Possibilities for Depleting the Content of Undesirable Volatile Phenolic Compounds in White Wine with the Use of Low-Intervention and Economically Efficient Grape Processing Technology
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Welschriesling
2.1.2. Chardonnay
2.1.3. Characterisation of Experimental Sites
2.2. Technological Processes
2.3. Evaluation of the Organoleptic Quality
2.4. Statistical Evaluation
2.5. Wine Analysis
2.5.1. Samples and Sample Preparation
2.5.2. Chemicals
2.5.3. FT-IR Analysis
2.5.4. RP-HPLC-DAD Analysis
2.5.5. GC-MS Analysis
3. Results
3.1. Influence of Technology and Vintage on Content of Hydroxycinnamic Acids
3.2. Sensory Evaluation of Wine Quality from Individual Variants
3.3. Influence of Targeted Must Oxygenation Technology on the Content of Volatile Phenolic Substances in Wine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The Influence of Interactions between Major White Wine Components on the Aroma, Flavour and Texture of Model White Wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. J. Agric. Food Chem. 2017, 66, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.O. Phenolics and Ripening in Grape Berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar]
- El-Seedi, H.R.; El-Said, A.M.; Khalifa, S.A.; Goransson, U.; Bohlin, L.; Borg-Karlson, A.-K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef]
- Vollmannová, A.; Musilová, J.; Urminská, D.; Bajčan, D.; Bobková, A.; Bojňanská, T.; Bystrická, J.; Čanigová, M.; Kročko, M.; Mašková, Z.; et al. Chémia Potravín; Slovenská Poľnohospodárska Univerzita V Nitre: Nitra, Slovakia, 2018; Available online: http://ves.uniag.sk/files/pdf/59w8dgncrdozgtsgvw5zsgbyxejd00.pdf (accessed on 15 March 2021).
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schopp, L.M.; Lee, J.; Osborne, J.P.; Chescheir, S.C.; Edwards, C.G. Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids in Red Wines by Brettanomyces Bruxellensis. J. Agric. Food Chem. 2013, 61, 11610–11617. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis Vinifera Cultivars Albillo Dorado and Montonera Del Casar: A Comparative Study with Airén. Foods 2020, 9, 1282. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M. Oxidation Mechanisms Occurring in Wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in Phenolic Composition and Antioxidant Activity of White Wine during Bottle Storage: Accelerated Browning Test versus Bottle Storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Fras, P.; Campos, F.M.; Hogg, T.; Couto, J.A. Production of Volatile Phenols by Lactobacillus Plantarum in Wine Conditions. Biotechnol. Lett. 2014, 36, 281–285. [Google Scholar] [CrossRef]
- Laforgue, R.; Lonvaud-Funel, A. Hydroxycinnamic Acid Decarboxylase Activity of Brettanomyces Bruxellensis Involved in Volatile Phenol Production: Relationship with Cell Viability. Food Microbiol. 2012, 32, 230–234. [Google Scholar] [CrossRef]
- Bakker, J.; Clarke, R.J. Wine: Flavour Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Suárez, R.; Suárez-Lepe, J.A.; Morata, A.; Calderón, F. The Production of Ethylphenols in Wine by Yeasts of the Genera Brettanomyces and Dekkera: A Review. Food Chem. 2007, 102, 10–21. [Google Scholar] [CrossRef]
- Sommer, S.; Wegmann-Herr, P.; Wacker, M.; Fischer, U. Influence of lysozyme addition on hydroxycinnamic acids and volatile phenols during wine fermentation. Fermentation 2018, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Silva, I.; Campos, F.M.; Hogg, T.; Couto, J.A. Wine Phenolic Compounds Influence the Production of Volatile Phenols by Wine-Related Lactic Acid Bacteria. J. Appl. Microbiol. 2011, 111, 360–370. [Google Scholar] [CrossRef]
- Malfeito-Ferreira, M. Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where Do We Stand Now? Beverages 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Luo, X.; Ma, T.; You, Y.; Huang, W.; Zhan, J. Detection Method Optimization, Dynamic Changes during Alcoholic Fermentation and Content Analysis of “Brett Character” Compounds 4-Ethylphenol (4-EP) and 4-Ethylguaiacol (4-EG) in Chinese Red Wines. Food Anal. Methods 2017, 10, 1616–1629. [Google Scholar] [CrossRef]
