finally, we updated the stable learner of the pair to adapt the detected concept drift

and computed the accuracy and ROC-AUC scores using the paired versions.

6. Experimentation Results and Discussion

This experiment first found out the presence of CD in our studied software defect
datasets using the proposed PL based method. Afterwards, we handled the discovered
drift by updating the prediction model. The error rate between the predictions by stable
and reactive learners of every experimental run was monitored to investigate the existence
of drift. Table 6 presents the accuracy and ROC-AUC scores obtained after experimenting
the PL based method for the jm1, KC1, and 9 versions of the prop datasets.

We monitored the error rate between the classifications using the stable learner on the
overall distributions and using the reactive learner on the recent distribution to monitor
the changes in recent data distribution. The significant change in error rate between the
two distributions indicate the change in concept.

Changes in concept were detected in the experimented prop and jm1 & KC1 defect
datasets, discovering drift. Then, the prediction models were updated and obtained better
prediction performances, as shown in Table 6.

Table 6. Accuracy and ROC-AUC scores.

Dataset
Window

Size in Terms of
No of Samples

Accuracy AUC Score Accuracy AUC Score

NB RF NB RF PL PL PL PL
NB RF NB RF

jm1 100 0.81 0.79 0.50 0.83 0.80 0.87 0.56 0.87

KC1 400 0.90 0.64 0.95 0.81 0.94 0.68 0.97 0.84

P-V4 500 0.84 0.92 0.59 0.58 0.81 0.92 0.63 0.58

P-V40 100 0.77 0.92 0.65 0.64 0.78 0.92 0.67 0.65

P-V44 400 0.87 0.92 0.59 0.61 0.83 0.92 0.59 0.62

P-V85 400 0.66 0.73 0.55 0.63 0.67 0.74 0.58 0.63

P-V192 100 0.71 0.98 0.53 0.62 0.78 0.98 0.55 0.62

P-V236 500 0.87 0.97 0.62 0.57 0.89 0.97 0.63 0.57

P-V256 500 0.69 0.85 0.65 0.81 0.69 0.84 0.65 0.82

P-V318 400 0.83 0.87 0.68 0.71 0.84 0.88 0.69 0.73

P-V355 400 0.69 0.81 0.55 0.76 0.70 0.80 0.56 0.76

Appl. Sci. 2021, 11, 6663 16 of 24

6.1. Experimentation on NASA Defect Datasets

This section presents the results obtained after conducting experiments on the NASA
jm1 and KC1 defect datasets collected from the PROMISE online public data repository.
There are 22 features in the dataset, of which 21 are used to represent feature vectors and
22 are used as class variables. A window size of 500 samples for jm1 and 100 samples for
the KC1 dataset was used for the experiment.

The AUC-ROC curves, as shown in Figure 2a,b, showed that the ROC-AUC scores
of PL-NB and PL-RF are better than the ROC-AUC scores of base NB and base RF (Refer
Table 6), respectively. That is to say, the application of PL for CD adaptation in SDP showed
significant improvement in the performance of the prediction model.

(a) ROC Curve of jm1 dataset (b) ROC Curve of KC1 dataset

Figure 2. ROC curves of NB and PL-NB, and RF and PL-RF for jm1 and KC1 datasets.

6.2. Experimentation on Jureczko Prop Defect Datasets

In this section, we presented the results obtained after conducting experiments on
versions of the Jureczko ’prop’ dataset collected from the SEACraft [8] online public
repository. There are 21 features in the dataset, of which 20 are used to represent feature
vectors and 21 are used as class variables.

The AUC-ROC curves, as shown in Figures 2a,b and 3a–i, showed that the ROC-AUC
scores of PL-NB and PL-RF are better than the ROC-AUC scores of base NB and base RF
(Refer Table 6), respectively. That is to say, the application of PL for CD adaptation in SDP
showed significant improvement in the performance of the prediction model.

