Impact of Dental Model Height on Thermoformed PET-G Aligner Thickness—An In Vitro Micro-CT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Thermoforming
2.3. Micro-Computed Tomography and Image Processing
2.4. Thickness Measurements
2.5. Statistical Analysis
3. Results
3.1. Comparison of Thickness Values
3.2. Comparison of Local Thickness Values at Selected Tooth Types
3.3. Comparison of Thickness Values at Measurement Locations
4. Discussion
5. Conclusions
- Micro-CT scanning of aligners followed by automated segmentation and computation material thickness is an eligible approach to analyze material homogeneity
- Manual thermoforming can produce aligners of high repetitious accuracy
- Aligners thermoformed over a higher model exhibited lower material thickness values, especially at facial and palatal surfaces
- Aligners thermoformed over a higher model showed greater homogeneity in material thickness
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Q4 and 2018 Corporate Fact Sheet. Available online: http://www.aligntech.com/documents/Align%20Technology%20Corp%20Fact%20Sheet%202018%20Q4.pdf (accessed on 3 March 2021).
- Ihssen, B.A.; Willmann, J.H.; Nimer, A.; Drescher, D. Effect of in vitro aging by water immersion and thermocycling on the mechanical properties of PETG aligner material. J. Orofac. Orthop. 2019, 80, 292–303. [Google Scholar] [CrossRef]
- Buschang, P.H.; Chastain, D.; Keylor, C.L.; Crosby, D.; Julien, K.C. Incidence of white spot lesions among patients treated with clear aligners and traditional braces. Angle Orthod. 2019, 89, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Periodontal health during clear aligners treatment: A systematic review. Eur. J. Orthod. 2015, 37, 539–543. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, X.-Q.; Huo, S.; Zhang, C.; Zhao, S.; Cen, X.; Zhao, Z. Effect of clear aligners on oral health-related quality of life: A systematic review. Orthod. Craniofac. Res. 2020, 23, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Zhu, Y.; Zhu, M. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Kaur, H.; Fagundes, N.C.F.; Romanyk, D.; Major, P.; Mir, C.F. Effectiveness of clear aligner therapy for orthodontic treatment: A systematic review. Orthod. Craniofac. Res. 2020, 23, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Charalampakis, O.; Iliadi, A.; Ueno, H.; Oliver, D.R.; Kim, K.B. Accuracy of clear aligners: A retrospective study of patients who needed refinement. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Jheon, A.H.; Oberoi, S.; Solem, R.C.; Kapila, S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod. Craniofac. Res. 2017, 20 (Suppl. 1), 106–113. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Qi, R.; Liu, C. Root resorption in orthodontic treatment with clear aligners: A systematic review and meta-analysis. Orthod. Craniofac. Res. 2019, 22, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Elhaddaoui, R.; Qoraich, H.S.; Bahije, L.; Zaoui, F. Orthodontic aligners and root resorption: A systematic review. Int. Orthod. 2017, 15, 1–12. [Google Scholar] [CrossRef]
- Gonzales, C.; Hotokezaka, H.; Yoshimatsu, M.; Yozgatian, J.H.; Darendeliler, M.A.; Yoshida, N. Force magnitude and dura-tion effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 2008, 78, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscoe, M.G.; Meira, J.; Cattaneo, P.M. Association of orthodontic force system and root resorption: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Elkholy, F.; Panchaphongsaphak, T.; Kilic, F.; Schmidt, F.; Lapatki, B.G. Forces and moments delivered by PET-G aligners to an upper central incisor for labial and palatal translation. J. Orofac. Orthop. 2015, 76, 460–475. [Google Scholar] [CrossRef]