- Ballester, J.; Magne, M.; Julien, P.; Noret, L.; Nikolantonaki, M.; Coelho, C.; Gougeon, R.D. Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines. Beverages 2018, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Kanavouras, A.; Coutelieris, F.; Karanika, E.; Kotseridis, Y.; Kallithraka, S. Color change of bottled white wines as a quality indicator. OENO One 2020, 54, 543–551. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Reduction of 4-Ethylphenol and 4-Ethylguaiacol in Red Wine by Activated Carbons with Different Physicochemical Characteristics: Impact on Wine Quality. Food Chem. 2017, 229, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Larcher, R.; Puecher, C.; Rohregger, S.; Malacarne, M.; Nicolini, G. 4-Ethylphenol and 4-Ethylguaiacol Depletion in Wine Using Esterified Cellulose. Food Chem. 2012, 132, 2126–2130. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Treatment by Fining Agents of Red Wine Affected by Phenolic Off-Odour. Eur. Food Res. Technol. 2017, 243, 501–510. [Google Scholar] [CrossRef]
- Milheiro, J.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A Simple, Cheap and Reliable Method for Control of 4-Ethylphenol and 4-Ethylguaiacol in Red Wines. Screening of Fining Agents for Reducing Volatile Phenols Levels in Red Wines. J. Chromatogr. B 2017, 1041, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Perello, M.C.; Lonvaud-Funel, A.; Sicard, G.; de Revel, G. Sensory and Analytical Re-Evaluation of “Brett Character”. Food Chem. 2009, 114, 15–19. [Google Scholar] [CrossRef]
- Morata, A.; Vejarano, R.; Ridolfi, G.; Benito, S.; Palomero, F.; Uthurry, C.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Reduction of 4-Ethylphenol Production in Red Wines Using HCDC+ Yeasts and Cinnamyl Esterases. Enzym. Microb. Technol. 2013, 52, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Pokrývková, J.; Ailer, Š.; Jedlička, J.; Chlebo, P.; Jurík, L. The Use of a Targeted Must Oxygenation Method in the Process of Developing the Archival Potential of Natural Wine. Appl. Sci. 2020, 10, 4810. [Google Scholar] [CrossRef]
- Pospíšilová, D.; Sekera, D.; Ruman, T. Ampelografia Slovenska; Výskumná a šľachtiteľská stanica vinárska a vinohradnícka: Modra, Slovakia, 2005. [Google Scholar]
- STN EN ISO 8586. Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; ISO: Bratislava, Slovakia, 2012. [Google Scholar]
- Baron, M.; Sochor, J.; Prusova, B.; Tomaskova, L.; Kumsta, M. A Study on the Content of Terpenic Compounds in the Cultivar’Moravian Muscat’(Vitis Vinifera, L.). Ital. J. Food Saf. 2017, 29. Available online: https://itjfs.com/index.php/ijfs/issue/view/10/IJFS292.pdf (accessed on 15 March 2021).
- Kumšta, M.; Pavloušek, P.; Kupsa, J. Phenolic Profile in Czech White Wines from Different Terroirs. Food Sci. Biotechnol. 2012, 21, 1593–1601. [Google Scholar] [CrossRef]
- Stefenon, C.A.; Bonesi, C.D.M.; Marzarotto, V.; Barnabé, D.; Spinelli, F.R.; Webber, V.; Vanderlinde, R. Phenolic Composition and Antioxidant Activity in Sparkling Wines: Modulation by the Ageing on Lees. Food Chem. 2014, 145, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Michlovský, M. Bobule; Vinselekt Michlovský a.s.: Rakvice, Czech Republic, 2014. [Google Scholar]
- Singleton, V.L.; Trousdale, E. White Wine Phenolics: Varietal and Processing Differences as Shown by HPLC. Am. J. Enol. Vitic. 1983, 34, 27–34. [Google Scholar]
- Gómez-Míguez, M.J.; González-Miret, M.L.; Hernanz, D.; Fernández, M.Á.; Vicario, I.M.; Heredia, F.J. Effects of Prefermentative Skin Contact Conditions on Colour and Phenolic Content of White Wines. J. Food Eng. 2007, 78, 238–245. [Google Scholar] [CrossRef]
- Slovak Hydrometeorological Institute. Available online: http://www.shmu.sk/en/ (accessed on 20 March 2021).
- Ailer, Š.; Jedlička, J.; Paulen, O. Study of the Extreme Agro-Technical and Agro-Climatic Factors Influence in Vineyard for a Qualitative Wine Potential. Eur. Int. J. Sci. Technol. 2013, 2, 126–132. Available online: http://www.cekinfo.org.uk/images/frontImages/gallery/Vol._2_No._1_/12.pdf (accessed on 15 March 2021).
