Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Application of the RUSLE Model for Soil Erosion
3.2. Rainfall Data and Erosivity (R)
3.3. Soil Characteristics and Erodibility (K)
- The coherent formations that include the calcareous crust and gypsum encrustation frequently exist in the Tunisian Jeffara;
- The remaining formations consist of loess and sandy loams that occur in the western mountain area;
- The formations of red silts cover underlying formations, particularly the calcareous crust is encountered mainly in the littoral zone.
3.4. Land Cover Management Factor (C)
3.5. Practice Support Factor (P)
3.6. Topographic Factor (LS)
3.7. Field Monitoring
4. Results and Discussion
4.1. Rainfall Data and Erosivity (R)
4.2. Soil Erodibility (K)
4.3. Topographic Factor (LS)
4.4. Land Cover Management Factor (C)
4.5. Practice Support Factor (P)
4.6. Simulated Annual Soil Loss (t/ha)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jomaa, S.; Barry, D.A.; Brovelli, A.; Sander, G.C.; Parlange, J.Y.; Heng, B.C.P.; Tromp-van Meerveld, H.J. Effect of raindrop splash and transversal width on soil erosion: Laboratory flume experiments and analysis with the Hairsine-Rose model. J. Hydrol. 2010, 395, 117–132. [Google Scholar] [CrossRef]
- Römkens, M.J.M.; Helming, K.; Prasad, S.N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Le Bissonnais, Y.; Cerdan, O.; Lecomte, V.; Benkhadra, H.; Souchère, V.; Martin, P. Variability of soil surface characteristics influencing runoff and interrill erosion. Catena 2005, 62, 111–124. [Google Scholar] [CrossRef]
- Rudolph, A.; Helming, K.; Diestel, H. Effect of antecedent soil water content and rainfall regime on microrelief changes. Soil Technol. 1997, 10, 69–81. [Google Scholar] [CrossRef]
- Jemai, S. Soil Erosion Estimation in Arid Area by USLE Model Applying GIS and RS: Case of Oued El Hamma Catchment, South-Eastern Tunisia. J. Indian Soc. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Poeppl, R.E.; Dilly, L.A.; Haselberger, S.; Renschler, C.S.; Baartman, J.E. Combining Soil Erosion Modeling with Connectivity Analyses to Assess Lateral Fine Sediment Input into Agricultural Streams. Water 2019, 11, 1793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, J.; Feng, G.; Weindorf, D.C.; Hu, G.; Sheng, J. Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. Int. Soil Water Conserv. Res. 2015, 3, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Mu, X.; Hessel, R.; Zhang, W.; Ritsema, C.J.; Li, R. Runoff and Sediment load of the Yan River, China: Changes over the last 60 yr. Hydrol. Earth Syst. Sci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Floret, C.; Pontanier, R.; Aridity in Presaharian Tunisian. Climate, Soil, Vegetation and Planning—fdi:02461. Available online: https://www.documentation.ird.fr/hor/fdi:02461 (accessed on 8 December 2020).
- Ballais, J. Three Theses on Rainfall in Tunisia: Kassab, F., (1979)—The Very Heavy Rains in Tunisia; Henia L., (1980)—Rainfall in the Tellian Tunisia; Bousnina A., (1986)—Rainfall Variability in Tunisia: Mediterranean. Volume 66. Climate Research in Mediterranean Regions II. 1988, pp. 75–76. Available online: https://www.persee.fr/doc/medit_0025-8296_1988_num_66_4_2586 (accessed on 23 June 2021).