6.3. Cost–Benefit Analysis for Realistic Applications of the Proposed Approach

SQA is a process that runs concurrently with software development. It aims to improve
the software-development process so that issues can be avoided before they become a big
problem. SQA is a form of umbrella operation that covers the entire software-development
process. Testing is the process of using every function of a product in order to ensure that
it meets quality-control requirements. This might include putting the product to use, stress
testing it, or checking to see if the actual service results match the predicted ones. This
method detects any flaws before a product or service goes live [40].

Programming testing is a fundamental activity, and it is over-the-top expensive to test
the software defects altogether. An investigation on the Cost of Software Quality (CoSQ)
model announced that the expense of software defects in the USA is 2.84 trillion dollars
and, furthermore, influenced more than four billion individuals on the planet [42]. Thus,
the early identification of programming flaws can be helpful for computer programmers
to diminish the expense and time of the production of a software [26]. In Google, the half
code base changes each month. Thus, Google utilizes a code-audit strategy for all new
source codes to guarantee a solid code base. Nonetheless, Google engineers work on more
unpredictable issues ordinarily. In this way, it is difficult to audit all new source codes; even
some source codes function admirably. To determine these issues, specialists utilize defect

Appl. Sci. 2021, 11, 6663 17 of 24

forecasts to distinguish the problem areas in codes and caution the product designer to fix
the deficient module [43]. A few analysts likewise recommended that field bug forecasts
can diminish the dangers related to field faults for programmers and shoppers on a huge
scope industry such as ABB Inc. [44].

(a) ROC Curve of prop V4 dataset (b) ROC Curve of prop
V40 dataset

(c) ROC Curve of prop
V44 dataset

(d) ROC Curve of prop
V85 dataset

(e) ROC Curve of prop
V192 dataset

(f) ROC Curve of prop
V236 dataset

(g) ROC Curve of prop
V256 dataset

(h) ROC Curve of prop
V318 dataset

(i) ROC Curve of prop
V355 dataset

Figure 3. ROC curves of NB and PL-NB, and RF and PL-RF for prop defect datasets.

It is critical for a software manager to know whether they can depend on a bug
prediction model as a wrong prediction of the number or the location of future bugs can
lead to problems [10]. Concept drift is inherent in software-defect datasets, and its existence
thereafter degrades the performance of prediction models [13]. The concept drift should be
considered by software quality-assurance teams while building prediction models. Existing
techniques, such as predicting co-evolution based on historical data, are weakened by the
concept drift effect as software evolves [45]. Yu et al. [46] studied software co-evolution

Appl. Sci. 2021, 11, 6663 18 of 24

based on both component dependency and historical data in order to discover other
methods that can overcome the weakness of existing techniques. Recently, Wang et al. [47]
proposed a concept drift-aware temporal cloud service API recommendation approach
for composite cloud systems to adapt user’s preference drifts and the provide effective
recommendations to composite cloud system developers. Additionally, Jain and Kaur [48]
investigated distributed machine learning-based ensemble techniques to detect the presence
of concept drift in network traffic and to detect network-based attacks.

Cost–Benefit Analysis Results

The normalized cost values (NormCost) of the basic and proposed approach are
presented in Table 7. The NormCost value from the respective PL for each dataset is
reported in the table, and values less than 1.0 indicate that the suggested approach is
cost-effective. This means that, if SDP results are combined with CD adaptation, overall
testing costs and time can be reduced. Values greater than 1.0, on the other hand, indicate
that CD adaptation in SDP in that scenario is ineffective at reducing testing costs and effort;
therefore, it is recommended that CD adaptation in SDP models be avoided in such cases.
In contrast, the value of 1 for NormCost indicates that the PL-based technique could not
reduce the testing costs and efforts. From Table 7, it can be seen that the normalized cost
values of PL-NB are less than 1 for the KC1, V40, V192, V236, and V318 datasets. This
proves that, by applying the PL-NB approach for SDP, overall testing costs and efforts can
be reduced on these datasets. Similarly, PL-RF showed improvements in costs for the jm1,
KC1, V40, V85, V192, V236, and V318 datasets.