- Elkholy, F.; Schmidt, F.; Jäger, R.; Lapatki, B.G. Forces and moments delivered by novel, thinner PET-G aligners during labiopalatal bodily movement of a maxillary central incisor: An in vitro study. Angle Orthod. 2016, 86, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Hahn, W.; Engelke, B.; Jung, K.; Dathe, H.; Fialka-Fricke, J.; Kubein-Meesenburg, D.; Sadat-Khonsari, R. Initial Forces and Moments Delivered by Removable Thermoplastic Appliances during Rotation of an Upper Central Incisor. Angle Orthod. 2010, 80, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Kohda, N.; Iijima, M.; Muguruma, T.; Brantley, W.A.; Ahluwalia, K.S.; Mizoguchi, I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013, 83, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Hahn, W.; Dathe, H.; Fialka-Fricke, J.; Fricke-Zech, S.; Zapf, A.; Kubein-Meesenburg, D.; Sadat-Khonsari, R. Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 12.e1–12.e7. [Google Scholar] [CrossRef]
- Gao, L.; Wichelhaus, A. Forces and moments delivered by the PET-G aligner to a maxillary central incisor for palatal tipping and intrusion. Angle Orthod. 2017, 87, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Rüegsegger, P.; Koller, B.; Müller, R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 1996, 58, 24–29. [Google Scholar] [CrossRef]
- Mantovani, E.; Parrini, S.; Coda, E.; Cugliari, G.; Scotti, N.; Pasqualini, D.; Deregibus, A.; Castroflorio, T. Micro computed tomography evaluation of Invisalign aligner thickness homogeneity. Angle Orthod. 2021, 91, 343–348. [Google Scholar] [CrossRef]
- Lombardo, L.; Palone, M.; Longo, M.; Arveda, N.; Nacucchi, M.; De Pascalis, F.; Spedicato, G.A.; Siciliani, G. MicroCT X-ray comparison of aligner gap and thickness of six brands of aligners: An in-vitro study. Prog. Orthod. 2020, 21, 12. [Google Scholar] [CrossRef]
- Palone, M.; Longo, M.; Arveda, N.; Nacucchi, M.; De Pascalis, F.; Spedicato, G.A.; Siciliani, G.; Lombardo, L. Micro-computed tomography evaluation of general trends in aligner thickness and gap width after thermoforming procedures in-volving six commercial clear aligners: An in vitro study. Korean J. Orthod. 2021, 51, 135–141. [Google Scholar] [CrossRef]
- Hildebrand, T.; Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 1997, 185, 67–75. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. Estimated Marginal Means, aka Least-Squares Means. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 10 May 2021).
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Treatment outcome and efficacy of an aligner technique—Regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health 2014, 14, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, H.A.; Sander, M. Technische Mechanik. Festigkeitslehre: Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen; Vieweg+Teubner: Wiesbaden, Germany, 2008. [Google Scholar]
- Jiang, T.; Wu, R.Y.; Wang, J.K.; Wang, H.H.; Tang, G.H. Clear aligners for maxillary anterior en masse retraction: A 3D finite element study. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Rossini, G.; Schiaffino, M.; Parrini, S.; Sedran, A.; Deregibus, A.; Castroflorio, T. Upper Second Molar Distalization with Clear Aligners: A Finite Element Study. Appl. Sci. 2020, 10, 7739. [Google Scholar] [CrossRef]
- Gomez, J.P.; Peña, F.M.; Martínez, V.; Giraldo, D.C.; Cardona, C.I. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis. Angle Orthod. 2015, 85, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Dasy, H.; Dasy, A.; Asatrian, G.; Rózsa, N.; Lee, H.-F.; Kwak, J.H. Effects of variable attachment shapes and aligner material on aligner retention. Angle Orthod. 2015, 85, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstone, C.J.; Choy, K. The Biomechanical Foundation of Clinical Orthodontics; Quintessence Publishing Company, Inc.: Chicago, IL, USA, 2015. [Google Scholar]
- Krey, K.; Behyar, M.; Hartmann, M.; Corteville, F.; Ratzmann, A. Behaviour of monolayer and multilayer foils in the aligner thermoforming process. J. Aligner Orthod. 2019, 3, 139–145. [Google Scholar]