- Gaddas, F.; Stambouli, T. Evaluation du risque d’érosion hydrique. Rev. L’inat 2010, 25, 107–119. [Google Scholar]
- Mtimet, A. Soils of Tunisia. Soil Resour. South. East. Mediterr. Ctries. 2001, 34, 243–268. [Google Scholar]
- Jebari, S.; Berndtsson, R.; Bahri, A.; Boufaroua, M. Exceptional Rainfall Characteristics Related to Erosion Risk in Semiarid Tunisia. Open Hydrol. J. 2008, 2, 25–33. [Google Scholar] [CrossRef]
- Albergel, J.; Pepin, Y.; Nasri, S.; Boufaroua, M. Erosion et Transport Solide Dans des Petits Bassins Versants Méditerranéens; IAHS Press: Wallingford, UK, 2003; pp. 373–379. [Google Scholar]
- Nasri, S.; Albergel, J.; Cudennec, C.; Berndtsson, R. Hydrological processes in macrocatchment water harvesting in the arid region oF Tunisia: The traditional system of tabias. Hydrol. Sci. J. 2004, 49, 261–272. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effects of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Escadafal, R.; Mtimet, A.; Asseline, J. Etude Expérimentale de la Dynamique Superficielle D’un sol Aride (Bir Lahmar-Sud Tunisien): Résultats des Campagnes de Mesures Sous Pluies Simulées. 1986. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers14-07/23300.pdf (accessed on 23 June 2021).
- Jomaa, S.; Barry, D.A.; Rode, M.; Sander, G.C.; Parlange, J.Y. Linear scaling of precipitation-driven soil erosion in laboratory flumes. Catena 2017, 152, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, S.; Barry, D.A.; Brovelli, A.; Heng, B.C.P.; Sander, G.C.; Parlange, J.Y.; Rose, C.W. Rain splash soil erosion estimation in the presence of rock fragments. Catena 2012, 92, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; ISBN Agriculture Handbook 537; Science and Education Adminstration (USDA): Hyattsville, MD, USA, 1978.
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. 1996, 703, 25–28. [Google Scholar]
- Thapa, P. Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environ. Syst. Res. 2020. [Google Scholar] [CrossRef]
- Andersson, L. Soil Loss Estimation Based on the USLE/GIS Approach through Small Catchments—A Minor Field Study in Tunisia. 2011, p. 56. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1709494&fileOId=1709495 (accessed on 23 June 2021).
- Avenard, J.-M. La Cartographie de L’érosion Actuelle Dans le Bassin du SEBOU (Maroc); INRA: Rabat, Morocco, 1965; Available online: https://www.documentation.ird.fr/hor/fdi:28497 (accessed on 23 June 2021).
- Cormary, Y.; Masson, J. Etude de conservation des eaux et du sol au Centre de Recherche du Génie Rural de Tunisie: Application à un projet-type de la formule de perte de sols de Wischmeier. Cah. ORSTOM Série Pédologie 1964, 2, 26. [Google Scholar]
- Jebari, S.; Berndtsson, R.; Bahri, A.; Boufaroua, M. Spatial soil loss risk and reservoir siltation in semi-arid Tunisia. Hydrol. Sci. J. 2010. [Google Scholar] [CrossRef]
- Masson, J.-M. L’érosion des sols par l’eau en climat méditerranéen. Méthodes expérimentales pour l’étude des quantités érodées à l’échelle du champ. La Houille Blanche 1972. [Google Scholar] [CrossRef] [Green Version]
- Zante, P.; Collinet, J. Cartographie des Risques Érosifs Sur le Bassin Versant de la Retenue Collinaire de El Hnach (Dorsale Tunisienne); Tunis IRD; Horizon: Bondy, France, 2001; 70p. [Google Scholar]
- Hajji, O.; Abidi, S.; Meknı, I.; Hermassi, T. Quantification de l’érosion hydrique en contexte semi-aride méditerranéen (cas du bassin versant d’El Gouazine—Tunisie). J. Int. Sci. Tech. l’Eau l’Environ. 2019, IV, 233–242. [Google Scholar]
- Ellouze, M.; Azri, C.; Abida, H. Spatial variability of monthly and annual rainfall data over Southern Tunisia. Atmos. Res. 2009, 93, 832–839. [Google Scholar] [CrossRef]
- Direction Générale des Resources en Eau: DGRE. Annuaire Pluviométrique; Ministère de l’Agriculture: Tunis, Tunisia, 2018; Available online: http://www.hydrosciences.fr/sierem/Bibliotheque/biblio/annales/TN/2007-2008.pdf (accessed on 23 June 2021).