Table 7. Normalized costs.

Dataset Value of NormCost for
PL-NB

Value of NormCost for
PL-RF

jm1 1.02 0.91 *

KC1 0.59 * 0.91 *

P-V4 1.06 1

P-V40 0.99 * 0.99 *

P-V44 1.07 1

P-V85 1 0.99 *

P-V192 0.80 * 0.99 *

P-V236 0.93 * 0.99 *

P-V256 1 1

P-V318 0.98 * 0.99 *

P-V355 1 1
Note: bold with * denotes, the model is cost effective.

7. Comparative Analysis

Comparative analysis primarily involves comparing the performance of the proposed
PL-based approach with existing approaches in terms of the number of drift points for
defect datasets. The work in [13] only presented the detection of CD points using the chi-
square statistical test in software-fault datasets. A comparison of the proposed approach
with the work in [13] is shown in Table 8.

Appl. Sci. 2021, 11, 6663 19 of 24

Table 8. Comparative analysis with the existing CD-detection method.

Approach Dataset Used Number of Drift Points Detected

[13]—NB jm1 2

[13]—DT jm1 2

PL—NB jm1 23

PL—RF jm1 34

[13]—NB prop 5

[13]—DT prop 4

PL—NB prop 35

PL—RF prop 3

PL—NB KC1 1

PL—RF KC1 2

We also performed a comparison of the proposed approach with similar work in
reference to various parameters, as shown in Table 9.

From the results shown in Tables 8 and 9, it can be deduced that the proposed PL-based
approach performed significantly better than existing works for the detection of concept-
drift points in software-defect datasets. Furthermore, to observe the accuracy of PL-based
approach in handling the CD, we applied the base versions of naive Bayes and random
forest classifiers with the same settings as their paired versions on the datasets selected
for the experiments and computed the prediction performances of the base methods in
terms of ROC-AUC score and accuracy measures. We then compared the performances
of PL-NB and PL-RF with that of the performances of base NB and base RF classifiers,
respectively. We performed a comparative analysis using the experimentation results
reported in Section 5.

Table 9. Comparison with similar methods.

Work Aim Dataset
Used

Evaln
Measures

Used

Techn-
iques
Used

Results in terms
of No. of

Drift Points

[12]

To show that
Software
Systems

are subject
to CD

Eclipse,
Netbeans,
Mozilla,

Open Office

ROC-AUC,
RMSE,

MAE, PC,
p-value

Weka’s
J48

Change
Detected

[10]
To find

existence
of CD

Eclipse,
Netbeans,
Mozilla,

Open Office

ROC-AUC,
RMSE,
MAE,

PC, p-value

Weka’s
J48

Detected
Changing
Periods in

Software Projects

[13] CD
Detection

jm1,
prop

Error Rate
Based On

TP, TN
FP, FN

NB, DT
and Chi-
Square

Test

1 :-NB(jm1)
1 :-DT(jm1)

4 :-NB(prop)
5 :-DT(prop)

PL
based

method

CD
Detection

and
Handling

jm1,
KC1,
prop

Accuracy,
ROC-AUC,

No of
Drift Points

NB, RF
and

PL-NB,
PL-RF

23 :-PL-NB(jm1)
34 :-PL-RF(jm1)

35 :-PL-NB(prop)
3 :-PL-RF(prop)
1 :-PL-NB(KC1)
2 :-PL-RF(KC1)

7.1. Analysis of Results

We performed a statistical analysis of the results using Wilcoxon statistical test [41].
To evaluate the presented approach, we executed the statistical test on accuracy scores from

Appl. Sci. 2021, 11, 6663 20 of 24

the NASA and Jureczko datasets using the base NB and PL-NB, and base RF and PL-RF
approaches. These test results, presented in Table 10, showed that the accuracy scores of
base and paired learners of the NB and RF classifiers, previously presented in Table 6 in
Section 5, are statistically significant.

Table 10. Wilcoxon hypothesis test results.