- Cehula, M.; Baron, M.; Jurikova, T.; Alumbro, A.; Perrocha, M.; Ondrasek, I.; Mlcek, J.; Adamkova, A.; Sochor, J. The Study of Selected Components of Grape and Fruit Wines. Potr. S. J. F. Sci. 2020, 14, 759–766. [Google Scholar] [CrossRef]
- Zhou, Q.; Qian, Y.; Qian, M.C. Analysis of Volatile Phenols in Alcoholic Beverage by Ethylene Glycol-Polydimethylsiloxane Based Stir Bar Sorptive Extraction and Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2015, 1390, 22–27. [Google Scholar] [CrossRef]
- Meravá, E. Vinič Hroznorodý, Hroznové Víno. (Situačná a Výhľadová Správa); NPPC-VÚEPP, MPRV SR: Bratislava, Slovakia, 2019; Volume 21, p. 49. ISSN 1339-0037. Available online: http://www.vuepp.sk/04_komodity2019.htm (accessed on 20 March 2021).
- Festa, G.; Shams, S.R.; Metallo, G.; Cuomo, M.T. Opportunities and Challenges in the Contribution of Wine Routes to Wine Tourism in Italy–A Stakeholders’ Perspective of Development. Tour. Manag. Perspect. 2020, 33, 100585. [Google Scholar] [CrossRef]
- Nahmer, T. Diversification Benefit of Actual Investing in Fine Wine. J. Altern. Invest. 2020, 22, 59–74. [Google Scholar] [CrossRef]
- Le Fur, E.; Outreville, J.-F. Fine Wine Returns: A Review of the Literature. J. Asset Manag. 2019, 20, 196–214. [Google Scholar] [CrossRef]
- Pollak, H. Jak Odstranit Neopodstatněné Náklady: Hodnotová Analýza v Praxi; Grada Publishing a.s.: Praha, Czech Republic, 2005. [Google Scholar]
Variant | SO2 Free (mg L−1) | SO2 Total (mg L−1) | Ethanol (% vol) | Total Acidity (g L−1) | Total Sugar (g L−1) | pH | Malic Acid (g L−1) | Acetic Acid (g L−1) | Tartaric Acid (g L−1) | Glucose (g L−1) | Fructose (g L−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | WRC | 17.00 ± 1.63 | 70.67 ± 4.50 | 12.32 ± 0.27 | 6.16 ± 0.18 | 0.81 ± 0.05 b | 3.12 ± 0.00 | 0.97 ± 0.05 | 0.31 ± 0.02 | 2.38 ± 0.02 | 0.12 ± 0.01 | 0.94 ± 0.04 |
WRO | 6.33 ± 0.47 | 47.33 ± 0.47 | 11.86 ± 0.31 | 6.04 ± 0.05 | 1.13 ± 0.12 a | 3.13 ± 0.00 | 0.91 ± 0.05 | 0.35 ± 0.01 | 2.56 ± 0.09 | 0.06 ± 0.01 | 0.83 ± 0.02 | |
CHC | 27.67 ± 0.94 | 69.33 ± 2.87 | 12.07 ± 0.09 | 7.34 ± 0.13 | 0.77 ± 0.05 b | 3.15 ± 0.02 | 2.23 ± 0.04 | 0.38 ± 0.03 | 2.47 ± 0.05 | 0.15 ± 0.03 | 1.03 ± 0.03 | |
CHO | 58.33 ± 4.50 | 136.00 ± 0.00 | 12.18 ± 0.09 | 7.55 ± 0.04 | 1.17 ± 0.05 a | 3.07 ± 0.04 | 1.91 ± 0.00 | 0.37 ± 0.02 | 2.51 ± 0.04 | 0.27 ± 0.00 | 0.67 ± 0.06 | |
2016 | WRC | 25.67 ± 0.94 | 82.33 ± 1.25 | 12.49 ± 0.01 a | 5.87 ± 0.03 a | 2.52 ± 0.00 b | 3.27 ± 0.00 b | 1.90 ± 0.04 | 0.31 ± 0.01 | 2.39 ± 0.01 | 0.29 ± 0.00 | 1.27 ± 0.02 |
WRO | 14.33 ± 0.47 | 68.33 ± 2.05 | 12.29 ± 0.08 b | 5.27 ± 0.03 b | 1.99 ± 0.04 a | 3.35 ± 0.04 a | 1.93 ± 0.02 | 0.26 ± 0.04 | 2.01 ± 0.00 | 0.16 ± 0.02 | 1.06 ± 0.03 | |