- Fersi, M. Etude Hydrologique sur Oued Oum Ezzessar à Koutine; Ministry of Agriculture: Tunis, Tunisia, 1985. [Google Scholar]
- Ouessar, M.; Bruggeman, A.; Abdelli, F.; Mohtar, R.H.; Gabriels, D.; Cornelis, W.M. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrol. Earth Syst. Sci. 2009. [Google Scholar] [CrossRef] [Green Version]
- Amami, S.E. Les Amenagements Hydrauliques Traditionnels en Tunisie; Centre de Recherche du Genie Rural: Tunis, Tunisia, 1984; Available online: https://books.google.de/books/about/Les_amenagements_hydrauliques_traditionn.html?id=2lJWtwAACAAJ&redir_esc=y (accessed on 23 June 2021).
- Alaya, K.; Viertmann, W.; Waibel, T. Les Tabias; Imprimerie Arabe de Tunisie: Tunis, Tunisia, 1993; 192p. [Google Scholar]
- Oweis, T.Y. Rainwater Harvesting for Restoring Degraded Dry Agro-Pastoral Ecosystems: A Conceptual Review of Opportunities and Constraints in a Changing Climate. Environ. Rev. 2017, 25, 135–149. [Google Scholar] [CrossRef]
- Hernández-Molinar, R. Least Squares Method and Empirical Modeling: A Case Study in a Mexican Manufacturing Firm; Sarmiento-Rebeles, R., Ed.; IntechOpen: Rijeka, Croatia, 2016; p. 43. ISBN 978-953-51-2494-8. [Google Scholar]
- Fournier, F. Climat et EÉrosion; Presses Universitaires: Paris, France, 1960; Available online: https://books.google.de/books/about/Climat_et_%C3%A9rosion.html?id=UKfNAAAAMAAJ&redir_esc=y (accessed on 23 June 2021).
- Arnoldus, H.M.J.; de Boodt, M.; Gabriels, D. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation; John Wiley and Sons: Chichester, UK, 1980. [Google Scholar]
- Kefi, M.; Yoshino, K.; Setiawan, Y. Assessment and mapping of soil erosion risk by water in Tunisia using time series MODIS data. Paddy Water Environ. 2012, 10, 59–73. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, F.; Römkens, M.J.M.; Darboux, F. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology 2013, 187, 1–10. [Google Scholar] [CrossRef]
- USDA. National Soils Handbook. In Soil Conservation Service; USDA: Washington, DC, USA, 1983; Volume 430–VI, p. 650. [Google Scholar]
- Commission de Pedologie et de Cartographie des Sols: CPCS. Classification des Sols; Travaux CPCS 1963–1967; Association Française de l’Etude des Sols, (AFES): Orléans, France, 1967. [Google Scholar]
- Avery, B.W.; Bascomb, C.L. Soil Survey Laboratory Methods Technical Monographs (SSEW) No. 6; Soil Survey: Harpenden, UK, 1982. [Google Scholar]
- Nelson, D.W. Total carbon, organic matter and organic carbon. Methods Soil Anal. 1982, 539–580. [Google Scholar] [CrossRef]
- Hashim, G.M.; Abdullah, W.Y.W. Prediction of Soil and Nutrient Losses in A Highland Catchment. Water Air Soil Pollut. Focus 2005, 5, 103–113. [Google Scholar] [CrossRef]
- Taamallah, H. Carte Pédologique de la Jeffara; Projet Jeffara: Tunis, Tunisia, 2003. [Google Scholar]
- Gitas, I.; Silleos, G.; Karydas, C.; Minakou, C.; Douros, K. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProc. 2009, 8, 40–52. [Google Scholar]
- Shin, G.J. The Analysis of Soil Erosion Analysis in Watershed Using GIS; Gang-Won National University: Chuncheon, Korea, 1999. [Google Scholar]
- Bedoui, C. Predicting water erosion in arid lands using the GIS-based RUSLE model: A case study of Bedour catchment, central Tunisia. J. Water Land Dev. 2019, 40, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Borst, H.L.; Woodburn, R. Rain Simulator Studies of the Effect of Slope on Erosion and Runoff; A Preliminary Report. TP-36; USDA-SCS. U.S. Government Printing Office: Washington, DC, USA, 1940.