NB and PL-NB RF and PL-RF

p-value 0.007 0.027

Test Statistic 0 0

Critical Value 11alpha=0.05,n=11

Sig. Diff. Yes Yes

The Wilcoxon signed rank test statistic is defined as small W+ (sum of positive ranks)
and W− (sum of the negative ranks). In our experimental results, all of the values of the
AUC scores for PL-NB and PL-RF are higher than or equal to the corresponding AUC
scores for basic NB and basic RF. Therefore, the Wilcoxon signed rank test resulted in 0
value of the test statistic.

7.2. Answers to Questions

In this work, we applied the PL approach in SDP and computed ROC-AUC scores
for basic as well as paired learners. We selected two NASA datasets and nine versions
of the Jureczko prop defect datasets from public online data repositories. We answer the
questions raised in Section 1 by referring to the results posted in previous sections.

RQ1-How significantly are the concept-drift points present in defect data used for SDP?
The software-defect data presented in Table 4 comprises both dependent and inde-

pendent variables of categorical software metrics data collected from various software
projects. A defect-prediction model predicts the value of a dependent variable by analyzing
the data of the independent variables. The presence of CD in data may lead to worse
predictions and therefore may downgrade the model’s performance. Paired learners of
NB and RF were used for detecting the presence of CD in defect data. The experimental
results presented in Table 8 show that the PL-based approach has significantly detected
more drift points compared to a similar approach [13]. To cope with CD, the PL-based
method described in Section 4 updates the stable learner of the paired learner; refer to
Algorithm 1 and Figure A1 for details.

RQ2-How would the proposed approach for CD adaptation in SDP impact the performance of
the defect prediction model?

The ROC-AUC measure was used as a performance-evaluation parameter in our
current study. The performances of the base learner and its corresponding paired learner
on the NASA and Jureczko datasets are presented in Table 6 and in Sections 6.1 and 6.2.
Running the Wilcoxon test on accuracy scores of NB and PL-NB resulted in a rejection of
the null hypothesis, with a corresponding p-value of 0.007, whereas that of RF and PL-RF
also rejected the null hypothesis, with a corresponding p-value of 0.027. The hypothesis
test results are presented in Table 10.

8. Threats to the Validity

This section describes the threats to the validity of the experimental analyses presented
in the current study.

For our experiment, we selected publicly available defect datasets consisting of a
large range of metrics data. These datasets have been highly referenced by many previous
studies in SDP [13,25–29]. These studies inspired us to believe the correctness and selection
of the datasets. We proved that PL outperformed its basic learner on the same data. We
conducted our experiments using models available in the sci-kit learn machine learning

Appl. Sci. 2021, 11, 6663 21 of 24

library in python. The aim of our study was to determine CD in software-defect datasets
and its adaptation thereon, showing improvements in prediction performance. As we
selected publicly available datasets, the results of the study must be considered in this
domain only. The performance of the studied method may vary based on the chosen
dataset size, window size, and threshold value.

9. Conclusions

This paper presents a PL-based approach to detect and adapt CD in the jm1, KC1, and
prop software defect datasets. The proposed approach was evaluated and validated using
the model’s training and predictions following a window-based approach.

The experiments performed assessed the model’s response for the accuracy of predic-
tion along with the presence or absence of drift points. The number of drift points detected
by PL-NB and PL-RF are 23 and 34 for the jm1 dataset, 36 and 5 for the prop dataset,
and 1 and 2 for the KC1 dataset, respectively, which are better than the number of drift
points reported by a similar study. The adaptation of concept drift in the experimented
defect datasets showed significant improvement in the ROC-AUC scores by PL-NB and
PL-RF over the base NB and base RF models, as evidenced by the Wilcoxon statistical test
results presented in Table 10. For reference, the AUC scores, as presented in Table 6, by NB
and PL-NB on the jm1 and KC1 datasets are 0.50 and 0.56, and 0.95 and 0.97, respectively.
In contrast, the ROC-AUC scores by RF and PL-RF on these datasets are 0.83 and 0.87, and
0.81 and 0.84, respectively. This showed that the use of the PL-based approach for CD
detection and adaptation in software-defect prediction shows significant improvement in
the performance of the prediction model.