- Sandhya, V.; Arun, A.; Reddy, V.P.; Mahendra, S.; Chandrashekar, B. Biomechanical Effects of Torquing on Upper Central Incisor with Thermoplastic Aligner: A Comparative Three-Dimensional Finite Element Study with and Without Auxillaries. J. Indian Orthod. Soc. 2021, 1–8. [Google Scholar] [CrossRef]
- Wang, J.; Rousso, C.; Christensen, B.I.; Li, P.; Kau, C.H.; MacDougall, M.; Lamani, E. Ethnic differences in the root to crown ratios of the permanent dentition. Orthod. Craniofac. Res. 2019, 22, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, A.; Mousoulea, S.; Gkantidis, N.; Kloukos, D. Clinical effectiveness of Invisalign® orthodontic treatment: A systematic review. Prog. Orthod. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünheid, T.; Gaalaas, S.; Hamdan, H.; Larson, B.E. Effect of clear aligner therapy on the buccolingual inclination of mandibular canines and the intercanine distance. Angle Orthod. 2016, 86, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Djeu, G.; Shelton, C.; Maganzini, A. Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X. A fast 3D euclidean distance transformation. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; pp. 875–879. [Google Scholar]
- Koenig, N.L. Accuracy of Fit of Direct Printed Aligners versus Thermoformed Aligners. Master’s Thesis, Saint Louis University, Saint Louis, MO, USA, 2020. [Google Scholar]
Reference Point | Definition | Aggregated Location | Assessed at Teeth |
---|---|---|---|
MB | mesiobuccal cusp tip | Cusp tip | 16, 26 |
DB | distobuccal cusp tip | 16, 26 | |
B | buccal cusp tip | 15, 14, 25, 24 | |
MP | mesiopalatal cusp tip | 16, 26 | |
DP | distopalatal cusp tip | 16, 26 | |
P | palatal cusp tip | 15, 14, 25, 24 | |
FIS | mesiodistal center of the central fissure | Occlusal | 16, 15, 14, 26, 25, 24 |
I | most coronal, central point of the incisal edge | Incisal | 11, 21, 12, 22, 13, 23 |
FLA | LA-Point of the facial surface | Facial | All teeth |
FC | most cervical point of the vestibular surface | Facial-cervical | All teeth |
PLA | LA-Point of the palatal surface | Palatal | All teeth |
PC | most cervical point of the palatal surface | Palatal-cervical | All teeth |
Estimate (SE) Group H | Estimate (SE) Group N | Est. Difference (SE) | p-Value | |
---|---|---|---|---|
Molar | 0.316 (0.002) | 0.324 (0.002) | −0.003 (0.003) | 0.077 ** |
Premolar | 0.309 (0.002) | 0.320 (0.002) | −0.011 (0.003) | 0.007 ** |
Canine | 0.315 (0.002) | 0.330 (0.002) | −0.015 (0.003) | <0.001 *** |
Front | 0.311 (0.002) | 0.323 (0.002) | −0.012 (0.003) | 0.002 ** |
Comparison | Estimated Difference (SE) | T-Ratio | p-Value | |
---|---|---|---|---|
Group H | canine–front | 0.003 (0.003) | 1.903 | 0.251 |
canine–molar | −0.001 (0.003) | −0.571 | 0.940 | |
canine–premolar | 0.006 (0.003) | 3.545 | 0.008 ** | |
front–molar | −0.004 (0.002) | −2.561 | 0.074 | |
front–premolar | 0.003 (0.002) | 1.700 | 0.344 | |
molar–premolar | 0.007 (0.002) | 4.261 | 0.001 ** | |
Group N | canine–front | 0.007 (0.003) | 2.770 | 0.044 * |
canine–molar | 0.006 (0.003) | 2.493 | 0.081 | |
canine–premolar | 0.011 (0.003) | 4.323 | <0.001 *** | |
front–molar | −0.001 (0.003) | −0.277 | 0.992 | |
front–premolar | 0.004 (0.003) | 1.553 | 0.420 | |
molar–premolar | 0.006 (0.003) | 1.830 | 0.279 |
Comparison | Est. (SE) Group H | Est. (SE) Group N | Est. Difference (SE) | p-Value |
---|---|---|---|---|
Cusp tip | 0.372 (0.003) | 0.384 (0.003) | −0.012 (0.004) | 0.090 |
Occlusal | 0.285 (0.003) | 0.278 (0.003) | 0.007 (0.004) | 0.902 |
Incisal | 0.427 (0.003) | 0.434 (0.003) | −0.008 (0.004) | 0.751 |
Facial | 0.243 (0.003) | 0.268 (0.003) | −0.025 (0.004) | <0.001 *** |
Facial-cervical | 0.222 (0.003) | 0.224 (0.003) | −0.002 (0.004) | 1.000 |
Palatal | 0.332 (0.003) | 0.347 (0.003) | −0.015 (0.004) | 0.005 ** |