CHC | 28.67 ± 2.87 | 62.33 ± 1.25 | 12.54 ± 0.03 | 6.35 ± 0.03 | 1.67 ± 0.05 b | 3.21 ± 0.03 | 2.33 ± 0.03 | 0.34 ± 0.03 | 2.74 ± 0.02 | 0.32 ± 0.01 | 1.32 ± 0.04 | |
CHO | 36.33 ± 2.05 | 49.33 ± 2.05 | 12.65 ± 0.07 | 6.27 ± 0.05 | 1.87 ± 0.05 a | 3.25 ± 0.01 | 2.14 ± 0.04 | 0.36 ± 0.02 | 2.72 ± 0.01 | 0.37 ± 0.02 | 1.34 ± 0.01 | |
2017 | WRC | 19.33 ± 1.25 | 76.33 ± 2.05 | 12.24 ± 0.02 b | 5.87 ± 0.04 | 2.14 ± 0.05 b | 3.39 ± 0.00 a | 1.57 ± 0.02 | 0.41 ± 0.00 | 2.12 ± 0.05 | 0.57 ± 0.02 | 1.14 ± 0.03 |
WRO | 14.33 ± 2.05 | 57.33 ± 2.05 | 12.34 ± 0.02 a | 5.81 ± 0.09 | 2.24 ± 0.03 a | 3.34 ± 0.01 b | 1.74 ± 0.01 | 0.43 ± 0.01 | 2.04 ± 0.02 | 0.44 ± 0.02 | 1.21 ± 0.02 | |
CHC | 29.33 ± 2.05 | 58.67 ± 1.25 | 12.51 ± 0.01 | 6.24 ± 0.04 b | 1.87 ± 0.06 a | 3.19 ± 0.00 a | 1.89 ± 0.03 | 0.38 ± 0.06 | 2.54 ± 0.04 | 0.47 ± 0.03 | 0.87 ± 0.02 | |
CHO | 44.33 ± 0.47 | 47.67 ± 2.87 | 12.55 ± 0.06 | 6.34 ± 0.00 a | 1.72 ± 0.04 a | 3.15 ± 0.01 b | 1.94 ± 0.04 | 0.36 ± 0.01 | 2.41 ± 0.08 | 0.45 ± 0.05 | 0.94 ± 0.08 |
Variant | Total Caffeic Acid (mg L−1) | Total Coumaric Acid (mg L−1) | Total Ferulic Acid (mg L−1) | Caftaric Acid (mg L−1) | Fertaric Acid (mg L−1) | Sum of Hydroxycinnamic Acids (mg L−1) | |
---|---|---|---|---|---|---|---|
2015 | WRC | 38.80 ± 1.22 a | 9.93 ± 1.22 a | 3.45 ± 0.12 | 21.54 ± 0.27 a | 2.44 ± 0.05 a | 76.16 ± 2.45 a |
WRO | 32.65 ± 1.22 b | 6.95 ± 1.22 b | 3.14 ± 0.12 | 17.74 ± 0.48 b | 2.25 ± 0.00 b | 62.73 ± 2.94 b | |
CHC | 47.23 ± 1.42 a | 13.61 ± 0.62 a | 2.83 ± 0.12 a | 9.28 ± 0.17 a | 1.49 ± 0.06 | 74.44 ± 2.38 a | |
CHO | 37.01 ± 0.14 b | 11.48 ± 0.09 b | 2.22 ± 0.02 b | 7.59 ± 0.07 b | 1.18 ± 0.00 | 59.48 ± 0.32 b | |
2016 | WRC | 42.01 ± 0.42 a | 9.41 ± 0.22 a | 3.32 ± 0.16 a | 17.47 ± 0.37 a | 2.8 ± 0.07 a | 74.29 ± 0.69 a |
WRO | 35.66 ± 0.56 b | 7.67 ± 0.30 b | 2.88 ± 0.08 b | 16.47 ± 0.39 b | 1.99 ± 0.08 b | 64.67 ± 0.54 b | |
CHC | 37.94 ± 0.06 a | 6.87 ± 0.10 a | 5.82 ± 0.14 a | 24.87 ± 0.23 a | 4.98 ± 0.12 | 80.48 ± 0.26 a | |
CHO | 32.92 ± 0.43 b | 5.24 ± 0.29 b | 5.45 ± 0.12 b | 20.18 ± 0.27 b | 4.72 ± 0.13 | 68.51 ± 0.83 b | |
2017 | WRC | 35.22 ± 0.45 a | 8.40 ± 0.17 | 4.66 ± 0.13 a | 19.2 ± 0.41 | 3.68 ± 0.10 | 70.98 ± 0.88 a |
WRO | 31.97 ± 0.13 b | 6.68 ± 0.30 | 3.74 ± 0.23 b | 16.66 ± 0.38 | 3.47 ± 0.16 | 62.52 ± 0.86 b | |
CHC | 37.47 ± 0.18 a | 5.82 ± 0.15 a | 5.53 ± 0.21 | 22.47 ± 0.29 a | 4.72 ± 0.07 a | 76.02 ± 0.32 a | |
CHO | 33.43 ± 0.43 b | 4.88 ± 0.16 b | 5.18 ± 0.16 | 20.25 ± 0.45 b | 4.38 ± 0.11 b | 68.11 ± 0.70 b |
Vintage | Variant | 4-vinylguaiacol ± SD | 4-vinylphenol ± SD | Sum of VPs ± SD |