As future work, we intend to extend our current study by exploring the paired
learners of more classifiers. Another consideration is an assessment of the performance of
the proposed approach on real-world software-defect datasets.

Author Contributions: Conceptualization, A.K.G. and S.K.; methodology, A.K.G. and S.K.; software,
A.K.G.; validation, A.K.G.; formal analysis, A.K.G. and S.K.; investigation, A.K.G.; resources, A.M.
and S.K.; data curation, A.K.G.; writing—original draft preparation, A.K.G. and S.K.; writing—
review and editing, S.K. and A.M.; visualization, A.K.G.; supervision, S.K.; project administration,
S.K.; funding acquisition, A.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this study are publicly available at http://promise.
site.uottawa.ca/SERepository/datasets-page.html (accessed on 15 March 2021).

Acknowledgments: The authors acknowledge Santosh S. Rathore, Assistant Professor, IIIT, Gwalior,
for his assistance during concept formulation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AUC Area Under the ROC Curve KNN K-Nearest Neighbor
CBO Coupling Between Objects LCOM Lack of Cohesion of Methods
CD Concept Drift LOC Lines of Code
CoSQ Cost of Software Quality LR Linear Regression
C & K Chidamber and Kemerer MAE Mean Absolute Error
DDM Drift-Detection Method NB Naive Bayes
DIT Depth of Inheritance Tree NOC Number of Children
DT Decision Tree PL Paired Learner
FN False Negative PL-NB Paired Learner of Naive Bayes

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

Appl. Sci. 2021, 11, 6663 22 of 24

FP False Positive PL-RF Paired Learner of Random Forest
FPR False-Positive Rate IoT Internet of Things
QoS Quality of Service RFC Response For a Class
RMSE Root Mean Square Error RL Reactive Learner
SL Stable Learner ROC Receiver Operating Characteristics
SQA Software Quality Assurance RF Random Forest
SVM Support Vector Machine TP True Positive
TN True Negative TPR True Positive Rate
USA United States of America WMC Weighted Method Count

Symbols
The following symbols are used in this manuscript:

θ Threshold Value α Significance Level
k Size of the Window C Miss-classification count
~X Feature Vector Y Class Variable
S Stable Learner R Reactive Learner
Dt Distribution of data at time ‘t’

Appendix A

Figure A1. PL-based Approach in SDP for detecting CD.

Appl. Sci. 2021, 11, 6663 23 of 24

References
1. Lessmann, S.; Baesens, B.; Mues, C.; Pietsch, S. Benchmarking Classification Models for Software Defect Prediction: A Proposed

Framework and Novel Findings. IEEE Trans. Softw. Eng. 2008, 34, 485–496. [CrossRef]
2. Cagatay, C. Review: Software fault prediction: A literature review and current trends. Expert Syst. Appl. 2010, 38, 4626–4636.

[CrossRef]
3. Ezgi, E.; Ebru, A.S. A comparison of some soft computing methods for software fault prediction. Expert Syst. Appl. 2015, 42,

1872–1879. [CrossRef]
4. Rathore, S.S.; Kumar, S. An Approach for the Prediction of Number of Software Faults Based on the Dynamic Selection of

Learning Techniques. IEEE Trans. Reliabil. 2019, 68, 216–236. [CrossRef]
5. Yu, L.; Mishra, A. Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics. Qual. Technol. Quant.