Palatal-cervical | 0.327 (0.003) | 0.339 (0.003) | −0.012 (0.004) | 0.073 |
Comparison | Est. Difference (SE) | T-Ratio | p-Value | |
---|---|---|---|---|
Group H | cusp tip–facial | 0.129 (0.003) | 38.735 | <0.001 *** |
cusp tip–facial cervical | 0.150 (0.003) | 44.989 | <0.001 *** | |
cusp tip–incisal | −0.055 (0.003) | −16.118 | <0.001 *** | |
cusp tip–occlusal | 0.087 (0.003) | 26.071 | <0.001 *** | |
cusp tip–palatal | 0.040 (0.003) | 12.000 | <0.001 *** | |
cusp tip–palatal cervical | 0.045 (0.003) | 13.485 | <0.001 *** | |
facial–facial cervical | 0.021 (0.003) | 6.254 | <0.001 *** | |
facial–incisal | −0.184 (0.003) | −53.726 | <0.001 *** | |
facial–occlusal | −0.042 (0.003) | −12.664 | <0.001 *** | |
facial–palatal | −0.089 (0.003) | −26.735 | <0.001 *** | |
facial–palatal cervical | −0.084 (0.003) | −25.250 | <0.001 *** | |
facial cervical–incisal | −0.205 (0.003) | −59.798 | <0.001 *** | |
facial cervical–occlusal | −0.063 (0.003) | −18.918 | <0.001 *** | |
facial cervical–palatal | −0.110 (0.003) | −32.989 | <0.001 *** | |
facial cervical–palatal cervical | −0.105 (0.003) | −31.504 | <0. 001 *** | |
incisal–occlusal | 0.142 (0.003) | 41.431 | <0.001 *** | |
incisal–palatal | 0.095 (0.003) | 27.768 | <0.001 *** | |
incisal–palatal cervical | 0.100 (0.003) | 29.211 | <0.001 *** | |
occlusal–palatal | −0.047 (0.003) | −14.071 | <0.001 *** | |
occlusal–palatal cervical | −0.042 (0.003) | −12.586 | <0.001 *** | |
palatal–palatal cervical | 0.005 (0.003) | 1.485 | 0.752 | |
Group N | cusp tip–facial | 0.116 (0.003) | 35.565 | <0.001 *** |
cusp tip–facial cervical | 0.160 (0.003) | 48.827 | <0.001 *** | |
cusp tip–incisal | −0.051 (0.003) | −15.539 | <0.001 *** | |
cusp tip–occlusal | 0.105 (0.003) | 32.205 | <0.001 *** | |
cusp tip–palatal | 0.037 (0.003) | 11.162 | <0.001 *** | |
cusp tip–palatal cervical | 0.045 (0.003) | 13.638 | <0.001 *** | |
facial–facial cervical | 0.043 (0.003) | 13.262 | <0.001 *** | |
facial–incisal | −0.167 (0.003) | −51.103 | <0.001 *** | |
facial–occlusal | −0.011 (0.003) | −3.360 | 0.022 * | |
facial–palatal | −0.080 (0.003) | −24.402 | <0.001 *** | |
facial–palatal cervical | −0.072 (0.003) | −21.927 | <0.001 *** | |
facial cervical–incisal | −0.210 (0.003) | −64.366 | <0.001 *** | |
facial cervical–occlusal | −0.054 (0.003) | −16.622 | <0.001 *** | |
facial cervical–palatal | −0.123 (0.003) | −37.664 | <0.001 *** | |
facial cervical–palatal cervical | −0.115 (0.003) | −35.189 | <0.001 *** | |
incisal–occlusal | 0.156 (0.003) | 47.744 | <0.001 *** | |
incisal–palatal | 0.087 (0.003) | 26.701 | <0.001 *** | |
incisal–palatal cervical | 0.100 (0.003) | 29.177 | <0.001 *** | |
occlusal–palatal | −0.06875 | −21.043 | <0.001 *** | |
occlusal–palatal cervical | −0.06067 | −18.567 | <0.001 *** | |
palatal–palatal cervical | 0.00809 | 2.476 | 0.187 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ihssen, B.A.; Kerberger, R.; Rauch, N.; Drescher, D.; Becker, K. Impact of Dental Model Height on Thermoformed PET-G Aligner Thickness—An In Vitro Micro-CT Study. Appl. Sci. 2021, 11, 6674. https://doi.org/10.3390/app11156674
Ihssen BA, Kerberger R, Rauch N, Drescher D, Becker K. Impact of Dental Model Height on Thermoformed PET-G Aligner Thickness—An In Vitro Micro-CT Study. Applied Sciences. 2021; 11(15):6674. https://doi.org/10.3390/app11156674
Chicago/Turabian StyleIhssen, Benjamin Alexander, Robert Kerberger, Nicole Rauch, Dieter Drescher, and Kathrin Becker. 2021. "Impact of Dental Model Height on Thermoformed PET-G Aligner Thickness—An In Vitro Micro-CT Study" Applied Sciences 11, no. 15: 6674. https://doi.org/10.3390/app11156674
APA StyleIhssen, B. A., Kerberger, R., Rauch, N., Drescher, D., & Becker, K. (2021). Impact of Dental Model Height on Thermoformed PET-G Aligner Thickness—An In Vitro Micro-CT Study. Applied Sciences, 11(15), 6674. https://doi.org/10.3390/app11156674