---|---|---|---|---|
μg L−1 | μg L−1 | μg L−1 | ||
2015 | WRC | 67.00 ± 4.55 a | 286.00 ± 9.42 a | 353.00 ± 13.95 a |
WRO | 28.67 ± 3.40 b | 177.00 ± 6.98 b | 205.67 ± 9.53 b | |
CHC | 334.67 ± 15.15 a | 301.00 ± 10.42 a | 635.67 ± 16.21 a | |
CHO | 210.00 ± 9.09 b | 213.33 ± 8.81 b | 423.33 ± 17.78 b | |
2016 | WRC | 26.00 ± 0.82 a | 85.00 ± 6.16 a | 111.00 ± 6.98 a |
WRO | 18.00 ± 0.82 b | 58.33 ± 2.05 b | 76.33 ± 2.87 b | |
CHC | 181.33 ± 4.50 a | 176.00 ± 5.10 a | 357.33 ± 8.81 a | |
CHO | 164.67 ± 6.80 b | 157.67 ± 5.19 b | 322.33 ± 4.92 b | |
2017 | WRC | 59.00 ± 2.16 a | 253.67 ± 9.10 a | 312.67 ± 8.26 a |
WRO | 40.67 ± 1.25 b | 192.00 ± 6.48 b | 232.67 ± 7.32 b | |
CHC | 268.67 ± 8.81 a | 276.00 ± 7.48 a | 544.67 ± 15.84 a | |
CHO | 241.67 ± 5.73 b | 256.00 ± 6.53 b | 497.67 ± 6.60 b |
Indicator | 2014/15 | 2015/16 | 2016/17 | 2017/18 |
---|---|---|---|---|
Stocks to 1.8. | 394 | 457 | 390 | 454 |
Imports of wine and musts | 1037 | 740 | 709 | 853 |
Production of wine from domestic raw materials | 294 | 376 | 310 | 298 |
Total resources | 1725 | 1573 | 1409 | 1605 |
Domestic wine consumption | 1010 | 802 | 719 | 671 |
Domestic wine consumption cover of wine production from domestic raw materials in % | 29 | 47 | 43 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ailer, Š.; Serenčéš, R.; Kozelová, D.; Poláková, Z.; Jakabová, S. Possibilities for Depleting the Content of Undesirable Volatile Phenolic Compounds in White Wine with the Use of Low-Intervention and Economically Efficient Grape Processing Technology. Appl. Sci. 2021, 11, 6735. https://doi.org/10.3390/app11156735
Ailer Š, Serenčéš R, Kozelová D, Poláková Z, Jakabová S. Possibilities for Depleting the Content of Undesirable Volatile Phenolic Compounds in White Wine with the Use of Low-Intervention and Economically Efficient Grape Processing Technology. Applied Sciences. 2021; 11(15):6735. https://doi.org/10.3390/app11156735
Chicago/Turabian StyleAiler, Štefan, Roman Serenčéš, Dagmar Kozelová, Zuzana Poláková, and Silvia Jakabová. 2021. "Possibilities for Depleting the Content of Undesirable Volatile Phenolic Compounds in White Wine with the Use of Low-Intervention and Economically Efficient Grape Processing Technology" Applied Sciences 11, no. 15: 6735. https://doi.org/10.3390/app11156735
APA StyleAiler, Š., Serenčéš, R., Kozelová, D., Poláková, Z., & Jakabová, S. (2021). Possibilities for Depleting the Content of Undesirable Volatile Phenolic Compounds in White Wine with the Use of Low-Intervention and Economically Efficient Grape Processing Technology. Applied Sciences, 11(15), 6735. https://doi.org/10.3390/app11156735