Manag. 2012, 9, 421–434. [CrossRef]
6. Bal, P.R.; Kumar, S. WR-ELM: Weighted Regularization Extreme Learning Machine for Imbalance Learning in Software Fault

Prediction. IEEE Trans. Reliabil. 2020, 68, 1355–1375. [CrossRef]
7. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. A Systematic Literature Review on Fault Prediction Performance in

Software Engineering. IEEE Trans. Softw. Eng. 2012, 38, 1276–1304. [CrossRef]
8. Rathore, S.S.; Kumar, S. A study on software fault prediction techniques. Artif. Intell. Rev. 2019, 51, 255–327. [CrossRef]
9. Menzies, T.; Milton, Z.; Turhan, B.; Cukic, B.; Jiang, Y.; Bener, A. Defect prediction from static code features: Current results,

limitations, new approaches. Autom. Softw. Eng. 2010, 17, 375–407. [CrossRef]
10. Ekanayake, J.; Tappolet, J.; Gall, H.C.; Bernstein, A. Time variance and defect prediction in software projects. Empir. Softw. Eng.

2012, 17, 348–389. [CrossRef]
11. Widmer, G.; Kubat, M. Learning in the Presence of Concept Drift and Hidden Contexts. Mach. Learn. 1996, 23, 69–101. [CrossRef]
12. Ekanayake, J.; Tappolet, J.; Gall, H.C.; Bernstein, A. Tracking concept drift of software projects using defect prediction quality.

In Proceedings of the 6th IEEE International Working Conference on Mining Software Repositories, Vancouver, BC, Canada,
16–17 May 2009; pp. 51–60. [CrossRef]

13. Kabir, M.A.; Keung, J.W.; Benniny, K.E.; Zhang, M. Assessing the Significant Impact of Concept Drift in Software Defect Prediction.
In Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA,
15–19 July 2019; pp. 53–58. [CrossRef]

14. Bennin, K.E.; Ali, N.B.; Börstler, J.; Yu, X. Revisiting the Impact of Concept Drift on Just-in-Time Quality Assurance. In Proceedings
of the 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), Macau, China, 11–14 December
2020; pp. 53–59. [CrossRef]

15. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with Drift Detection. In Advances in Artificial Intelligence—SBIA 2004. SBIA
2004. Lecture Notes in Computer Science; Bazzan, A.L.C., Labidi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3171.
[CrossRef]

16. Nishida, K.; Yamauchi, K. Detecting Concept Drift Using Statistical Testing. In Discovery Science; DS 2007. Lecture Notes
in Computer Science; Corruble, V., Takeda, M., Suzuki, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4755.
[CrossRef]

17. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019,
31, 2346–2363. [CrossRef]

18. Dong, F.; Lu, J.; Li, K.; Zhang, G. Concept drift region identification via competence-based discrepancy distribution estimation.
In Proceedings of the 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China,
24–26 November 2017; pp. 1–7. [CrossRef]

19. Bach, S.H.; Maloof, M.A. Paired Learners for Concept Drift. In Proceedings of the Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 23–32. [CrossRef]

20. Zhang, H.; Liu, W.; Shan, J.; Liu, Q. Online Active Learning Paired Ensemble for Concept Drift and Classs Imbalance. IEEE Access
2018, 6, 73815–73828. [CrossRef]

21. Žliobaitė, I.; Pechenizkiy, M.; Gama, J. An Overview of Concept Drift Applications. In Big Data Analysis: New Algorithms for a New
Society. Studies in Big Data; Japkowicz, N., Stefanowski, J., Eds.; Springer: Cham, Swizterland, 2016; Volume 16. [CrossRef]

22. Lin, C.-C.; Deng, D.-J.; Kuo, C.-H.; Chen, L. Concept Drift Detection and Adaptation in Big Imbalance Industrial IoT Data Using
an Ensemble Learning Method of Offline Classifiers. IEEE Access 2019. [CrossRef]

23. Minku, L.L.; Yao, X. DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE Trans. Knowl. Data Eng. 2012, 24,
619–633.10.1109/TKDE.2011.58. [CrossRef]

24. Abdullateef, O.B.; Shuib, B.; Said, J.A.; Ahmad, S.H. Performance Analysis of Feature Selection Methods in Software Defect
Prediction: A Search Method Approach. Appl. Sci. 2019, 24, 619–633. [CrossRef]