- Meyer, L.; Harmon, W. Soil Erosion Varies During the Crop Year. Trans. ASAE 1992, 35. [Google Scholar] [CrossRef]
- Shanshan, W.; Baoyang, S.; Chaodong, L.; Zhanbin, L.; Bo, M. Runoff and Soil Erosion on Slope Cropland: A Review. J. Resour. Ecol. 2018, 9, 461–470. [Google Scholar] [CrossRef]
- Schmidt, S.; Tresch, S.; Meusburger, K. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. Methods X 2019, 6, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Fersi, M.; Zante, P. Pluviométrie, Bilan Hydrique, Érosion Sur Une Toposéquence Type du Sud Tunisien Djebel Dissa (Synthèse 1972–1977); ORSTOM: Tunis, Tunisia, 1980. [Google Scholar]
- O’geen, A.T.; Elkins, R.; Lewis, D. Reducing Runoff from Irrigated Lands: Erodibility of Agricultural Soils, with Examples in Lake and Mendocino Counties; University of California: Davis, CA, USA, 2006. [Google Scholar] [CrossRef]
- Duiker, S.W.; Flanagan, D.C.; Lal, R. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena 2001. [Google Scholar] [CrossRef]
- Belasri, A.; Lakhouili, A.; Iben Halima, O. Soil erodibility mapping and its correlation with soil properties of Oued El Makhazine watershed, Morocco. J. Mater. Environ. Sci. 2017. [Google Scholar]
- Schiettecatte, W.; Ouessar, M.; Gabriels, D.; Tanghe, S.; Heirman, S.; Abdelli, F. Impact of water harvesting techniques on soil and water conservation: A case study on a micro catchment in southeastern Tunisia. J. Arid Environ. 2005, 61, 297–313. [Google Scholar] [CrossRef]
- Lopes, I.; Montenegro, A.A.A.; de Lima, J.L.M.P. Performance of conservation techniques for semi-arid environments: Field observations with caatinga, Mulch, and Cactus Forage Palma. Water 2019, 11, 792. [Google Scholar] [CrossRef] [Green Version]
Station | X (m) | Y (m) | Period | P | Type | Source * |
---|---|---|---|---|---|---|
Béni Khedache | 611,653 | 3,679,340 | 1969–2018 | 234.2 | Weather station | IRA |
Ksar Hallouf | 606,756 | 3,682,374 | 1969–2017 | 178.9 | Rain gauge | CRDA |
Ksar Jedid | 620,637 | 3,685,121 | 1969–2017 | 172.8 | Rain gauge | CRDA |
Toujane Dkhila | 609,157 | 3,699,761 | 1969–2017 | 193.1 | Rain gauge | CRDA |
Alamat | 623,390 | 3,695,498 | 1969–2017 | 162.2 | Rain gauge | CRDA |
Koutine | 627,980 | 3,701,600 | 1969–2017 | 173.1 | Rain gauge | CRDA |
Medenine | 638,440 | 3,689,600 | 1969–2018 | 169.9 | Weather station | INM |
Sidi Makhlouf | 637,412 | 3,707,889 | 1969–2017 | 179.1 | Rain gauge | CRDA |
Vegetation Cover | C Factor |
---|---|
Bare soil, fallow | 1.0 |
Fruit trees | 0.9 |
Cereal rotation | 0.4 |