25. Rathore, S.S.; Gupta, A. Investigating object-oriented design metrics to predict fault-proneness of software modules. In Proceed-
ings of the 2012 CSI Sixth International Conference on Software Engineering (CONSEG), Indore, India, 5–7 September 2012;
pp. 1–10. [CrossRef]

26. Peng, H.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.
Technol. 2015, 59, 170–190. [CrossRef]

http://doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1016/j.eswa.2010.10.024
http://dx.doi.org/10.1016/j.eswa.2014.10.025
http://dx.doi.org/10.1109/TR.2018.2864206
http://dx.doi.org/10.1080/16843703.2012.11673302
http://dx.doi.org/10.1109/TR.2020.2996261
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1007/s10462-017-9563-5
http://dx.doi.org/10.1007/s10515-010-0069-5
http://dx.doi.org/10.1007/s10664-011-9180-x
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1109/MSR.2009.5069480
http://dx.doi.org/10.1109/COMPSAC.2019.00017
http://dx.doi.org/10.1109/QRS51102.2020.00020
http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1007/978-3-540-75488-6_27
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1109/ISKE.2017.8258734
http://dx.doi.org/10.1109/ICDM.2008.119
http://dx.doi.org/10.1109/ACCESS.2018.2882872
http://dx.doi.org/10.1007/978-3-319-26989-4_4
http://dx.doi.org/10.1109/ACCESS.2019.2912631
http://dx.doi.org/10.1109/TKDE.2011.58
http://dx.doi.org/10.3390/app9132764
http://dx.doi.org/10.1109/CONSEG.2012.6349484
http://dx.doi.org/10.1016/j.infsof.2014.11.006

Appl. Sci. 2021, 11, 6663 24 of 24

27. Madeyski, L.; Jureczko, M. Which process metrics can significantly improve defect prediction models? An empirical study. Softw.
Qual. J. 2015, 23, 393–422. [CrossRef]

28. Ma, Y.; Zhu, S.; Qin, K.; Luo, G. Combining the requirement information for software defect estimation in design time. Inf. Process
Lett. 2014, 114, 469–474. [CrossRef]

29. Wang, S.; Minku, L.L.; Yao, X. Online class imbalance learning and its applications in fault detection. Int. J. Comput. Intell. Appl.
2013, 12. [CrossRef]

30. Marian, J. Significance of Different Software Metrics in Defect Prediction. Appl. Sci. 2011, 1, 86–95. [CrossRef]
31. McCabe, T.J. A Complexity Measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]
32. Halstead, M.H. Elements of Software Science; Elsevier Science Inc.: New York, NY, USA, 1977; ISBN 0444002057.
33. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
34. Stefan, W. A literature survey of the quality economics of defect-detection techniques. In Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering (ISESE ’06), Association for Computing Machinery, New York, NY,
USA, 21–22 September 2006; pp. 194–203. [CrossRef]

35. Dos Anjos, J.C.S.; Gross, J.L.G.; Matteussi, K.J.; González, G.V.; Leithardt, V.R.Q.; Geyer, C.F.R. An Algorithm to Minimize Energy
Consumption and Elapsed Time for IoT Workloads in a Hybrid Architecture. Sensors 2021, 21, 2914. [CrossRef] [PubMed]

36. Kumar, L.; Misra, S.; Rath, S.K. An empirical analysis of the effectiveness of software metrics and fault prediction model for
identifying faulty classes. Comput. Stand. Interfaces 2017, 53, 1–32. [CrossRef]

37. Da Silva, L.D.L.; Pereira, T.F.; Leithardt, V.R.Q.; Seman, L.O.; Zeferino, C.A. Hybrid Impedance-Admittance Control for Upper
Limb Exoskeleton Using Electromyography. Appl. Sci. 2020, 10, 7146. [CrossRef]

38. Capers, J.; Olivier, B. The Economics of Software Quality, 1st ed.; Addison-Wesley Professional: Hoboken, NJ, USA, 2011;
ISBN 0132582201.

39. Menzies, T.; Krishna, R.; Pryor, D. The SEACRAFT Repository of Empirical Software Engineering Data. 2017. Available online:
https://zenodo.org/communities/seacraft (accessed on 5 April 2020).

40. Tiempo Development. What Is QA in Software Testing. 2019. Available online: https://www.tiempodev.com/blog/what-is-qa-
in-software-testing/ (accessed on 30 April 2021).

41. Frank, W. Individual Comparisons by Ranking Methods. Biometr. Bull. 1945, 1, 80–83. [CrossRef]
42. Krasner, H. The Cost of Poor Quality Software in the US: A 2018 Report, Consortium for IT Software Quality. 2018. Volume 10.

Available online: https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-
Quality-Software-in-the-US-2018-Report.pdf (accessed on 22 May 2021).

43. Lewis, C.; Ou, R. Bug Prediction at Google. 2011. Available online: http://google-engtools.blogspot.com/2011/12/bug-
prediction-at-google.html (accessed on 22 May 2021).

44. Li, P.L.; Herbsleb, J.; Shaw, M.; Robinson, B. Experiences and results from initiating field defect prediction and product test
prioritization efforts at 720 abb inc. In Proceedings of the 28th International Conference on Software Engineering, Shanghai,
China, 28 May 2006; Association for Computing Machinery: New York, NY, USA, 2006; Volume 1, pp. 413–422. [CrossRef]

45. Yu, L.; Schach, S.R. Applying association mining to change propagation. Int. J. Softw. Eng. Knowl. Eng. 2008, 18, 1043–1061.
[CrossRef]

46. Yu, L.; Mishra, A.; Ramaswamy, S. Component co-evolution and component dependency: Speculations and verifications. IET
Softw. 2010, 4, 252–267. [CrossRef]

47. Wang, L.; Zhang, Y.; Zhu, X. Concept drift-aware temporal cloud service APIs recommendation for building composite cloud
systems. J. Syst. Softw. 2021, 174, 110902. [CrossRef]

48. Jain, M.; Kaur, G. Distributed anomaly detection using concept drift detection based hybrid ensemble techniques in streamed
network data. Cluster Comput. 2021, 1–16. [CrossRef]

http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1016/j.ipl.2014.03.012
http://dx.doi.org/10.1142/S1469026813400014
http://dx.doi.org/10.3390/app9132764
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/1159733.1159763
http://dx.doi.org/10.3390/s21092914
http://www.ncbi.nlm.nih.gov/pubmed/33919222
http://dx.doi.org/10.1016/j.csi.2017.02.003
http://dx.doi.org/10.3390/app10207146
https://zenodo.org/communities/seacraft
https://www.tiempodev.com/blog/what-is-qa-in-software-testing/
https://www.tiempodev.com/blog/what-is-qa-in-software-testing/
http://dx.doi.org/10.2307/3001968
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
http://dx.doi.org/10.1145/1134285.1134343
http://dx.doi.org/10.1142/S0218194008004008
http://dx.doi.org/10.1049/iet-sen.2008.0084
http://dx.doi.org/10.1016/j.jss.2020.110902
http://dx.doi.org/10.1007/s10586-021-03249-9

	Introduction
	Background
	Definition of Concept Drift
	Concept-Drift Types
	Concept-Drift Handling

	Related Work
	Proposed Approach
	Paired Learner
	Proposed Approach Based on PL

	Experimental Settings
	Choosing the Base Learners
	Choosing the Dataset
	Choosing the Window
	Performance Evaluation Measures
	Statistical Test
	Experimental Procedure

	Experimentation Results and Discussion
	Experimentation on NASA Defect Datasets
	Experimentation on Jureczko Prop Defect Datasets
	Cost–Benefit Analysis for Realistic Applications of the Proposed Approach

	Comparative Analysis
	Analysis of Results
	Answers to Questions

	Threats to the Validity
	Conclusions
	
	References