Ordinary pasture | 0.15 |
Slope Classes | Contouring | Terracing |
---|---|---|
0.0–7.0 | 0.55 | 0.12 |
7.0–11.3 | 0.60 | 0.14 |
11.3–17.6 | 0.80 | 0.14 |
17.6–26.8 | 0.90 | 0.16 |
>26.8 | 1.00 | 0.18 |
Sampling Number | Code | Sub-Catchment Area (m2) | Slope (%) | Observation Years | Number of Storm Events | Mean Soil Loss (t/ha/yr) |
---|---|---|---|---|---|---|
1 | f1 | 32,500.00 | 2 | 2015, 2016, 2017, 2018 | 9 | 0.016 |
2 | f2 | 2528.82 | 2 | 2015, 2016, 2017, 2018 | 13 | 0.822 |
3 | f3 | 5923.79 | 2 | 2015, 2016 | 6 | 0.023 |
4 | f4 | 832.56 | 2 | 2015, 2016, 2017, 2018 | 9 | 0.258 |
5 | f5 | 1092.55 | 2 | 2017, 2018 | 6 | 0.329 |
6 | f6 | 963.54 | 3 | 2017, 2018 | 6 | 0.156 |
7 | m1 | 368.94 | 3 | 2015, 2016, 2017, 2018 | 9 | 0.065 |
8 | m2 | 111.51 | 6 | 2015, 2016, 2017, 2018 | 13 | 0.459 |
9 | m3 | 304.67 | 7 | 2015, 2016, 2017, 2018 | 13 | 0.559 |
10 | m4 | 744.34 | 10 | 2015, 2016, 2017, 2018 | 13 | 0.277 |
11 | m5 | 233.68 | 11 | 2015, 2016, 2017, 2018 | 13 | 1.348 |
12 | m6 | 233.72 | 14 | 2015, 2016, 2017, 2018 | 13 | 1.754 |
13 | m7 | 163.83 | 15 | 2015, 2016, 2017, 2018 | 13 | 0.286 |
14 | m8 | 1062.53 | 3 | 2017, 2018 | 6 | 0.566 |
15 | m9 | 2970.05 | 5 | 2017, 2018 | 6 | 0.277 |
16 | m10 | 4416.08 | 5 | 2017, 2018 | 6 | 3.071 |
17 | m11 | 504.36 | 6 | 2017, 2018 | 6 | 0.031 |
18 | m12 | 312.68 | 3 | 2015, 2016, 2017, 2018 | 9 | 0.158 |
19 | m13 | 1213.62 | 5 | 2015, 2016, 2017, 2018 | 9 | 0.031 |
20 | m14 | 232.41 | 30 | 2015, 2016, 2017, 2018 | 13 | 2.711 |
21 | m15 | 740.00 | 5 | 2015, 2016, 2017, 2018 | 9 | 0.732 |
22 | m16 | 1591.33 | 5 | 2015, 2016, | 5 | 0.227 |
23 | m17 | 400.22 | 2 | 2015, 2016, 2017, 2018 | 9 | 0.049 |
24 | m18 | 530.00 | 17 | 2015, 2016, 2017, 2018 | 13 | 12.504 |
25 | m19 | 947.00 | 22 | 2015, 2016, 2017, 2018 | 13 | 9.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Zaied, M.; Jomaa, S.; Ouessar, M. Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia. Appl. Sci. 2021, 11, 6763. https://doi.org/10.3390/app11156763
Ben Zaied M, Jomaa S, Ouessar M. Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia. Applied Sciences. 2021; 11(15):6763. https://doi.org/10.3390/app11156763
Chicago/Turabian StyleBen Zaied, Mongi, Seifeddine Jomaa, and Mohamed Ouessar. 2021. "Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia" Applied Sciences 11, no. 15: 6763. https://doi.org/10.3390/app11156763
APA StyleBen Zaied, M., Jomaa, S., & Ouessar, M. (2021). Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia. Applied Sciences, 11(15), 6763. https://doi.org/10.3390/app11156763